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AB S TRACT

We consider non-linear transport and drift processes caused by an inhomogeneous magnetic

field in a turbulent fluid. The coefficients of magnetic diffusivity and drift velocity are

calculated by making use of the second-order correlation approximation. Transport

processes in the presence of a sufficiently strong magnetic field become anisotropic with

larger diffusion rate and turbulent electrical resistivity across the field than along the field.

Non-linear effects also lead to a drift of the magnetic field away from the regions with a

higher magnetic energy.
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1 INTRODUCTION

Over the past three decades, large-scale dynamo theory (e.g.

Moffatt 1978; Parker 1979) has been used to explain the origin of

magnetic fields in astrophysical bodies. The original question was

whether fluid motions can work in such a way that a magnetic

field is generated from a week seed magnetic field. Fluid motions

that show some swirl (helicity) seem to be best suited to

accomplishing this (Krause & RaÈdler 1980). However, over the

last few years questions have been raised as to whether any part of

this process can still be valid when the magnetic energy becomes

comparable to the kinetic energy (Vainshtein & Cattaneo 1992;

Kulsrud & Anderson 1992). Nevertheless, there are now several

simulations that show the possibility of generation of strong large-

scale magnetic fields in the contexts of the geodynamo (Glatz-

maier & Roberts 1995, 1996) and accretion disc turbulence

(Brandenburg et al. 1995, 1996). Obviously, the presence of such a

strong magnetic field can modify (or even quench) the kinematic

dynamo effect and change the transport properties of turbulence.

The main purpose of this paper is to consider the influence of a

finite-amplitude magnetic field on the magnetic diffusivity of a

turbulent fluid.

The central point of any mean field theory is to express the

mean turbulent electromotive force

E � kv � bl; �1�

where v and b are the turbulent velocity and magnetic field,

respectively, in terms of large-scale quantities; and k¼l denote

ensemble averaging. The tensor of turbulent magnetic diffusivity

is determined by the coefficients in front of the three components

of 7 � B in this expression, where B is the mean magnetic field.

To obtain the equation for E, we use a `two-scale' approximation

in which the temporal and spatial scales associated with the

turbulence, t and `, are assumed to be small compared with the

scales characterizing the mean field, t0 and L.

The paper is organized as follows. In Section 2 we discuss the

basic equations governing the behaviour of turbulence in the

presence of finite-amplitude mean magnetic fields and formulate

our assumptions. Calculations of the non-linear contribution to the

mean electromotive force and anisotropic magnetic diffusivity are

presented in Section 3. In Section 4, we discuss the results.

2 THE BAS IC EQUATIONS

To derive E, we use the second-order correlation approximation

(see Moffatt 1978 and Krause & RaÈdler 1980 for more details). In

this approximation, the behaviour of mean quantities is governed

by equations that include non-linear effects in the mean field,

although linearized equations are used for the fluctuating

quantities. The second-order correlation approximation strictly

applies in the case of turbulence with small ordinary and magnetic

Reynolds numbers (note, however, that in this case the field can be

generated only if the magnetic Reynolds number with respect to

the large-scale motion is large enough). Generally, such turbu-

lence can be induced by weak instabilities, for example by

convection when the difference between the real and adiabatic

temperature gradients is small. This approximation may also be

applicable in the case of an ensemble of magnetohydrodynamic

waves with relatively high frequencies and small amplitudes when

the so-called Strouhal number is small, vt=` , 1:
The magnetic field B and the governing equation can be

separated into mean and fluctuating parts with B � B� b; where
B is the mean field. We assume that there is no mean flow; thus

only the fluctuating component of velocity, v, is non-vanishing.

The induction equation for the fluctuating magnetic field reads

b

t
2 nmDb � A;

A � �B ´ 7�v2 �v ´ 7�B2 B�7 ´ v�; �2�
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where nm is the magnetic diffusivity. In this equation, we neglect

the non-linear term in fluctuating quantities according to the spirit

of the second-order correlation approximation. By making use of

the Fourier transformation for fluctuating quantities, as in

b�t; r� �
��1

21

dv dk eivt2ik´r
b̂�v; k�; �3�

where the hat denotes the Fourier amplitude, we can express

bÃ(v , k) in terms of vÃ (v , k) using equation (2), so

b̂�v; k� � Â�v; k�
iv� vm

; �4�

where vm � nmk
2:

The momentum equation for the fluctuating velocity reads

v

t
� �v ´ 7�v2 nDv� 7p

r
� 1

4pr
��7 � b� � B� �7 � B� � b�;

�5�
where n is the viscosity and p is the fluctuating component of the

pressure. According to the spirit of the second-order correlation

approximation, we will also neglect the non-linear term (v ´7)v in

this equation. In the Fourier representation, equation (5) has the form

�iv� vn�v̂2
ikp̂

r
� 1

4pr
�2i�k � b̂� � B� �7 � B� � v̂�; �6�

where vn � nk2: Equation (6) can be solved by making use of a

perturbation procedure similar to the approach of `original

turbulence' introduced by RuÈdiger (1990). However, instead of

introducing a rather uncertain non-potential part in the random

force �~̂f s in the notations of RuÈdiger & Kitchatinov 1993), we

calculate this force assuming that the perturbations of turbulent

velocity caused by the magnetic field are small and employ a

standard perturbation procedure. For this purpose, we split the

velocity and other Fourier amplitudes into two components, v̂ �
v̂0 � v̂1; with vÃ 0 being the turbulent velocity in the absence of the

magnetic field, and vÃ1 being a small perturbation to vÃ 0 caused by

B. The unperturbed velocity, vÃ 0, is governed by equation (6) with

B � 0: As we neglect thermal effects in our model, the velocity

field in the `zeroth' approximation is represented by an ensemble

of isothermal sound waves with the dispersion relation v1;2 �
^vs � ivn=2; where vs � kcs; cs is the sound speed, vs @ vn:We

assume that the `zeroth' approximation describes isotropic

turbulence with mirror symmetry, whereas vÃ 1 may have a non-

mirror symmetric component that can influence the large-scale

magnetic field. One has for vÃ 1

�iv� vn�v̂1 2
ikp̂1

r
� F; �7�

where

F � 1

4pr
��7 � B� � b̂0 2 i�k � b̂0� � B�; �8�

and bÃ0 is given by equation (4) with v̂ � v̂0: It is seen from

equations (7) and (8) that a non-mirror symmetric component of

the velocity field may be caused by the Lorentz force.

The solution of equation (7) can easily be obtained if we adopt

the equation of state of an ideal isothermal gas, p̂1=p � r̂1=r; and
take into account the continuity equation, r̂1=r � �k ´ v̂1�=v: Then,

v̂1 �
1

iv� vn

F2
k�k ´ F�c2s

iv�iv� vn� � v2
s

� �

: �9�

Note that equation (9) applies only for a relatively weak magnetic

field so that jv̂1j ! jv̂0j: This condition holds if the dimensionless

parameter cAt /` is small compared with unity, where cA �
B=

��������

4pr
p

is the AlfveÂn speed.

3 THE TURBULENT ELECTROMOTIVE

FORCE

Substituting b and v in terms of their Fourier integrals into

equation (1) and taking into account that

kv̂i�v; k�v̂j�v 0; k 0�l / d�v� v 0�d�k� k
0� �10�

for a quasi-stationary and quasi-homogeneous turbulence (see e.g.

RuÈdiger & Kitchatinov 1993), we obtain

E � 2

��1

21

dv dk

iv2 vm

v̂�v; k� � i�k ´ B�v̂�2v;2k�fh

2�v̂�2v;2k� ´ 7�B2 iB�k ´ v̂�2v;2k��gi: �11�

In the case of isotropic acoustic turbulence with

kv̂i�v; k�v̂j�v 0; k 0�l � R�v; k�kikjd�v� v 0�d�k� k
0�; �12�

(see e.g. Krause & RaÈdler 1980), equation (11) yields the diffusive

component of the electromotive force alone,

E � 2h7 � B; �13�

where

h � 1

3

��1

21

vmk
2R�v; k�

v2 � v2
m

dv dk �14�

is the scalar turbulent magnetic diffusivity.

The electromotive force (1) can now be calculated by

substituting v̂ � v̂0 � v̂1 into equation (11) and keeping only

the lowest terms in vÃ1. The spectral function, R(v , k), is assumed

to be isotropic. In linear theory, the terms in equation (11) allow a

relatively simple qualitative interpretation and correspond to an

alpha effect, turbulent diffusion and drift processes caused by the

non-uniformity of large-scale quantities, respectively. If non-linear

effects are taken into account, the situation becomes quite

different and any term in equation (11) can contribute to the

rate of diffusion or to the drift velocity. Assuming the turbulence

to be homogeneous and isotropic in the zeroth approximation, we

can represent E as a sum of three components,

E � 2�h� g1B
2�7 � B� g2B�B ´ �7 � B��2 g37B

2 � B: �15�

The transport coefficients in this equation are given by

g1 �
10

3
j1 � j2 � 2j3 � 7j4;

g2 � 2j1 2 j2 � 2j3 � 7j4;

g3 � j1 � 1
2
�j2 � j3 � j4�;

where the functions j i are determined by the spectrum of the

turbulence, R(v , k),

ji �
1

2pr

�

1

21

k4R�v; k� dv dk

�v2 � v2
n��v2 � v2

m�2
f i; �16�

with

f 1 � 1
5
vm�v2

2 vnvm�;
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f 2 �
2vmv

2
s ��v2

2 v2
s ��v2

2 vnvm�2 v2vn�vn � vm��
15��v2 2 v2

s �2 � v2v2
n�

;

f 3 �
v2
sv

2��v2
2 v2

s ��vn � vm� � vn�v2
2 vnvm��

5��v2 2 v2
s �2 � v2v2

n�
;

f 4 �
1

10
vn�v2 � v2

m�:

The coefficient g1 in equation (15) describes an enhancement of

the scalar turbulent resistivity caused by the magnetic field, g2

represents a change of the resistivity component parallel to the

magnetic field. Thus the electric resistivity (and, hence, the mag-

netic diffusivity) becomes anisotropic in the presence of the field.

The coefficient g3 describes the drift of the magnetic field caused

by a non-uniform distribution of the magnetic energy in the fluid.

If g3 . 0; the field drifts away from the regions with higher B2,

and the velocity of this drift increases proportionally to 7B2. Note

that expression (15) is the most general polar linear combination

of terms that are third order in B that can be formed from the axial

vector B and the polar vector 7.

It may be convenient to describe diffusive processes in terms of

components parallel and perpendicular to the magnetic field, hk
and h'. Introducing the parallel and perpendicular components of

7 � B by

�7 � B�k �
B

B2
�B ´ �7 � B��; �7 � B�' � 7 � B2 �7 � B�k;

�17�
we can represent E as

E � 2hk�7 � B�k 2 h
'
�7 � B�' 2 g37B

2 � B; �18�

where hk � h� �g1 2 g2�B2 and h
'
� h� g1B

2 describe turbu-

lent diffusion along and across the magnetic field, respectively. As

generally g2 ± 0; we have hk ± h
'
; so the magnetic field causes

anisotropy of a turbulent fluid. Owing to this anisotropy, different

components of the magnetic field can diffuse with different rates.

Following RuÈdiger & Kitchatinov (1993), we can rewrite E in

terms of a scalar diffusivity and a turbulent `ambipolar' drift

velocity, Ua. Substituting

B�B ´ �7 � B�� � B27 � B2 B � ��7 � B� � B� �19�

into equation (15), we have

E � 2hk7 � B� Ud � B; �20�

where the drift velocity Ud is given by

Ud � 2g37B
2 � Ua; Ua � g2�7 � B� � B: �21�

The velocity Ua, being perpendicular to both the magnetic field

and the electrical current, governs a drift of the magnetic field that

resembles very closely the ambipolar diffusion in a partially

ionized plasma. However, the physical mechanism causing this

drift is quite different. In a partially ionized plasma, the ambipolar

drift is caused by an average motion of charged particles relative

to neutrals and, because the magnetic field is associated with

charged particles, it drifts relative to the plasma. In a turbulent

fluid, the drift is entirely determined by the interaction of small-

scale fluctuations with non-uniformities of the mean field. The

mean field deflects turbulent motions in such a way that they

generate the mean electromotive force that carries lines of the

mean field in the direction of the Lorentz force. Turbulent currents

play the role of charged particles in a partially ionized plasma, and

interaction of these currents with the mean field leads to its drift

relative to the fluid.

Obviously the representations (15), (18) and (20) are equivalent

but describe the behaviour of the magnetic field in different terms.

4 DISCUSS ION

Contrary to the widely accepted point of view, the influence of

non-linear effects on turbulent transport processes cannot be

described solely in terms of magnetic quenching of the a

coefficient. Our calculations confirm this conclusion, first

obtained by Roberts (1971), who proposed the general expression

(15) for E but did not estimate the coefficients. The similar

structure of the expression for E has also been obtained by RuÈdiger

& Kitchatinov (1993) in their model of `original turbulence'. In

addition to the anisotropy of the turbulent diffusivity, which seems

to be quite natural for transport processes in the presence of a

magnetic field (see e.g. Landau & Lifshitz 1979), non-linear

effects result in a qualitatively new drift process given by the last

term on the right-hand side of equation (15). This drift can be

especially pronounced in regions with a strong inhomogeneity of

the magnetic field. This effect is reminiscent of turbulent

diamagnetism, which causes the large-scale field to be expelled

from regions where the turbulence intensity is large. However, the

non-linear behaviour of the magnetic field can be rather complex

if one takes account of all non-linear terms in equation (15).

Note that our conclusion concerning the dependence of the

turbulent magnetic diffusivity on B is at variance with earlier

results by Gruzinov & Diamond (1994, 1995), who considered the

non-linear turbulent transport coefficients for an incompressible

fluid. Deriving their expressions for the diffusivity, the authors

assumed that the second-order correlator of a fluctuating magnetic

field, kbi(k)bj(k)l does not depend on the mean magnetic field and,

as a consequence, they concluded that h does not change in the

presence of the mean magnetic field. Our direct calculations as

well as the results by RuÈdiger & Kitchatinov (1993) show that this

assumption is incorrect.

The expressions for turbulent transport coefficients have an

especially simple form if the sound frequency, v s, is much greater

than any of the dissipative frequencies, vn or vm. In this case, the

spectral function of acoustic turbulence, R(v , k), is to have a

maximum near the acoustic frequency, v , vs; and rapidly tends

to 0 at v ! 0; because v � 0 corresponds to acoustic waves with

an infinitely large wavelength. At v @ max�vn;vm�; the integrals
(16) can be easily transformed by making use of one of the

representations of d functions,

lim
1!0

1

x2 � 12
� pd�x�: �22�

Introducing the magnetic Prandtl number, P � nm=n � vm=vn;
we have then for j1

j1 �
P

10pr

��1

21

vnR�v; k�
v2 � v2

n

´
k4�v2

2 Pv2
n�

�v2 � P2v2
n�2

dv dk

<
P

10r

��1

21

k4

v2
R�v; k�d�v� dv dk: �23�

The quantity k
4
R(v ,k)/v2 characterizes the spectrum of displace-

ments and has to vanish for displacements with infinite wave-

length (or, in the case of acoustic turbulence, with v ! 0�; thus
j1 � 0 in the limit of small viscosity. By analogy, it is easy to

show that j4 is proportional to the same spectral integral and
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hence should also vanish. Calculating the integral j2, we can

substitute

vn

�v2 � v2
n���v2 2 v2

s �2 � v2v2
n�

� 1

v2
s �2v2 2 v2

s �

� v2vn

�v2 2 v2
s �2 � v2v2

n

2
vn

v2 � v2
n

� �

: �24�

Then, j2 can be transformed into

j2 �
P

15pr

��1

21

k4R�v; k� dv dk

�v2 � P2v2
n�2�v2

s 2 2v2�

� vn

v2 � v2
n

2
v2vn

�v2 2 v2
s �2 � v2v2

n

� �

� {v2�v2
2 v2

s �2 v2
n�P�v2

2 v2
s � � �1� P�v2�}: �25�

Taking the limit vn ! 0 and using the representation (22), we

obtain

j2 �
P

15pr

��1

21

k4�v2
2 v2

s �R�v; k� dv dk

v2�v2
s 2 2v2�

� �d�v�2 vd�v2
2 v2

s ��: �26�

The integral containing d (v) vanishes because R/v2 tends to 0 at

v ! 0; and the integral proportional to d�v2
2 v2

s � gives zero

because of the properties of the delta function. Therefore, j2 � 0

and a non-zero contribution to the kinetic coefficients can be

provided only by j3. This integral can be calculated in the same

fashion as j2. Substituting expression (24) and taking the limit

vn ! 0; we obtain

j3 �
1

10r

��1

21

k4R�v; k� dv dk

v2�2v2 2 v2
s �

��1� P��v2
2 v2

s � � v2�

� �vd�v2
2 v2

s �2 d�v��: �27�

Using the properties of the delta function, we finally have

j3 <
1

10rc2s

��1

21

k2R�vs; k� dk: �28�

Then the transport coefficients are

g1 < g2 < 4g3: �29�

The electromotive force (15) can now be rewritten as

E � 2h7 � B� g1 B27 � B� B�B ´ �7 � B��2 1
4
7B2 � B

� 	

:

�30�
From the definition of the spectral function, we have

v2 �
��1

21

k2R�v; k� dv dk; �31�

where v is the characteristic turbulence velocity. Therefore, the

order of magnitude estimate of the quantity g1B
2 characterizing

the enhancement of diffusivity in the presence of the magnetic

field reads

g1B
2 ,

v2B2

5rc2s �v s

,
2

5
v`

v

cs

cA

cs

� �2

; �32�

where vÅ s and ` are respectively the characteristic frequency and

wavelength of the turbulence and cA is the AlfveÂn velocity.

Note that the non-linear magnetic diffusivity may well exceed

the ordinary turbulent diffusivity given by equation (14).

Assuming that vs @ max�vn;vm� and using again the representa-

tion (22), we have

h <
p

3

��1

21

k2R�0; k� dk� O�nm�: �33�

As already mentioned, the spectral function tends to 0 at v ! 0

for the acoustic turbulence and, calculating h , one should gener-

ally take into account small terms proportional to nm. Therefore,

h may be small compared with the non-linear diffusivity (32) if

the magnetic field is sufficiently strong. In our simplified analysis,

we used the assumption of statistically steady turbulence with the

correlation properties given by (12) and did not specify the

mechanism of maintaining the turbulence. Of course, viscous

dissipation would cause the turbulence to die out and upset this

assumption. However, the viscous decay time-scale (which is of

the order of 1/n`2) must be rather long for small viscosity.

Therefore, our consideration applies if non-linear diffusive pro-

cesses are much faster than the viscous dissipation, g1B
2
@ n:

Note, however, that in the case of a very small viscosity the

turbulence will be highly intermittent; thus the second-order

moments will describe it only qualitatively.

As g1 � g2; the parallel diffusivity is scarcely influenced by the

non-linear interactions and remains unchanged in our model, so

hk � h: Hence, the component of the electric current parallel to

the magnetic field diffuses with the same rate as in the case

B ! 0: On the other hand, the perpendicular diffusivity experi-

ences a strong enhancement, so the component of the current

perpendicular to B decays on a short time-scale. This resembles

very closely the properties of transport processes in a partially

ionized plasma where the magnetic field suppresses perpendicular

diffusion. However, in that case the field experiences a Hall drift,

which is perpendicular to both the magnetic field and the electric

current. In a turbulent fluid this drift is negligible. Instead, the

non-uniformity of the magnetic field causes a drift in the direction

of decreasing magnetic pressure. Thus the turbulence tends to

make the field distribution more homogeneous. The rate of drift is

generally comparable to the rate of diffusion.
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