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A B S T R A C T

The evolution of magnetic fields is studied using simulations of forced helical turbulence with

strong imposed shear. After some initial exponential growth, the magnetic field develops a

large-scale travelling wave pattern. The resulting field structure possesses magnetic helicity,

which is conserved in a periodic box by the ideal magnetohydrodynamics equations and can

hence only change on a resistive time-scale. This strongly constrains the growth time of the

large-scale magnetic field, but less strongly constrains the length of the cycle period.

Comparing this with the case without shear, the time-scale for large-scale field amplification

is shortened by a factor Q, which depends on the relative importance of shear and helical

turbulence, and which also controls the ratio of toroidal to poloidal field. The results of the

simulations can be reproduced qualitatively and quantitatively with a mean-field aV-dynamo

model with alpha-effect and turbulent magnetic diffusivity coefficients that are less strongly

quenched than in the corresponding a2-dynamo.
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1 I N T R O D U C T I O N

In astrophysical bodies such as stars and galaxies there is a large-

scale strong magnetic field. Such fields have usually significant

magnetic helicity (e.g. Pevtsov, Canfield & Metcalf 1995; Berger

& Ruzmaikin 2000). This is non-trivial, because magnetic helicity

is a conserved quantity and can only change if there is a flux of

helicity through the boundaries, or through resistive effects which

are however very slow. Although this has been known for some

time, it has only recently been identified as the fundamental reason

for ‘catastrophic’ quenching of the a-effect in mean-field dynamo

theory (Blackman & Field 2000; Kleeorin et al. 2000). Simulations

of non-mirror symmetric turbulence, which is prototypical of flows

producing a2-dynamos, has shown that a large-scale helical

magnetic field can only grow to its final (super-) equipartition field

strength on a resistive time-scale (Brandenburg 2001, hereafter

B2001).

One may be tempted to ignore the problem of helicity

conservation because it has mainly been discussed in connection

with rather idealized models. We believe, however, that the

problem is serious and quite general. In fact, it also applies to

convection-driven dynamos and even to the case where the

dynamo-generating flow is the result of magnetic instabilities, as

was found to be the case in simulations of accretion discs with a

dynamo-generated large-scale field (Brandenburg et al. 1995). This

may be particularly surprising considering the rather plausible

expectation that the a-effect and turbulent diffusivity should be

‘anti-quenched’ and should increase with increasing field strength

(Hasler, Kaisig & Rüdiger 1995; Brandenburg, Saar & Turpin

1998). If such a mechanism is to be successful, it must still obey

helicity conservation and can then only produce a field with

vanishing net magnetic helicity.

There is strong observational evidence that the solar magnetic

field is indeed helical (Seehafer 1990; Pevtsov et al. 1995). These

observations suggest negative current helicity of the small-scale

fields in the northern hemisphere. Using a relation obtained by

Keinigs (1983), this implies a positive a-effect (Seehafer 1996),

which is consistent with B2001. In order to produce finite net-

helicity one must get rid of fields with opposite signs of magnetic

helicity, either through dissipation (which is slow) or through

selective losses through open boundaries. So far however there is

no evidence from simulations that such losses involve fields of

significant strength and opposite sign of magnetic helicity relative

to those that remain in the dynamo-active domain (Brandenburg &

Dobler 2001).

The dynamo simulations that allowed consideration of the

question of the helicity constraint were all of a2-type, so there was

no additional field amplification by shear. Thus, an outstanding

question is whether or not the helicity constraint also plays a role in

the presence of shear through which strong toroidal magnetic fields

can be generated without affecting the magnetic helicity.

There are a number of working dynamos which have both openPE-mail: brandenb@nordita.dk
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boundaries and shear (e.g. Brandenburg et al. 1995; Glatzmaier &

Roberts 1995), but those models are rather complex and use

subgrid-scale modelling, so, one cannot straightforwardly define

an effective magnetic Reynolds number. This makes a reliable

assessment of the effects of helicity conservation difficult.

Nevertheless, it clearly remains one of the next important tasks

to reconsider these or similar simulations in the light of helicity

conservation. In order to determine the relative importance of the

various possibilities for relaxing the helicity constraint (shear, open

boundaries, etc.) it is useful to consider each possibility in

isolation. As a straightforward extension of the model of B2001 we

consider here the inclusion of large-scale sinusoidal shear, which

allows us to retain the assumption of periodic boundary conditions.

We have mentioned already that shear could be important for

relaxing the helicity constraint because the toroidal field generated

by stretching does not need to be helical and hence would not be

subject to the helicity constraint. On the other hand, shear alone is

insufficient for dynamo action: one needs an additional effect that

regenerates poloidal (cross-stream) field from toroidal field (e.g.

Moffatt 1978; Krause & Rädler 1980). The main point of the

present paper is to show that, even though much of the magnetic

field amplification is due to shear, which causes the field to be only

weakly helical, the magnetic field is still subject to a (modified)

helicity constraint. More specifically, we shall show that it is no

longer the large-scale field as such which grows resistively, but

rather the geometrical mean of the magnitudes of the poloidal and

toroidal mean fields. The reason is simple: large-scale helicity

measures essentially the linkage of poloidal and toroidal fields and

must therefore be proportional to the product of the two. The

constraint that helicity can change only on a resistive time-scale

can then be alleviated. This is because, now, for the same magnetic

helicity, stronger toroidal fields are possible at the expense of

weaker poloidal fields. Conversely, equipartition strength large-

scale fields can be attained in shorter times by the ratio of toroidal

to poloidal field strength.

2 T H E M O D E L

As in B2001 we adopt the magnetohydrodynamics (MHD)

equations for an isothermal compressible gas, driven by a given

body force f, which represents both shear and small-scale driving:

D ln r

Dt
¼ 27 : u; ð1Þ

Du

Dt
¼ 2c2

s7 ln r 1
J � B

r
1

m

r
72u 1

1

3
77 : u

� �
1 f ; ð2Þ

›A

›t
¼ u � B 2 hm0J; ð3Þ

where D=Dt ¼ ›=›t 1 u :7 is the advective derivative, u is the

velocity, r is the density, B ¼ 7 � A is the magnetic field, A is its

vector potential, J ¼ 7 � B/m0 is the current density, h is the

magnetic diffusivity, and m is the dynamical viscosity. We adopt a

forcing function f of the form

f ¼ f turb 1 f shear; ð4Þ

where

f shear ¼ Cshear
m

r
ŷ sin x ð5Þ

balances the viscous stress once a sinusoidal shear flow has been

established, and

f turb ¼ Re{Nf kðtÞ exp½ikðtÞ : x 1 ifðtÞ�} ð6Þ

is the small-scale helical forcing with

f k ¼
k � ðk � êÞ2 i|k|ðk � êÞ

2k 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 ðk : êÞ2/k 2

p : ð7Þ

Here ê is an arbitrary unit vector required to generate a vector k � ê
that is perpendicular to k, f(t ) is a random phase, and

N ¼ f 0csðkcs/dtÞ1=2, where f0 is a non-dimensional factor, k ¼ |k|,

and dt is the length of the time-step. As in B2001 we focus on the

case where |k| is around kf ; 5, and select randomly at each time-

step one of the 350 possible vectors in the range 4:5 , |k| , 5:5.

We use non-dimensional units where cs ¼ k1 ¼ r0 ¼ m0 ¼ 1.

Here, cs is the speed of sound, k1 is the smallest wavenumber in the

box (so its size is 2p), r0 is the mean density (which is conserved),

and m0 is the vacuum permeability.

We are interested in the case where shear is strong compared

with the turbulence, but still subsonic. In B2001 we used f 0 ¼ 0:1

and found that the resulting Mach number of the turbulence was

between 0.1 and 0.3, which is already so close to unity that there

would be no room to accommodate sufficiently large shear which is

still subsonic. Thus, we now choose f0 to be 10 times smaller, and

we take f 0 ¼ 0:01. During the saturated phase of the dynamo the

resulting rms velocities in the meridional (xz) plane are now around

0.015. For the shear parameter we choose Cshear ¼ 1, correspond-

ing to the velocity shear S0 ¼ 1, where S ¼ ›uy/›x and the

subscript 0 indicates the absence of other effects such as turbulence

and magnetic forces. In practice the resulting velocity shear is

smaller; S ¼ 0:6. Since the size of the domain is 2p, the toroidal

rms velocities are also around 0.6, which is about 40 times stronger

than the velocities in the meridional plane. The rms velocity from

wavenumbers k $ 2 is 0.035, and this is also the value that we shall

use for our estimates of the magnetic Reynolds number and the

equipartition field strength.

We choose a magnetic Prandtl number of 10, i.e. m/ ðr0hÞ ¼ 10,

and use h ¼ 5 � 1024, so that the magnetic Reynolds number

based on the box size (¼ 2p) is about 400. The magnetic Reynolds

number based on the forcing scale is about 80. The kinetic

Reynolds number based on the forcing scale is only eight, so one

cannot expect a proper inertial range. The turnover time based on

the forcing scale is t ¼ 40. In the following we denote by poloidal

and toroidal components those in the xz plane and the y direction,

respectively.

As usual for these type of simulations with helical forcing, there

is strong dynamo action at small scales amplifying an initially

weak random seed magnetic field exponentially (on a dynamical

time-scale) to equipartition with kinetic energy. The poloidal field,

which is strongly dominated by small scales, saturates early on (at

t < 1000Þ at a level of about 0:010–0:015. The toroidal field

saturates later (at t < 2000Þ at a level of about 0:2–0:3, and is then

already dominated by large scales.

We begin by discussing the resulting field structure at late times,

and then turn to the question of resistively limited growth of the

large-scale field, and finally make comparisons with the aV-

dynamo theory.

3 F I E L D S T R U C T U R E

In Fig. 1 we show images of the three field components in the

meridional plane. Note that the toroidal field shows much smoother
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and larger-scale structures than the meridional field components.

Moreover, the toroidal field shows almost no variation along the y

direction: the toroidal average, B̄y, (second row), is very similar to

an individual meridional cross-section of By (first row). However,

in contrast to the case without shear, where the mean fields showed

systematic variations only in one of the three coordinate directions

(B2001), here the toroidal field varies with both x and z, consisting

of a superposition of modes with kx ¼ 1 and kz ¼ 1.

The toroidal component of the mean field displays dynamo

waves travelling in opposite directions at different x positions,

depending on the local sign of the shear. For x ¼ 2p the local

shear is negative and the dynamo wave travels in the positive z

direction, whilst for x ¼ 0 the local shear is positive and the wave

travels in the negative z direction (at least after t ¼ 4000Þ; see

Fig. 2. This is consistent with what is predicted from mean-field

aV-dynamo theory (e.g. Yoshimura 1975). The dynamo wave at

x ¼ 2p is quite well established at t ¼ 2000, but the behaviour at

x ¼ 0 is more complicated, and a clear dynamo wave develops only

after t ¼ 4000. The cycle period at x ¼ 0 is also longer than at

x ¼ 2p. This complicated behaviour suggests that the turbulence

properties may not be homogeneous in x, which could be a

consequence of the magnetic feedback.

There is a systematic phase shift and a well-defined amplitude

ratio between By and Bx; see Fig. 3. Note also that the dynamo wave

is markedly non-harmonic. These are clear properties that can be

compared with the mean-field model calculations (Section 6).

Before we turn to the saturation of the field at the scale of the box

we first want to assess the relative importance of the different

Fourier modes at different times. Thus, we plot in Fig. 4 the

evolution of the power, |B̂iðkjÞ|
2, in a few selected modes. Note that

after t ¼ 1700, most of the power is in the mode |B̂yðkzÞ|
2, i.e. the

toroidal field component with variation in the z direction. Between

t ¼ 1700 and <3500 the ratio of toroidal to poloidal field energies

is around 104, so Btor/Bpol < 50. At later times this ratio

diminishes. This may suggest that there is a growing contribution

from a2-type dynamo action. This is also supported by the

apparently independent evolution of the oscillatory kz-mode and

the non-oscillatory kx-mode; see Fig. 4.

In Fig. 5 we show the two-dimensional power spectra of the

three components of the mean field, B̄. (Here and elsewhere we

denote y-averaged fields by a bar, whilst angular brackets are used

for full volume averages.) Note that first a strong toroidal field

builds up, and at later times the poloidal field components also gain

significant power at the largest scale (i.e. at k 2 , 2Þ. One should

bear in mind, however, that these spectra are for the mean fields.

The three-dimensional power spectra of the non-averaged fields

reveal that the poloidal fields are ‘noisy’ and possess significant

power at the forcing wavenumber, kf; see Fig. 6.

Figure 1. Images of the three components of B in an arbitrarily chosen xz plane (first row), compared with the y-averaged fields (second row) and the Fourier-

filtered y-averaged fields with |k| # 2, indicated by the subscript ‘filt’ (third row). Dark (light) shadings refer to negative (positive) values. 1203 meshpoints,

t ¼ 6000.

Helicity constraint in turbulent dynamos 687

q 2001 RAS, MNRAS 325, 685–692



The small-scale contributions to the poloidal field result from

variations in the toroidal direction, as can be seen in a longitudinal

cross-section; see Fig. 7, where we show images of the three field

components in the yz plane. The figure shows that whilst the

toroidal field is relatively coherent in the toroidal direction, the

poloidal field components are much less coherent and show

significant fluctuations in the y direction.

We now turn to the temporal evolution of the resulting large-

scale magnetic field that gradually emerges during this simulation.

We begin by briefly reviewing the main results in the absence of

shear (B2001).

4 R E S I S T I V E LY L I M I T E D G R OW T H O N

L A R G E S C A L E S

In an unbounded or periodic system the magnetic helicity, kA :Bl,
can only change if there is microscopic magnetic diffusion, h, and

finite current helicity, kJ :Bl,

d

dt
kA :Bl ¼ 22hkJ :Bl: ð8Þ

In B2001, a possible configuration for the large-scale magnetic

field was

�B ¼ B0

cosðk1z 1 wxÞ

sinðk1z 1 wyÞ

0

0BB@
1CCA; ð9Þ

which corresponds to a force-free magnetic field that varies in the z

direction, although variations in one of the other two coordinate

directions, and with arbitrary phase shifts wx (<wy), were also

possible (B2001). B0 ¼ k �B 2l1=2
is the amplitude, whose time

dependence was found to be subject to the helicity constraint

(B2001).

The present case is different because of the shear which tends to

increase the toroidal field, but not the poloidal field. We model this

by writing

�B ¼

Bpol cosðk1z 1 wxÞ

Btor sinðk1z 1 wyÞ

0

0BB@
1CCA; ð10Þ

where Bpol and Btor are the amplitudes of the poloidal and toroidal

field components. In addition to the z dependence there can also be

an x dependence of the mean field, which is natural due to the x

dependence of the imposed shear profile. However, for the

following argument all we need is the fact that the magnetic and

current helicities are proportional to the product of poloidal and

toroidal field magnitudes,

k�J : �Bl/ k1 < 7BtorBpol < k1k �A : �Bl: ð11Þ

The upper sign applies to the present case where the kinetic helicity

is positive (representative of the southern hemisphere), and the

Figure 3. Evolution of B̄x and B̄y at x ¼ 2p and z ¼ 0. Note that B̄x has

been scaled by a factor –100.

Figure 4. Evolution of the power, |B̂iðkjÞ|
2, of a few selected Fourier modes.

After t ¼ 1700, most of the power is in the mode |B̂yðkzÞ|
2, i.e. in the toroidal

field component with variation in the z direction.

Figure 2. Space–time diagram of the mean toroidal field at x ¼ 2p

(negative local shear) and x ¼ 0 (positive local shear). Dark (light) shadings

refer to negative (positive) values. Note the presence of dynamo waves

travelling in the positive (negative) z direction for negative (positive) local

shear.
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approximation becomes exact if the field is indeed represented by

equation (10).

Following B2001, in the steady case kA :Bl ¼ constant, see

equation (8), and so the right-hand side of equation (8) must

vanish, i.e. kJ :Bl ¼ 0, which can only be consistent with equation

(11) if there is a small-scale component, k j : bl, whose sign is

opposite to that of k �J : �Bl. Hence we write

kJ :Bl ¼ k�J : �Bl 1 k j : bl < 0: ð12Þ

This yields, analogously to B2001,

2
d

dt
ðBtorBpolÞ ¼ 12hk2

1ðBtorBpolÞ2 2hk1|k j : bl|; ð13Þ

which yields the solution

BtorBpol ¼ e0B2
eq½1 2 e22hk2

1ðt2tsÞ�; ð14Þ

where e0 ¼ |k j : bl|=ðk1B2
eqÞ is a pre-factor, Beq is the equipartition

field strength with B2
eq ¼ m0kru 2l, and ts is the time when the

small-scale field has saturated, which is when equation (13)

becomes applicable. All this is equivalent to B2001, except that

k �B 2l is now replaced by the product of Btor and Bpol. The

significance of this expression is that large toroidal fields are now

possible if the poloidal field is weak.

In order to compare with the simulation we now define

Btor ; k �B2
yl1=2

; Bpol ; k �B2
x 1 �B

2
z l1=2

: ð15Þ

Note that this definition generalizes that given in equation (10). In

Fig. 8 we show the evolution of Btor and Bpol, and compare the

evolution of the product BtorBpol with equation (14). There are

different stages: for 1200 , t , 2200 and 3000 , t , 3700 the

effective value of k2
1 is k2

1 ¼ 2 (because there are contributions from

kx ¼ 1 and kz ¼ 1; see Fig. 4), whilst at other times ð2500 , t ,

2800 and t . 4000Þ the contribution from kx ¼ 1 (for 2500 , t ,

2800Þ or kz ¼ 1 (for t . 4000Þ has become subdominant and we

have effectively k2
1 ¼ 1. This is consistent with the change of field

structure discussed in Section 3: for 2000 , t , 3000 and around

t ¼ 4000 the Byðkx ¼ 1Þ mode is less powerful than the Byðkz ¼ 1Þ

mode.

We may conclude that the effect of the helicity constraint is

clearly identified in the present simulation. This is substantiated by

the fit shown in Fig. 8. The episodes during which the field

amplitude is below that obtained from the helicity constraint can be

explained by temporary changes in the field geometry.

5 A S T R O P H Y S I C A L I M P L I C AT I O N S

The main result of this paper is a quantitative modification of the

helicity constraint for dynamos in the presence of shear. With shear

included the estimate for k �B 2l of B2001 is now to be replaced by

the product BtorBpol < k �B 2l/Q, where Q ¼ Btor/Bpol @ 1 and so

k �B 2l < B2
tor. For early times, the exponential function in equation

(14) can be expanded:

k �B 2l < e0B2
eq2hk2

1ðt 2 tsÞQ: ð16Þ

In the case of efficient large-scale dynamo action the small-scale

current helicity is very nearly equal to the normalized kinetic

Figure 5. Two-dimensional power spectra of the three components of the

mean field, B̄y (solid for the y component, and broken lines for the x and z

components. The k 21 slope is given for comparison.

Figure 6. Three-dimensional power spectrum of the three field components.

1203 meshpoints, t ¼ 6000.
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helicity, r0kv : ul (see also Brandenburg & Subramanian 2000),

which in turn is approximately kfkru 2l. Since e0 ¼ k j : bl=ðk1B2
eqÞ,

this leads to e0 < kf / k1, which is 5 in the present case. The value of

e0 that fits the simulation results best is only 1.3 (see Fig. 8), so the

dynamo does not seem to be fully efficient. This reduced efficiency

could partly be explained by the fact that the actual field is not

sinusoidal, as assumed in equation (10), and that the phase shift

between poloidal and toroidal fields is not optimal.

We now want to estimate the time, teq, required to build up a

large-scale field of equipartition field strength, i.e. k �B 2l ¼ B2
eq. In

units of the turnover time, t ¼ L/urms, we have

teq/t ¼ urmsL/ ð2hk2
1L 2e0QÞ ¼ Rm/ ðe1QÞ; ð17Þ

where we have introduced a new coefficient e1 ¼ 2e0k2
1L 2.

Applying this to the Sun we have teq/t < 104–107, if we assume

Rm ¼ 108–1010, Q ¼ 10–100, and e1 < 2ð2pÞ2 < 100. At the

bottom of the solar convection zone the turnover time is about 10 d

(0.03 yr), so the time-scale for building up a large-scale field for

equipartition strength is between 300 and 3 � 105 yr.

We have not yet studied models with different values of the

magnetic Reynolds number, so we cannot properly assess the effect

on the cycle period. If the cycle period scales in the same way as

the growth time of the dynamo, then the helicity constraint would,

even in the presence of shear, continue to pose a serious problem

for understanding cyclic activity of solar-like stars. However,

before making more detailed comparisons with astrophysical

bodies it would be necessary, for example, to assess the importance

of open boundaries. This now seems to be one of the most

important aspects remaining to be clarified in the theory of large-

scale dynamos [see also Blackman & Field (2000) and Kleeorin

et al. (2000)]. Although initial results from simulations with open

boundaries seem pessimistic in that respect (Brandenburg &

Dobler 2001), the effects of open boundaries are likely to be more

important in cases with outflows (e.g. in protostellar accretion discs

or in active galactic nuclei). It should also be mentioned that large-

scale dynamos may operate with non-helical flows; see the recent

papers by Vishniac & Cho (2001) and Zheligovsky, Podvigina &

Frisch (2000). This may relax the helicity constraint, but so far

there are no simulations supporting this possibility.

6 M E A N - F I E L D I N T E R P R E TAT I O N

In the absence of shear, the results of the simulations could be well

modelled in terms of a mean-field a2-dynamo with simultaneous

quenching of the a-effect and the turbulent diffusivity. In this

section we shall try to do the same for the aV-dynamo. Since the

shear is strong compared with the inverse turnover-time we can

make the aV-approximation, i.e. we can neglect the a-effect in the

equation for the generation of the toroidal magnetic field. We also

assume that the magnetic field varies only in the direction of the

vorticity vector of the shear, which is the direction in which the

dynamo wave travels (Yoshimura 1975). In the present case this is

the z direction. Thus, the relevant equations in terms of the mean

vector potential Ā, are

›t
�Ax ¼ 2S �Ay 1 hT›2

z
�Ax; ð18Þ

›t
�Ay ¼ 1a �By 1 hT›2

z
�Ay; ð19Þ

where �By ¼ ›z
�Ax and hT ¼ h 1 ht is the total (microscopic plus

turbulent) magnetic diffusivity. [In equation (18) we have used a

particular gauge that allowed us to write the shear term as SĀy; see

Brandenburg et al. (1995) for details.] As in the case of the

a2-dynamo, we shall assume that ht and a are quenched in the

same way:

a ¼
a0

1 1 aB
�B 2/B2

eq

; ht ¼
ht0

1 1 hB
�B 2/B2

eq

; ð20Þ

where aB ¼ hB is assumed, and �B 2 ¼ �B
2
x 1 �B

2
y with �Bx ¼ 2›z

�Ay.

Figure 7. Images of the three components of B in an arbitrarily chosen yz plane. Dark (light) shadings refer to negative (positive) values. Note that Bx and Bz

show strong variations in y, but By does not. t ¼ 6000.

Figure 8. Growth of poloidal and toroidal magnetic fields on a logarithmic

scale (upper panel), and product of poloidal and toroidal magnetic fields on

a linear scale. For the fit we have used k2
1 ¼ 2, Beq ¼ 0:035, and e0 ¼ 1:3.
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In the case of the a2-dynamo in a periodic domain the two

components of the magnetic field were sinusoidal and phase shifted

by 908 such that B̄ 2 was spatially constant. It was therefore

possible to obtain the solution for the evolution of B̄ 2 in closed

form. The final saturation field strength, Bfin, was then given by

[equation (55) of B2001]

aB
B2

fin

B2
eq

<
l

hk2
1

ðfor the a 2-dynamoÞ; ð21Þ

where l ¼ a0k1 2 hT0k2
1 is the kinematic growth rate of the

a2-dynamo.

In the present case of an aV-dynamo, B̄ 2 is no longer spatially

constant and the solution cannot be obtained in closed form. We

therefore resort to numerical solutions of equations (18)–(20)

using periodic boundary conditions. All the solutions turned out to

be oscillatory with a period T, but the temporal structure is strongly

non-harmonic; see Fig. 9. Note that the time dependence of B̄x and

B̄y is qualitatively and quantitatively similar to that found in the

actual simulation (Fig. 3). The field amplitude depends on the value

of aB and agrees with that found in the simulation (Fig. 3) if aB < 2.

The solution also depends on the value of the dynamo number

D ¼ a0k1S/ ðhT0k2
1Þ

2; ð22Þ

where hT0 ¼ h 1 ht0 is the kinematic value of the total turbulent

magnetic diffusivity. For the model shown in Fig. 9 we used

D ¼ 10, but if D is doubled the cycle period also approximately

doubles. Thus, D ¼ 20 would be more representative for the

dynamo wave at x ¼ 0 (cf. Fig. 2).

Although the present analysis is straightforward and indeed

quite similar to other aV-dynamos considered in the literature (e.g.

Moffatt 1978; Krause & Rädler 1980), a main conceptual

difference is that here we consider a and ht to be quenched in

the same way, and that we retain the microscopic magnetic

diffusion h which is not quenched.

We have determined the value of aBB2
fin/B2

eq and the cycle

frequency v ¼ 2p/T as a function of l/hk2
1 for different values of

the dynamo number D. The results are shown in Fig. 10. We have

checked that the different curves in Fig. 10 depend only on the

parameterD, regardless of the values of a0, S and hT0, provided the

kinematic growth rate of the linearized form of equations (18) and

(19),

l ¼ 2hT0k2
1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0k1S/2

p
; ð23Þ

is kept unchanged. Note that it is now this l that enters the

expression l/hk2
1, which we have considered as the control

parameter for the numerical solutions displayed in Fig. 10.

With these preparations we can now make a detailed comparison

with the simulation data. In the simulation the kinematic growth

rate can be read off the first panel of Fig. 8 and turns out to be

l ¼ 0:015. Thus, with h ¼ 5 � 1024 and k1 ¼ 1 we have

l/hk2
1 ¼ 30. From Fig. 10 we see, then, that v/hT0k2

1 < 0:4. For

T in the range 1000–2000 we have v ¼ 0:006–0:003, which yields

hT0 < 0:015–0:0075, respectively.

Given the values of l and hT0k2
1, we can express the dynamo

number as

D/Dcrit ¼ ½l/ ðhT0k2
1Þ1 1�2; ð24Þ

whereDcrit ¼ 2 is the critical value for dynamo action, and we find

D ¼ 8–18 for T ¼ 1000–2000, respectively. From Fig. 10 we see,

then, that aBB2
fin/B2

eq ¼ 60–100. In the simulations we have Bfin <
0:25 and Beq ¼ 0:035, so B2

fin/B2
eq < 50, and therefore aB ¼ 1–2,

which is in agreement with the value inferred earlier from the field

amplitude; cf. Figs 3 and 9. We can therefore conclude that in an

aV-dynamo, a and ht are quenched much less than in an

a2-dynamo, where aB would be around 30. If the weaker quenching

for oscillatory aV-type dynamos is confirmed for larger values of

the magnetic Reynolds number then this would also suggest that the

cycle period is also only weakly increased. Already now the cycle

period is closer to the dynamical time-scale than to the resistive one.

This is best seen by comparing the two ratios

v/hT0k2
1 < 0:4 and v/hk2

1 < 6–12: ð25Þ

Note also that the values of hT0k2
1 and l are very close to each

other. This confirms again that the turbulent diffusivity is

dynamically significant and not quenched to its microscopic value.

Finally we show in Fig. 11 the evolution of k �B 2l=k �B 2lmax for

different values of D, and compare it with the shape of the curve

predicted by the helicity constraint of equation (14). We see that the

Figure 9. Evolution of a1=2
B

�Bx and a1=2
B

�By in the one-dimensional mean-field

model with D ¼ 10, l ¼ 0:015 and h ¼ 5 � 1024. Note that B̄x has been

scaled by a factor 100. (In this case S . 0, so we have plotted 1Bx, and not

2Bx as we did in Fig. 3 where S , 0:Þ

Figure 10. Normalized saturation field strength and cycle frequency for the

saturated state of a non-linear one-dimensional aV-dynamo with

simultaneous a and ht quenchings. The diagonal (dash–dotted line) in

the first panel gives the result for the corresponding a2-dynamo (for all

values of a0/hT0k1Þ.
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correct shape of the helicity constraint is matched forD < 20, which

corresponds to the value obtained for T ¼ 2000. The fact that the

helicity constrained is matched for one particular value of D is

surprising. This suggests that in non-linear aV-dynamo theory the

dynamo number is no longer a free parameter, and that there is only

one possible value of D for which the helicity constraint with the

correct value of the microscopic magnetic diffusivity can be matched.

7 C O N C L U S I O N S

The present investigations have shown that the effects of the

helicity constraint can clearly be identified, even though much of

the field amplification results now from the shearing of a poloidal

field. Instead of having a constraint on the magnetic energy in the

mean field, one now has a constraint on the geometrical mean of

the energies in the poloidal and toroidal mean-field components.

The dynamo remains time dependent with a typical period that is

closer to a dynamical time-scale than to a resistive one. The

toroidally averaged field alternates in sign and shows a clear

migration pattern.

The present work has revealed that, even though the kinetic

helicity of the flow is near its maximum possible value, the poloidal

field shows a great deal of ‘noise’, whilst the toroidal field does not.

The power spectra of the poloidal field shows that most of the

power is in small scales, making the use of averages at first glance

questionable. However, once the field is averaged over the toroidal

direction the resulting poloidal field is governed by large-scale

patterns (the slope of the spectrum is steeper than k 21, which is the

critical slope for equipartition of energy between small- and large-

scale fields). The presence even of a weak mean poloidal field is

crucial for understanding the resulting large-scale field generation

in the framework of an aV-dynamo.

The results of the simulations can be reproduced by a mean-field

aV-dynamo where the a-effect and turbulent magnetic diffusivity

are quenched by the magnetic field. The strength of the quenching

is however much weaker than for the corresponding a2-dynamo.

The resistively limited growth imposed by the magnetic helicity

constraint is recovered for one particular value of the dynamo

number. Whether or not the cycle period becomes catastrophically

large in the limit of large magnetic Reynolds numbers is not

entirely clear, because the frequency dependence shown in Fig. 10

seems to level off at a definite value. However, the value of the

magnetic Reynolds number where the cycle frequency levels off

shifts to larger values as the dynamo number is increased. If it is

confirmed that large magnetic Reynolds numbers (based on the

microscopic magnetic diffusivity) also imply large dynamo

numbers (based on the value of the turbulent magnetic diffusivity),

then the cycle period would probably be too long to explain the

cycle periods observed in many late-type stars. On the other hand,

using a mean-field model that obeys the magnetic helicity

constraint, we found evidence that the cycle period is controlled

primarily by the dynamical time-scale.

It is important to remember that the flows considered in the

present investigations are driven by some imposed body force. In

astrophysical bodies the flows are driven by convection and shear.

This does not directly affect the helicity constraint which controls

the long time-scales discussed here. However, when open

boundary conditions are considered it may be possible that real

astrophysical flows have a better ability to dispose of small-scale

fields whose magnetic helicity has the opposite sign of that of the

large-scale field. [In externally driven flows, open boundaries do

not seem to relax the constraint imposed by helicity conservation

sufficiently; see Brandenburg & Dobler (2001).]

The driven flows considered here and in related papers have the

tremendous advantage of allowing significant progress to be made

in understanding the simulation results quantitatively in terms of

the mean-field theory. This will be a much harder task for real

astrophysical flows. For example, the helicity constraint has, to our

knowledge, never been identified in simulations of astrophysically

driven flows. This seems to be now one of the most important tasks

for future simulations of large-scale dynamos.

AC K N OW L E D G M E N T S

We thank Eric Blackman and Anvar Shukurov for many

stimulating discussions and comments on the manuscript. We

also thank an anonymous referee for making useful suggestions

that have led to an improved presentation of the results. ABi and

KS acknowledge NORDITA for hospitality during the course of

this work. Use of the PPARC supported supercomputers in St

Andrews and Leicester is acknowledged.

R E F E R E N C E S

Berger M. A., Ruzmaikin A., 2000, J. Geophys. Res., 105, 10481

Blackman E. G., Field G. F., 2000, ApJ, 534, 984

Brandenburg A., 2001, ApJ, 550, 824 (B2001)

Brandenburg A., Dobler W., 2001, A&A, 369, 329

Brandenburg A., Subramanian K., 2000, A&A, 361, L33
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Figure 11. Resistively dominated saturation behaviour in the aV-dynamo

for large enough dynamo numbers ðD < 20Þ. For all curves we have l ¼

0:015 and h ¼ 5 � 1024. For large values of D the cycle oscillation begins

to distort the curve and causes additional deviations from the helicity

constraint (solid line), which is best matched for D ¼ 20.
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