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Abstract. The origin of large scale magnetic fields in accretion discs is investigated. Using global three-dimensional
simulations of accretion disc turbulence, a recent suggestion of Vishniac & Cho (2001, ApJ 550, 752) is re-examined,
according to which large scale fields in accretion discs could be understood without explicitly invoking the usual
helicity effect. Particular emphasis is placed on a certain correlation between vorticity and azimuthal velocity
gradient which has been predicted to drive large scale dynamo action, independent of the presence or absence of
kinetic helicity. In the global disc simulations two types of behaviours are found: those which do show this type
of velocity correlation and those which do not. The former ones are typically also the cases where the resistivity
is larger. The latter ones show signs typical of dynamo action based on the usual helicity effect. In the idealized
simulations without rotation and just shear the above correlation is found to be particularly strong. In both cases
there is, as expected, a systematic flux of magnetic helicity through the midplane. However, very little magnetic
helicity leaves the domain through the top and bottom boundaries. The idealized simulations reveal that much
of this systematic flux comes from the rotational component of the helicity flux and does not contribute to its
divergence.
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1. Introduction

A number of different simulations have now estab-
lished the possibility to generating strong large scale
magnetic fields from turbulent motions (Glatzmaier &
Roberts 1995; Brandenburg et al. 1995; Ziegler & Rüdiger
2000; Brandenburg 2001, hereafter referred to as B2001).
Although most of these simulations were devised to ex-
plain magnetism in real astrophysical bodies, it remains
debatable whether or not the mechanisms that are at work
in those simulations are also those that are responsible for
the generation of large scale fields in astrophysical bod-
ies. Up to modestly high magnetic Reynolds numbers,
currently accessible to simulations, the by far strongest
large scale dynamo effect is based on kinetic helicity of
the flow. This effect is described in standard text books
(e.g. Moffatt 1978; Krause & Rädler 1980), and is closely
related to the inverse cascade of magnetic helicity (Frisch
et al. 1975; Pouquet et al. 1976). The reason why one may
suspect problems with such mechanisms in astrophysical
settings is that they tend to produce large scale magnetic
fields that are helical and that, owing to magnetic helicity
conservation, such helical fields can only be built up slowly
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on a resistive time scale (B2001). Of course, shear (or dif-
ferential rotation) contributes strongly to the dynamo and
enhances the growth rate and final field strength, but this
reduces the resistively limited saturation time of the dy-
namo only by a factor of 10–100 for the Sun (Brandenburg
et al. 2001, hereafter referred to as BBS2001), or perhaps
somewhat more for accretion discs. Typical growth times
will still be of the order of 106 yr. Open boundaries also
tend to reduce the time scale, but this is typically at the
expense of lowering the final field strength (Brandenburg
& Dobler 2001, hereafter referred to as BD2001).

The “helicity problem” was originally identified in at-
tempts to understand the “catastrophic” magnetic feed-
back on turbulent transport coefficients such as turbulent
diffusivity (Cattaneo & Vainshtein 1991) and the alpha-
effect (Vainshtein & Cattaneo 1992; Cattaneo & Hughes
1996). Although the original arguments did not invoke
magnetic helicity, subsequent work by Bhattacharjee &
Yuan (1995) and Gruzinov & Diamond (1995) related the
quenching to helicity conservation. Furthermore, models
using the proposed quenching formulae reproduce the field
evolution in the simulations and those predicted by mag-
netic helicity conservation extremely well (B2001, Fig. 21).
Blackman & Field (2000) pointed out that catastrophic
quenching of the α-effect is peculiar to flows in periodic
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domains where there is no loss of magnetic helicity. It is
important to emphasise that the helicity problem applies
to the non-kinematic stage of dynamo activity, without
explicitly invoking the concept of α-effect dynamos.

A possible way out of the helicity problem is to pro-
duce large scale fields without invoking kinetic helicity of
the flow. That helicity is not crucial for large scale dy-
namo action was already known since the work of Gilbert
et al. (1988), who found that flows that only lack par-
ity invariance are already capable of producing large scale
dynamo action via an α-effect. The problem has been in-
vestigated further in a recent paper by Zheligovsky et al.
(2001), who found that even parity invariant flows are
capable of large-scale dynamo action. In that case the
dynamo works not via an α-effect, but through a neg-
ative turbulent magnetic diffusivity effect. A related is-
sue was brought up by Vishniac & Cho (2001, hereafter
referred to as VC2001) in an attempt to produce large
scale non-helical dynamo action that would survive in the
large magnetic Reynolds number limit. Their mechanism
requires the presence of a certain correlation between the
azimuthal component of the vorticity and the azimuthal
gradient of the vertical velocity. If that is the case they
predict the presence of a strong vertical magnetic helic-
ity current upwards. This could then drive a field-aligned
electromotive force that is proportional to the divergence
of this magnetic helicity current. This form of the elec-
tromotive force would conserve magnetic helicity and was
first proposed by Bhattacharjee & Hameiri (1986).

The purpose of the present paper is to assess the viabil-
ity and properties of the mechanism proposed by VC2001
using numerical simulations. The required correlation be-
tween the azimuthal derivative of the vertical velocity and
the azimuthal component of the vorticity is expected to
occur in the presence of shear. It should thus be espe-
cially important in accretion discs. We therefore begin by
determining the presence of such a correlation using global
simulations of accretion discs (Sect. 2).

However, in order to isolate the proposed effect from
the ordinary helicity effect, which is always present be-
cause of rotation, we have also carried out some idealized
simulations of forced turbulence with shear, but no ro-
tation. The latter is expected to promote the correlation
anticipated by VC2001, but would not lead to kinetic he-
licity in the flow. Of course, real systems do rotate and
have therefore also kinetic helicity. However, at small and
modestly large magnetic Reynolds numbers the dynamo
effect based on kinetic helicity is so much more powerful
than other mechanisms that it is necessary to suppress it
artificially if one wants to study it in isolation. This will
be done in Sect. 3.

For both the global disc simulations as well as the
idealized model we also determine the resulting helicity
fluxes, which turn out to be small and fluctuating about
zero, however. We conclude in Sect. 4 with summarizing
remarks and speculations concerning the viability of con-
ventional helicity-driven dynamos.

2. A global disc simulation

2.1. Description of the model

In order to study the possibility of dynamo action of the
form envisaged by VC2001 we use the recent global hy-
dromagnetic accretion disc simulation by Arlt & Rüdiger
(2001). Unlike earlier global MHD disc simulations by
Armitage (1998) and Hawley (2000), the radial extent
does here not cover the entire disc, so inflow and outflow
boundary conditions have to be applied in the radial direc-
tion. A possible advantage of this is that a larger spatial
resolution per unit length is now possible. Like Armitage
(1998), Arlt & Rüdiger (2001) also use the ZEUS-3D code
which, in turn, is very similar to the code used by Hawley
(2000). A version of ZEUS that is close to the one used by
Arlt & Rüdiger is described by Stone & Norman (1992a,b)
and Stone et al. (1992). The equations that are being
solved are
∂ρ

∂t
+∇ · (ρu) = 0, (1)

∂ρu

∂t
+∇ · (ρuu) = −∇p− ρ∇Φ + J ×B + ..., (2)

∂B

∂t
= ∇× (u×B) + η∇2B, (3)

where ρ, u, andB are density, velocity, and magnetic field,
respectively; p is the pressure, Φ is the gravitational po-
tential (solely from a central mass M∗), J = ∇ ×B/µ0

is the current density, µ0 is the vacuum permeability, and
η is a constant magnetic diffusivity as implemented by
D. Elstner, Potsdam. The dots on the right hand side of
Eq. (2) indicate the presence of numerical viscosity for
removing energy at small scales. No energy equation ap-
pears as we deal with an isothermal model where p = c2sρ.
The sound speed, cs, is 7% of the Keplerian orbital veloc-
ity in the middle of the simulated ring. Cylindrical polar
coordinates, (r, φ, z), are used and the entire azimuthal
range from φ = 0 to 2π is considered. The model cov-
ers vertically the range from z = −1 to +1 which corre-
sponds to 1.5–3 pressure scale heights, depending on the
value of r.

In most of the models we apply closed boundary condi-
tions for the flow on the z-boundaries, with the magnetic
field penetrating the boundaries at right angles. One of
the models (Model IX; see below) uses open boundaries
in the z-direction. The inner radial boundary is open in all
models; the mass flux is monitored on the inner boundary
and fed back into the domain on the outer radial bound-
ary with either a homogeneous or a Gaussian infall pattern
for the density. The maximum infall velocity is constant
in time and over z and is either 10−2 or 10−3 of the sound
speed. The φ-direction has periodic boundaries.

The initial configuration contains a relaxed disk with a
slow outflow on the inner boundary due to numerical vis-
cosity. The density scale height varies between Hρ = 0.33
and 0.66 between the radii r = 4 and 6. In the absence
of magnetic fields the system is hydrodynamically stable;
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this was verified numerically for up to 30 orbits without
producing any visible changes at the end of the simula-
tion. The magnetic field imposed to this configuration is
merely a vertical Bz field with zero net flux through the
vertical surfaces.

Table 1 summarizes the global runs used for this ana-
lysis. The same numbering of the models as in Arlt &
Rüdiger (2001) is used. Two of the simulations are new
on this list: Model Va is a repetition of the configuration
of Model V, but with an initial magnetic field of mixed
parity. The parity of the Bz field was zero at the begin-
ning as was the parity of the emerging Bφ field. All other
models start with an initial field parity of −1 (antisym-
metry). Model IX is similar to Model V, but uses outflow
boundary conditions for the vertical direction instead of
closed boundaries. In Table 1 the magnetic diffusivity η
is also given for all runs. Since the considerations pre-
sented here were made after the actual production runs
had been performed, only a limited number of fully three-
dimensional snapshots were available, which is the reason
for a relatively coarse sampling.

2.2. The Vishniac–Cho correlation

In the theory of VC2001 large scale magnetic field gen-
eration is possible when there is a finite value of the
correlation

CVC ≡ 〈ωφ∇φuz〉
/√
〈ω2
φ〉〈(∇φuz)2〉, (4)

where ∇φ ≡ r−1∂φ, and ω = curlu is the vorticity. We be-
gin by showing CVC as time series; see Fig. 1. The tempo-
ral averages of these time series (excluding the initial five
snapshots of each of the runs which correspond to a lapse
of 2 to 4 orbits) are listed in Table 2. We found that the
simulations can tentatively be divided into two groups: the
first group comprises the low-η models showing decreasing
correlations (left column of Fig. 1), the other group has
modestly large values of η and is characterized by a non-
vanishing CVC that is on the average about 5 to 10 times
larger than in the low-η cases (right column of Fig. 1).

A scatter plot of ∇φuz versus ωφ is shown in Fig. 2
for the data of a snapshot from Model V, which has the
largest (negative) correlation. The plot contains points in
the (z, φ) plane at r = 5 which is in the middle of the
computational domain. The plot looks rather noisy, but
one sees nevertheless a slight negative correlation.

2.3. Resulting magnetic field configurations

We first discuss the overall field structure. Horizontal slices
of the field at z = −0.39 are shown for Models VIII (less
resistive) and V (more resistive) in Figs. 3 and 4, respec-
tively. The former figure exhibits a spiral pattern whilst
the latter is rather dominated by intermediate scale struc-
tures or eddies, which is probably directly a consequence
of the larger magnetic diffusivity in that case.

Fig. 1. Correlation of∇φuz versus ωφ in global disc simulation;
here of Models II and III (left), as well as Models V and Va
(right).

Fig. 2. Scatter plot of ∇φuz with ωφ for a snapshot of Model V
at t = 14.8 Torb. The straight line gives the least square fit,
which has a correlation coefficient of CVC = −0.13 in this
example.

Next we derive a number of averaged quantities
from the simulations. Throughout this section we denote
azimuthal averages by an overbar, e.g. B =

∫
B dφ/2π.

In Fig. 5 are shown the energies contained in the large
scale field, Mmean =

∫
B2dV/(2µ0), and the energies of

the remaining fluctuations, Mfluct =
∫
b2dV/(2µ0), where

b = B − B. Like in Fig. 1, the temporal evolution be-
haviours separate into the same two groups: the low-η (less
resistive) runs which show significant energies in the large
scale field, and models with larger η that are more resis-
tive, but better able to generate fluctuation energies of at
least 50% of the large scale energy. We note that there is
one model (Model IX, not shown) where at the end the
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Table 1. Global simulations used for the analysis. The duration tend of each run is given in orbits. The infall velocities are
given in units of the sound speed cs. Symmetries refer to the type of initial Bz fields. The kinetic energy is based on the poloidal
velocities only and is an average over the last two orbits.

Run Grid (z, r, φ) Radial boundary condition r-range Torb tend Init. parity η

II 31× 61× 351 homogeneous accretion uin = −0.001cs 4.0–6.0 0.159 14.7 antisym. 0.001
III 31× 61× 351 homogeneous accretion uin = −0.01cs 4.0–6.0 0.159 9.7 antisym. 0.001
VIII 31× 61× 351 homogeneous accretion uin = −0.001cs 3.0–7.0 0.103 22.4 antisym. 0.001
V 31× 61× 351 Gaussian accretion uin = −0.001cs 4.0–6.0 0.159 18.4 antisym. 0.01
Va 31× 61× 351 Gaussian accretion uin = −0.001cs 4.0–6.0 0.159 12.4 mixed 0.01
VI 31× 61× 351 Gaussian accretion uin = −0.01cs 4.0–6.0 0.159 16.1 antisym. 0.01
IX 31× 61× 351 Gaussian accretion uin = −0.01cs, z open 4.0–6.0 0.159 16.9 antisym. 0.01

Fig. 3. Projection of magnetic field vectors in a horizontal slice
at z = −0.39 of Model VIII after 19.9 orbits.

energy of magnetic fluctuations exceeds the large scale
magnetic energy. The fact that the energy of the mean
field is typically larger than that of the fluctuating field is
somewhat surprising. A possible reason could be that the
memory of the initial mean field has not yet been lost. It is
also possible, however, that it is because of the global ge-
ometry and the shear that a strong large scale field is more
easily established when the magnetic Reynolds number is
large.

Another distinction between the two groups of runs is
given by the magnetic Taylor microscale, λM, which we
define here via λ2

M = 〈B2〉/〈µ2
0J

2〉. In Fig. 6 we show the
value of λM for the same four models as in Fig. 1. The
quantity 2πλM characterized the typical thickness of flux
structures. Its significance is that in runs with dynamo
action λM tends to increase with time until it reaches sat-
uration (e.g. Brandenburg et al. 1996). Conversely, when
the field is amplified just by field compression the value of
λM decreases somewhat with time. This is what happened
in the more resistive runs (η = 0.01). These were actually

Fig. 4. Projection of magnetic field vectors in a horizontal slice
at z = −0.39 of Model V after 17.6 orbits.

the runs that did show evidence for a finite Vishniac–Cho
correlation. In contrast, the less resistive runs (η = 0.001)
do not show any such trend.

A useful quantity for assessing the importance of helic-
ity in the large scale field is to look at the nondimensional
quantity

εC =
Cmean/k1

Mmean
, (5)

where Cmean =
∫
J · B dV is the current helicity of the

mean field. In BD2001 the value of εC was found to be
of order unity (between 1–2) for the models with a halo.
In Fig. 7 we show the value of εC for the global accretion
disc runs. The less resistive models show negative current
helicity whilst the more resistive ones show vanishing or
positive current helicity toward the end of the run. In any
case, the values of |εC| are smaller compared with the
models studied in BD2001 where |εC| = O(1). This is
not surprising, because in BD2001 the kinetic helicity was
close to the maximum value, which would be an unrealistic
assumption for any astrophysical body.
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Fig. 5. Comparison of energies in the large scale (φ-averaged)
magnetic field (solid lines) and the small-scale magnetic field
(dotted lines) for Models II and III (left), as well as Models V
and Va (right). Note that the fluctuations are larger in the
cases where η is larger.

Fig. 6. Comparison of the magnetic Taylor microscale λM for
Models II and III (left), as well as V and Va (right).

We now discuss the sign of εC. In BD2001 the sign
of the kinetic helicity was positive, and so was the sign
of the small scale current helicity. The sign of the large
scale current helicity is typically opposite, i.e. negative in
that case. In the present case, where we consider the up-
per disc plane, the kinetic helicity is negative, so we would
expect a positive value of εC, which is not what we find
(except for one of the more resistive cases, Model Va).
However, the unusual sign of J · B is primarily related
to an unusual sign of the effective α found in the present
simulations. This is because in the steady state the energy-
generating effect, αB

2
, must balance turbulent diffusion,

Fig. 7. Evolution of the nondimensional large-scale current he-
licity parameter (upper disc plane) for Models II and III (left),
as well as Models V and Va (right).

ηTJ · B. Therefore the sign of α must coincide with the
sign of J ·B. In discs, however, the sign of α is negative
(in the upper disc plane), so J · B must also be nega-
tive, and hence εC is negative, as observed. The perhaps
most convincing explanation for the negative α is that in-
tense parts of a flux tube contract (to maintain pressure
balance along field lines), but are also most buoyant. If
this contraction is stronger than the expansion associated
with the rise into a less dense medium, α will be negative
(Brandenburg 1998, see also Rüdiger & Pipin 2000).

We shall now return to the question of whether there
is any evidence for the presence of a dynamo effect as
envisaged by VC2001. We therefore need to look at the
possibility of magnetic helicity fluxes through the domain.

2.4. Magnetic helicity flux

In VC2001 it was argued that, although the overall mag-
netic helicity is small, there could still be a significant
(spatially constant) flux of magnetic helicity vertically
through the domain. The numerical procedures for evalu-
ating gauge invariant magnetic helicity and magnetic he-
licity flux in cylindrical geometry with open boundaries
in the r and z directions are not yet available. However,
for the present purpose most important is the contribu-
tion from the large scales. If we adopt horizontal averages
(over r and φ), the mean fields are one-dimensional and
the mean magnetic vector potential can be obtained sim-
ply by integration. The corresponding magnetic helicity
and magnetic helicity fluxes of the mean field can then be
calculated quite easily (see the appendix of BD2001). In
Fig. 8 we plot, for the four models, the magnetic helicity
flux, Qmean = Q

(2)
mean−Q(1)

mean, out of the domain through
the two boundaries at z = z1 and z2. Here, Q(1)

mean and
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Table 2. Results after the magnetic field was switched on. All values are temporal averages excluding the first five snapshots
(about 2 to 4 orbital periods). The first group of models (II, III, and VIII) comprises less resistive runs, whilst the second group
(Models V, Va, VI, and IX) refers to the more resistive ones.

Run urms Ekin 2ηCmean/(µ0urmsEkin) 2ηCfluc/(µ0urmsEkin) Qmean/ slope CVC

North South North South (µ0urmsEkin)

II 3.7 3.6× 105 −7.8× 10−6 +1.5× 10−6 −5.0× 10−6 +5.6× 10−6 +0.00006 −0.0024 −0.012

III 7.5 6.9× 105 −4.0× 10−6 +9.3× 10−7 −2.9× 10−6 +2.3× 10−6 +0.00007 −0.0005 +0.003

VIII 7.6 4.9× 105 −5.4× 10−7 +3.5× 10−7 −2.8× 10−6 +3.5× 10−6 +0.00029 −0.0018 −0.005

V 3.8 1.4× 106 −2.2× 10−5 +3.9× 10−5 −2.0× 10−7 +1.1× 10−5 −0.00013 −0.0086 −0.050

Va 5.3 3.9× 105 +6.9× 10−5 +6.6× 10−5 +2.4× 10−4 −2.6× 10−5 −0.00038 −0.0096 −0.086

VI 4.0 1.7× 106 −5.0× 10−5 +3.3× 10−5 −5.0× 10−6 +2.1× 10−6 −0.00157 −0.012 −0.060

IX 2.9 2.9× 105 −1.9× 10−4 +1.6× 10−4 −1.4× 10−4 +1.9× 10−4 +0.00007 −0.0053 −0.047

Fig. 8. Estimates of the magnetic helicity flux Qmean out
through the vertical boundaries. The dotted lines give the zero
value.

Q
(2)
mean denote the upward helicity fluxes at z = z1 and z2,

respectively; see Appendix A.
The mean outward flux, expressed in “dynamical”

units, µ0urmsEkin, is small (∼10−4). A small outward flux
was also found in the case of helical turbulence (BD2001).
Furthermore, the signs tend to be different in the cases
where η is small (Qmean > 0 for η = 10−3) and where it
is larger (Qmean < 0 for η = 10−2). It is doubtful that
this result indicates any significant departure from zero,
because the magnetic helicity on the two sides about the
midplane of the disc are expected to be different. Thus,
equal losses or gains on the two surfaces (z = z1 and z2)
should result in zero net magnetic helicity flux. It is there-
fore now necessary to determine the mean upward fluxes
of magnetic helicity on the two sides, Q(2)

mean and Q
(1)
mean.

Its average is denoted by Q
(up)
mean = 1

2 [Q(2)
mean + Q

(1)
mean]. If

there is indeed a systematic upwards flux through the two
boundaries, this quantity should be finite and positive. As
expected, this quantity turns out to be small. In order to

check whether this is the result of some cancellation, we
need to consider the magnetic helicity fluxes in smaller
sub-volumes.

A difficulty associated with calculating magnetic he-
licity and magnetic helicity fluxes separately in two sub-
volumes (e.g., above and below the midplane) is that we
want to make sure that the sum of the two is equal to the
total magnetic helicity calculated earlier. This will be the
case provided the magnetic helicity in each sub-domain is
calculated using the same gauge that also made the he-
licity of the full domain gauge invariant. This then also
allows one to calculate the integrated magnetic helicity
fluxes out of each sub-domain. The corresponding formu-
lae are given in Appendix B.

It turns out that the helicity fluxes out of each sub-
volume are actually large but of opposite sign. This means
that there is actually a large magnetic helicity flux through
the midplane, but not through the upper and lower bound-
aries. Having fixed the gauge such that

∫
A ·B dz is equal

to the helicity of BD2001 for the full domain, we can
also calculate the local magnetic helicity fluxes. We de-
note these by Q(mid)

mean (if evaluated at the midplane), or by
Q

(z)
mean (if calculated for all values of z). In Fig. 9 we plot

Q
(mid)
mean and compare with the averaged boundary fluxes

Q
(up)
mean. It turns out that Q(mid)

mean is indeed mostly positive,
as predicted by VC2001, but this flux is not sustained
all the way to the boundaries: Q(up)

mean is virtually zero by
comparison. An exception is Run Va, where Q(mid)

mean shows
large variations about zero and Q

(up)
mean begins to deviate

systematically from zero. (We recall that this is the run
where the initial field had mixed parity.)

In order to see whether the magnetic helicity flux at the
midplane is typical of the entire interior of the simulation
domain, we plot in Fig. 10 the vertical distribution of the
magnetic helicity flux, which was derived from horizontal
averages of field and flow and then averaged in time (again
excluding the first 2 to 4 orbits). Figure 10 shows that a
positive (i.e. upwards) flux of magnetic helicity is indeed
typical of the interior of the entire domain, and that it
vanishes only near the boundaries. Thus the boundaries
seem to play an important role, which may of course be
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Fig. 9. Estimates of the integrated magnetic helicity fluxes at
the midplane, Q

(mid)
mean , (solid line) and on the boundaries, Q

(up)
mean

(dotted line).

unrealistic. We note, however, even Model IX with open
boundaries does show a rapid drop of magnetic helicity
flux near the z-boundaries. Clearly, an abrupt change of
this flux implies generation and destruction of magnetic
helicity near the vertical boundaries.

To summarize the global disc simulations, the correla-
tion anticipated by VC2001 is present, provided the mag-
netic diffusivity is not too small. If the magnetic diffu-
sivity is smaller, the magnetic field tends to be stronger
and can become more important and may hence be able
to suppress this correlation. Nevertheless, these are also
the cases which show most clearly a systematic magnetic
helicity flux within the simulation domain, even though it
is unable to leave or enter it through the boundaries. It
is difficult to say whether the effect of VC2001 was really
responsible for the field generation found in the disc sim-
ulations. We recall that in the present simulations there is
also some evidence for a α-effect, although it is based on a
rather noisy correlation between the turbulent electromo-
tive force and the mean field; see Arlt & Rüdiger (2001). In
the following section we isolate the VC-effect by studying
a more idealized model with no net helicity. This model
also allows for longer runs and therefore clearer statistics.

3. An idealized model with shear
and stratification, but no rotation nor helicity

In order to study the effect proposed by VC2001 in isola-
tion we need to suppress artificially the ordinary dynamo
effect due to kinetic helicity of the flow. Following VC2001
the crucial factor that is necessary for causing the antici-
pated correlation is shear, but not rotation. To check this
we have used a simulation of externally driven turbulence
with zero net helicity. This is done by using the forcing
function of B2001, but with helicity whose sign changes

Fig. 10. Vertical distribution of the estimates of the upward
magnetic helicity flux Q

(up)
mean through planes at various loca-

tions z (negative sign means downward). The values at each z
are averages over time, excluding the first five snapshots of the
simulations.

randomly. In addition, the model is supplemented by the
effects of sinusoidal shear (as in BBS2001) and vertical
stratification with a conducting halo above a turbulent
layer (as in BD2001).

3.1. Description of the model

We solve the isothermal compressible MHD equations for
the logarithmic density ln ρ, the velocity u, and the mag-
netic vector potential A,

D ln ρ
D t

= −∇ · u, (6)

Du
D t

= −c2s∇ ln ρ+
J ×B
ρ

+
µ

ρ
(∇2u+ 1

3∇∇·u) + f , (7)

∂A

∂t
= u×B − ηµ0J −∇φ, (8)

where D/Dt = ∂/∂t + u ·∇ is the advective derivative,
B =∇×A is the magnetic field, and

f = f turb + f shear + g (9)

is the sum of a random forcing function, f turb (specified in
B2001), a sinusoidal shear profile, f shear = S0(µ/ρ)ŷ sinx,
and a periodic gravity potential, g = 1

2g0ẑ sin(z/2). In
all calculations we assume the gauge φ = 0 (vanishing
electrostatic potential), but for some of the analysis we
also adopt the gauge ∇ ·A = 0. Instead of the dynamical
viscosity µ (= const.) we will in the following refer to
ν ≡ µ/ρ0, where ρ0 is the mean density in the domain
(ρ0 = const. owing to mass conservation).

We use nondimensional units where cs = k1 = ρ0 =
µ0 = 1. Here, cs = const is the isothermal sound speed, k1
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Table 3. Summary of the main properties of various runs. The
kinetic energy, Ekin, is based on the poloidal flow only, whilst
E

(tot)
kin refers to the total kinetic energy (including the shear

motion). In Runs A–C the resolution is 602 × 120 meshpoints
and in Run C2 it is 1202 × 240 meshpoints. The magnetic
energies in Run C2 are only lower limits, because the field has
not reached final saturation yet.

Run ν η Ekin E
(tot)
kin Mfluct Mmean

A 0.01 5× 10−4 0.0030 2.2 0.005 0.002

B 0.01 2× 10−4 0.0030 0.7 0.018 0.002

C 0.01 10−4 0.0035 0.23 0.013 0.001

C2 0.005 10−4 0.005 0.35 >0.012 >0.0004

the smallest wavenumber of the two horizontal directions
(so its size is 2π in the horizontal direction). The verti-
cal extent of the domain is 4π. Periodic boundary condi-
tions are adopted in all three directions. The wavenum-
ber of the forcing is k = kf = 5. As in BBS2001 the
forcing amplitude is f0 = 0.01 and the nominal shear
is S0 ≡ |∂uy/∂x|max = 1. This means that the result-
ing shear velocity (in the absence of magnetic stresses) is
then also of order unity, i.e. close to the speed of sound,
and the turbulent rms velocity is about a hundred times
smaller. As in BD2001, the gravitational potential varies
sinusoidally in z with an amplitude g0 = 0.5, so the den-
sity contrast is ∆ ln ρ ≈ 1. The main parameter that is
varied in the models considered below is the magnetic dif-
fusivity η, which is in the range (1...5)× 10−4.

Once the magnetic field becomes strong the shear mo-
tion becomes reduced significantly due to magnetic forces.
We define the total kinetic energy (per unit surface) as
E

(tot)
kin = 1

2

∫ z2
z1
ρu2dz, where z1 = −π and z2 = π are the

boundaries between halo and disc plane. (This expression
for E(tot)

kin includes the energy contained in the shear, in
contrast to Ekin which does not.) When the field is still
weak we have E(tot)

kin ≈ 2.4, but once the field is strong this
value gets significantly reduced by magnetic stresses; see
Table 3. One should keep this in mind when comparing
the magnetic energies for the different runs. In the fol-
lowing we use rms values of velocity and magnetic field
for normalization purposes; these quantities are defined
in terms of Ekin and M via urms =

√
2Ekin/(〈ρ〉Lz) and

Brms =
√

2M/Lz, respectively.

3.2. The Vishniac–Cho correlation

In Fig. 11 we plot the resulting correlation between ∇yuz
(≡ ∂uz/∂y) and ωy for a particular snapshot at the end
of Run A. The anticipated effect is relatively well pro-
nounced – much more than in the global disc simulations.
As expected (see VC2001), its sign changes where the local
shear, S = ∂uy/∂x, is reversed. This supports the validity
of the basic result of VC2001 that such a correlation exists
owing to the presence of shear.

Fig. 11. Scatter plot showing the correlation between ∇yuz
and ωy for a snapshot taken at a late time of the run with
η = 5 × 10−4. In this example the correlation coefficients are
−0.66 (for x = −π, where S < 0) and +0.55 (for x = 0,
where S > 0).

It turns out that the Vishniac–Cho correlation is
in fact the most significant correlation coefficient that
changes sign when shear changes sign. In Appendix C we
have calculated, for this flow, all 81 correlation coefficients
of 〈ui,juk,l〉. The Vishniac–Cho correlation is given by the
sum of 〈ux,zuz,y〉 and −〈uz,xuz,y〉. These two terms are
indeed the most important ones. We note that the correla-
tors 〈ui,juj,i〉 (for i 6= j) are also relatively large, but they
do not change sign when the sign of the shear changes.

Next, we need to check whether this flow is capable of
dynamo action and whether large scale fields can be gener-
ated. If so, then this effect should be associated with a sig-
nificant vertical transport of magnetic helicity (VC2001).
Whether or not such a flux really helps the dynamo needs
of course to be seen.

3.3. Dynamo action

In this model we find dynamo action provided the mag-
netic Reynolds number is large enough. In Table 3 we give
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Fig. 12. Vertical slice of By (left) and its y-average (right)
for Run C2. The boundaries between halo and disc plane
are indicated by white lines. The resolution of this run is
1202 × 240 meshpoints and t = 810, corresponding to λt = 4.3.
Dark and light shades indicate negative and positive values,
respectively.

various parameters for the models considered. In Run A
where η = 5× 10−4 (the value used in BBS2001) the dy-
namo growth rate, λ ≡ d lnBrms/dt, is about λ = 0.0012.
This is much less than in the case with helical forcing
where λ = 0.015. As in B2001 and BBS2001 the initial
field strengths are about 10−6. Thus, in the present case
the saturation time is about λ−1 ln 106 ≈ 104, compared to
about 103 in BBS2001. For η = 10−4 (Run C) the growth
rate is about five times larger (0.0053) and the resulting
saturation time correspondingly shorter. The field is con-
centrated at small scales and shows some loop-like pattern
within the turbulent layer; see Fig. 12. In Fig. 13 we plot
the evolution of magnetic energies of the mean and fluctu-
ating field components within the turbulent zone, |z| ≤ π.
Here, mean fields are defined with respect to averaging in
the toroidal direction. Large scale magnetic fields are not
present in the bulk of the turbulent layer, but can be seen
in the halo, especially at later times.

In Run A where η = 5× 10−4 there is significant mag-
netic energy in the mean magnetic field (upper panel of
Fig. 13), but this mean field diminishes and the fluctuat-
ing field gains in strength as the magnetic diffusivity is
lowered to η = 10−4 (Run C).

Next we look at the evolution of magnetic and current
helicities;

H =
∫ z2

z1

A ·B dz, C =
∫ z2

z1

J ·B dz, (10)

where z1 and z2 are the boundaries of the turbulent sub-
domain. In the present case, z1 = −π and z2 = +π,
as indicated by white lines in Fig. 12. Overbars denote

Fig. 13. Normalized magnetic energies in the mean and fluctu-
ating components for Runs A and C. Time is given in units of
the inverse growth rate (λ = 0.0012 for Run A and λ = 0.0053
for Run C).

horizontal averaging, so the helicities are really volume in-
tegrals, but they are normalized by the horizontal surface
area. The definition of H depends on the gauge, but by
extrapolating the field onto a periodic domain using po-
tential fields one can define a gauge independent magnetic
helicity (Berger & Field 1984). This is also the one used in
this paper. The gauge independent magnetic helicity of the
mean-field is particularly important and requires special
care due to the fact that our vector and gauge potentials
are periodic in the horizontal directions; see BD20011 for
details.

As expected, because there is no net helicity in the
forcing of the flow, there are also no net magnetic and cur-
rent helicities in the fields; see Fig. 14. The fluctuations of
magnetic helicity are generally weak, but the contributions
from the mean and fluctuating fields are comparable. For
the current helicity there is a clear dominance of the small
scale fields over the large scale fields. This is explained by
the fact that the current helicity has two k-factors more
than the magnetic helicity and hence the ratio of small
scale to large scale contributions are larger by a factor
(kf/k1)2 for current helicity relative to magnetic helicity.

1 We use this opportunity to point out a sign error in their
Eq. (9), where it should read A0 = A0 − r⊥ × (ψẑ). The
contributions from the mean field remain however unaffected.
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Fig. 14. Magnetic and current helicities in the mean and fluc-
tuating components for the run with η = 10−4. H and C are
given in units of µ0ρ0u

2
rmsLz/k1 and ρ0u

2
rmsLzk

2
1, respectively.

3.4. Magnetic helicity flux

Vishniac & Cho (2001) pointed out that the φ = 0 gauge
in Eq. (8) is not suited for analysing local helicity flux
densities. We recall that the procedures of Berger & Field
(1984) and BD2001 only apply to helicities in a given
volume and the corresponding helicity fluxes through its
bounding surface. Magnetic helicity densities and the cor-
responding flux densities are only possible to define in a
given gauge.

In the following we denote by Ac the magnetic vector
potential in the Coulomb gauge, whilst A still refers to
the vector potential in the φ = 0 gauge. The conversion
between the two is given by Ac = A −A0, where A0 =
〈A〉+∇ψ and ∇2ψ =∇ ·A. In the following we use the
notation A0 =∇(∇−2∇ ·A).

In the φ = 0 gauge the magnetic helicity flux density
is simply E ×A, but when converted into the Coulomb
gauge it becomes (see Appendix D)

JCou
H = (E +E0)× (A−A0) +∇× [2φ(A−A0)]· (11)

The second part does not contribute to the divergence
of the magnetic helicity flux. In Fig. 15 we plot the first
part, denoted by JCou

H,1st(fluct). The suffix “(fluct)” indi-
cates that we have only included the contribution from
the fluctuating components ofA andE and then averaged
over y and t. This term was used extensively by VC2001.
We also compare with the helicity flux in the φ = 0 gauge,
Jφ=0

H (fluct). It is striking that the two are quite different;
JCou

H,1st(fluct) shows a systematic circulation pattern with

Fig. 15. Magnetic helicity flux density in Coulomb gauge (up-
per panel) compared with that in the φ = 0 gauge (lower
panel). The local flux density has been averaged in y and in t
(between λt = 32 and 42). Run C.

noise where shear is weak, i.e. near x = ±π/2. Such a
circulation patter is absent in Jφ=0

H (fluct).
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Fig. 16. Time averaged vertical magnetic helicity flux density
at x = 0 as a function of z in different gauges. Jφ=0

H refers to
the φ = 0 gauge and JCou

H refers to the Coulomb gauge. JCou
H,irr

refers to the irrotational part and JCou
H,1st refers to the first part

in Eq. (11). Like in Fig. 15, only the contributions from the
fluctuating components of A and E are included. Run C.

There may be additional solenoidal contributions also
from JCou

H,1st. In general we may split JCou
H into an irrota-

tional and a solenoidal part,

JCou
H = JCou

H,irr + JCou
H,sol. (12)

It turns out that JCou
H,1st has still a noticeable solenoidal

(i.e. rotational) contribution. In particular, it is interesting
to note that JCou

H,1st has a systematic flux through the mid-
dle of the domain with an orientation that agrees with that
predicted by VC2001 (upward where S > 0 and downward
where S < 0). At x = 0 (i.e. the position where shear is
maximum), the solenoidal part of the averaged magnetic
helicity flux is about 200 times larger than its irrotational
part. The profiles of the time averaged vertical magnetic
helicity flux density at x = 0 is plotted in Fig. 16 as func-
tions of z for different gauges. Clearly, the relevant irro-
tational part of the magnetic helicity flux does not have a
systematic component.

In order to assess the possibility of dynamo action
we plot in Fig. 17 vertical profiles of the divergence of
the helicity flux density, in units of urmsB

2
rms. This non-

dimensional quantity is reminiscent of a local dynamo
number, αBH/(k1ηT) ≈ (kf/k1)(αBH/urms), where

αBH = −∇ · JH/(2B2) ≈ −∇ · JH/B
2
rms (13)

has been introduced for the α effect of Bhattacharjee &
Hameiri (1986) and kfηT ≈ urms for the turbulent mag-
netic diffusivity, ηT. Our results (Fig. 17) suggest that the
local dynamo number is fluctuating in space and that its
rms value is somewhat larger when the magnetic Reynolds
number is larger (cf. lower panel). The fact that αBH fluc-
tuates in space (and probably also in time) is not nec-
essarily bad; such an “incoherent” α may still, together

Fig. 17. Divergence of the mean helicity flux, normalized to
make it similar to a local dynamo number. As in Figs. 15
and 16, only the contributions from the fluctuating compo-
nents of A and E are included in the calculation of the y and
t averaged magnetic helicity flux. Run C.

with shear and turbulent diffusion, contribute to produc-
ing large scale fields (Vishniac & Brandenburg 1997).

Figure 17 shows that the non-dimensional measure
of the αBH fluctuates around ±0.01. This value should
be compared with the critical value of α/(ηTk1) ≡ Cα
above which dynamo action is possible. We define the
dynamo number as D = CαCS, where CS = S/(ηTk

2
1).

With S ≈ S0 = 1 and ηTk1 = urmsk1/kf = 0.005 we
have CS = 200, and since the critical dynamo number is
around 2 (BBS2001) we have 0.01, which agrees with the
estimate above (cf. Fig. 17). However, this estimate has
been too optimistic in several ways: the actual value of S
is smaller than S0 and the incoherent α effect dynamo will
be less efficient. This may explain why the Vishniac–Cho
effect does not seem to operate in the present simulations,
but it may become more important at higher magnetic
Reynolds numbers.

4. Conclusions

In this paper we have re-examined the recent suggestion
by VC2001 that large scale dynamo action can result from
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velocity correlations involving higher derivatives. We
found this effect to be present both in global accretion
disc simulations as well as in models of forced turbulence
with no rotation and just shear. Nevertheless, it does not
seem to produce large scale dynamo action in the parame-
ter regime considered here. In particular, we find no signs
of any net vertical flux of magnetic helicity through the
domain. This was thought to be an important property of
the model suggested by VC2001.

Of course, the range of parameters considered in the
present work is limited, and the degree of stratification is
relatively weak. Nevertheless, the anticipated velocity cor-
relations are strongly present and yet there are no signs
of large scale dynamo action. As the magnetic Reynolds
number is increased, the anticipated velocity correlations
that are necessary to drive non-helical large scale dynamo
action become smaller, making this new mechanism an un-
likely candidate for explaining the field found in accretion
disc simulations. Although we cannot exclude the possi-
bility of different behaviour at larger magnetic Reynolds
number or in more realistic representations of accretion
discs, it is clear that the anticipated effect will not be eas-
ily detectable. This is quite important given the fact that
large scale dynamo action owing to the helicity effect is
so much stronger than nonhelical dynamo action. Thus,
if one is to find the effect anticipated by VC2001 it will
be quite important to isolate it from the much stronger
helicity-driven dynamo effect.

Some concluding speculations regarding the viability
of helicity-driven dynamo action in astrophysical settings
are now in order. At large magnetic Reynolds numbers
dynamo action will always generate strong magnetic fields
within a short period of time. What the helicity constraint
does is to prevent the formation of large scale helical pat-
terns in a time less than a certain fraction of the magnetic
diffusion time. It does not exclude however the forma-
tion of large scale patterns where the magnetic helicity
cancels to zero. This would however require an exchange
of magnetic helicity between various sub-domains. This
does unfortunately not come automatically, as the simu-
lations of BD2001 have shown. However, for the sun the
relevant resistive time scales are estimated to be around
or less than 106 years. On the one hand this is long
enough for large scale dynamo to be well established at
the present time. On the other hand, it would suggest
that the time scale for the solar cycle must essentially
be controlled by non-resistive effects. One idea that de-
served further attention is the possibility that the dynamo
wave corresponds to actual fluid motions within the solar
convection zone, such that the magnetic helicity within a
Lagrangian fluid patch remains to be conserved. Since this
would correspond to a systematic flux of magnetic helic-
ity, this mechanism would be similar to that of VC2001.
Here, however, the magnetic helicity flux would not be
self-driven, but driven externally, e.g. by the meridional
circulation. A number of recent investigations have shown
that meridional circulation would be capable of reversing
the sense of the dynamo wave driven by the αΩ-dynamo

(Durney 1995; Choudhuri et al. 1995; Küker et al. 2001).
This is similar to the possibility discussed above where the
dynamo wave itself drives the meridional circulation.

As far as discs is concerned, the long resistive time
scale is perhaps not a problem, because the possibility of
strong outflows always shortens the saturation time scales,
albeit at the expense of lowering the final saturation field
strengths (see BD2001). The final solution to the problem
may require more realistic global simulations with explicit
resistivities, combined with suitable analytic approaches
to enable one to extrapolate to astrophysical conditions.
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Appendix A: A gauge in which magnetic helicity
and magnetic helicity flux are automatically
gauge invariant

The purpose of this appendix is to show that there is
a particular gauge for the vector potential of the one-
dimensional mean field such that

∫
A ·B dz is automati-

cally gauge invariant. This allows us then to define a local
helicity flux such that its integral over a closed surface
(top and bottom of a slab) equals the gauge invariant in-
tegrated helicity flux of BD2001.

The evolution equation of the mean (one-dimensional)
magnetic vector potential is

Ȧ = −(E −E0), (A.1)

where E = ηµ0J −u×B is the electric field, E0 = E0(t)
is an integration constant, and A and E depend only on z
and t. From Eq. (A.1) follows the evolution equation for
the magnetic helicity density,

∂

∂t
(A ·B) +∇ · [(E +E0)×A] = −2E ·B. (A.2)

In BD2001 the gauge independent magnetic helicity of the
mean field was found to be

Hmean =
∫ z2

z1

A ·B dz + ẑ · (A1 ×A2), (A.3)

where A1 and A2 are the values of A at z = z1 and z2,
respectively. At the initial time one can always subtract a
constant from A such that the second term vanishes. This
constant turns out to be the average of A1 and A2, so we
replace initially

A→ A−A0, where A0 = 1
2 (A1 +A2)· (A.4)

Next we choose E0 such that A1 +A2 remains zero at all
later times. This yields

E0 = 1
2 (E1 +E2)· (A.5)
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We can then express the two integrated fluxes on z2 as

Q(2)
mean = ẑ·[(E2+E0)×A2] = ẑ·[(3

2E2+ 1
2E1)×A2]·(A.6)

Using the fact that A1 +A2 = 0 we can write∫ z2
z1
B dz = ẑ × (A2 −A1) = 2ẑ ×A2 = −2ẑ ×A1. (A.7)

This allows us to express Q(2)
mean as

Q(2)
mean = −(3

4E2 + 1
4E1) ·

∫ z2
z1
B dz. (A.8)

At z = z1 we count the flux as negative when helicity
leaves the domain in the downward direction, so

Q(1)
mean = +(3

4E1 + 1
4E2) ·

∫ z2
z1
B dz, (A.9)

with Qmean = Q
(2)
mean − Q(1)

mean being the gauge invariant
magnetic helicity flux of BD2001. The average upward flux
of mean magnetic helicity on the two boundaries is

Q(up)
mean = 1

2

[
Q(2)

mean+Q(1)
mean

]
=− 1

4 (E2−E1)·
∫ z2
z1
B dz. (A.10)

Appendix B: Magnetic helicity in sub-domains

In a periodic domain the sum of the magnetic helicities of
any two sub-domains is equal to the magnetic helicity of
the entire (periodic) domain. In the non-periodic case this
is not the case if the gauge invariant magnetic helicity of
BD2001 is used also for the sub-domains. We therefore cal-
culate the magnetic helicity of sub-domains by using the
gauge discussed in Appendix A, so the magnetic helicity
between the points za and zb is then

H(ab)
mean =

∫ zb

za

(A−A0) ·B dz, (B.1)

where A0 = 1
2 (A1 +A2) is independent of the values of za

and zb . For za = z1 and zb = z2 we recover Eq. (A.3), and
the sum of the magnetic helicities of sub-domains agrees
with the magnetic helicity of the whole domain from z1

to z2.
Similar to Eq. (A.2), we can now derive an evolution

equation for (A −A0) · B. The flux term is then like in
Eq. (A.2), but with A being replaced by A − A0. The
magnetic helicity flux out of an individual sub-domain is
then Q

(ab)
mean = Q

(b)
mean −Q(a)

mean, where

Q(α)
mean = ẑ · [(Eα +E0)× (Aα −A0)], α = a, b. (B.2)

Again, the sum of net helicity fluxes out of sub-domains
equals the gauge invariant net helicity fluxes,Qmean, of the
full domain. This formula can be applied to value of zα,
in particular to the equator. In that case one obtains the
horizontally averaged magnetic helicity flux through the
surface zα = 0.

Table C.1. The coefficients C
(S)
ijkl, arranged in blocks

where k increases downward and l increases to the right.
Within each block i increases downward and j increases to
the right. In bold are given the values that are largest by mag-
nitude, but different from unity.

l = 1 l = 2 l = 3

1.00 0.04 −0.09 0.04 1.00 −0.14 −0.09 −0.14 1.00
0.02 −0.01 −0.01 −0.26 −0.03 0.03 −0.03 0.01 0.03
0.01 0.05 −0.23 0.10 0.10 −0.02 −0.54 −0.01 0.04

0.02−0.26 −0.03 −0.01 −0.03 0.01 −0.01 0.03 0.03
1.00 −0.00 −0.03 −0.00 1.00 −0.01 −0.03 −0.01 1.00
−0.03 0.02 −0.04 0.00 0.07 −0.07 −0.03−0.60 0.06

0.01 0.10−0.54 0.05 0.10 −0.01 −0.23 −0.02 0.04
−0.03 0.00 −0.03 0.02 0.07−0.60 −0.04 −0.07 0.06

1.00 −0.00 −0.03 −0.00 1.00 −0.13 −0.03 −0.13 1.00

Table C.2. Like Table C.1, but for the coefficients C
(A)
ijkl which

have an antisymmetric dependence on shear. The components
that enter the Vishniac–Cho correlation are shown in bold;
these are also the coefficients with the largest magnitude in
this table.

l = 1 l = 2 l = 3

0.00 −0.16 −0.01 −0.16 0.00 −0.06 −0.01 −0.06 0.00
−0.01 0.00 0.00 0.01 −0.17 0.09 0.00 0.02 −0.13
−0.15 −0.02 0.00 −0.03 −0.04 0.21 0.01 0.28 −0.07

−0.01 0.01 0.00 0.00 −0.17 0.02 0.00 0.09 −0.13
0.00 −0.04 0.11 −0.04 0.00 −0.01 0.11 −0.01 0.00
0.01 0.03 0.10 0.00 0.03 −0.00 0.05 −0.02 0.01

−0.15 −0.03 0.01 −0.02 −0.04 0.28 0.00 0.21 −0.07
0.01 0.00 0.05 0.03 0.03 −0.02 0.10 −0.00 0.01
0.00 −0.51 0.10 −0.51 0.00 0.00 0.10 0.00 0.00

Appendix C: Velocity gradient correlation tensor

In order to check that the Vishniac–Cho correlation is
the dominant correlation among the different components
of the velocity gradient matrix, we define the correlation
coefficient

Cijkl =
〈ui,juk,l〉√
〈u2
i,j〉〈u2

k,l〉
· (C.1)

We denote by C(±)
ijkl the values of Cijkl evaluated in those

sub-domains where the sign of shear is locally positive or
negative, respectively. We separate the coefficients that
are symmetric and antisymmetric with respect to chang-
ing the sign of shear. Hence, we calculate

C
(S)
ijkl = 1

2 [C(+)
ijkl + C

(−)
ijkl], C

(A)
ijkl = 1

2 [C(+)
ijkl − C

(−)
ijkl], (C.2)

whose values are shown in Tables C.1 and C.2,
respectively.

In Table C.1 the largest contributions come from
C

(S)
xyyx = −0.26, C(S)

yzzy = −0.60, and C
(S)
zxxz = −0.54.

In Table C.2 the largest contributions come from
C

(A)
xzzy = +0.28 and C

(A)
zxzy = −0.51. These are also

the coefficients that are important in the Vishniac–Cho
correlation.
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Appendix D: Coulomb-gauged helicity flux

In the φ = 0 gauge we have Ȧ = −E. In that gauge, the
evolution of the magnetic helicity density is given by

∂

∂t
(A ·B) +∇ · (E ×A) = −2E ·B. (D.1)

Note that the term on the right hand side of this equa-
tion is gauge-invariant, but the terms on the left hand
side are not. In the Coulomb gauge we have ∇ ·AC = 0,
where AC ≡ A − A0. In order to maintain ∇ · AC = 0
for all times, we have to add the term −∇φ ≡ E0 =
∇(∇−2∇ · E) to the right hand side of the uncurled in-
duction equation,

∂

∂t
AC = −(E −E0)· (D.2)

In this gauge the evolution equation for the helicity den-
sity becomes

∂

∂t
(AC ·B)+∇ · [(E −E0)×AC]=−2(E−E0)·B. (D.3)

Unlike Eq. (D.1), the right hand side of Eq. (D.3) is gauge
dependent owing to the extra term 2E0 · B. However,
because of ∇ ·B = 0, we can write this as the divergence
of another contribution to the helicity flux density,

2E0 ·B = −2(∇φ) ·B = −∇ · (2φB), (D.4)

which should be included in the expression for the
Coulomb gauged helicity flux density,

JCou
H = (E −E0)× (A−A0) + 2φB, (D.5)

so Eq. (D.3) becomes

∂

∂t
(AC ·B) +∇ · JCou

H = −2E ·B. (D.6)

Now the right hand sides of Eqs. (D.1) and (D.6) agree
and are gauge-invariant. Note, however, that

φB = φ∇×AC =∇× (φAC) +E0 ×AC, (D.7)

so Eq. (D.5) can also be written as

JCou
H =(E +E0)× (A−A0) +∇× [2φ(A−A0)], (D.8)

which is identical to Eq. (11).
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