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Inverse cascade in decaying three-dimensional magnetohydrodynamic turbulence
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We perform direct numerical simulations of three-dimensional freely decaying magnetohydrodynamic tur-
bulence. For helical magnetic fields, an inverse cascade effect is observed in which power is transfered from
smaller scales to larger scales. The magnetic field reaches a scaling regime with self-similar evolution, and
power-law behavior at high wave numbers. We also find power-law decay in the magnetic and kinematic
energies, and power-law growth in the characteristic length scale of the magnetic field.
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I. INTRODUCTION

Within cosmology, astrophysics, or geophysics one of
needs to deal with electrically conducting plasmas at h
kinematic and magnetic Reynolds numbers where magn
fields are dynamically important. Indeed, much of the turb
lence in the interstellar medium is magnetohydrodynamic
nature.

Hydromagnetic turbulence has been explored extensi
in connection with the generation of large-scale magn
fields in astrophysical bodies such as planets, stars, accr
discs, and galaxies through dynamo theories. Nondriv
freely decaying turbulence may also be of interest in conn
tion with both the physics of the interstellar medium a
cosmology. Our interest was inspired by the cosmology
primordial magnetic fields, which is sometimes conside
as a possible source for providing the seed for the gala
dynamo@1#.

There have been various related works on decaying m
netohydrodynamic~MHD! turbulence, by authors intereste
in different contexts@2–7#. Most directly comparable to ou
work, Biskamp and Mu¨ller @6# studied the energy decay i
incompressible three-dimensional~3D! magnetohydrody-
namic turbulence in numerical simulations at relatively hi
Reynolds number, and in a companion letter@7#, studied the
scaling properties of the energy power spectrum.

We are here especially interested in the inverse cascad
magnetic helicity, whereby magnetic energy is transfer
from small-to-large-scale fluctuations. This is important fo
primordial magnetic field to reach a large enough scale w
sufficient amplitude to be relevant for seeding the gala
dynamo@8#.

It should be noted that due to the conformal invariance
MHD in the radiation era, the MHD equations in an expan
ing universe can be converted into the relativistic MH
equations in flat spacetime by an appropriate scaling of
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variables and by using conformal time@9#. The equations of
@9# differ slightly from the ordinary nonrelativistic MHD
equations. However, in order to facilitate comparison w
earlier work, we use the nonrelativistic equations.

We perform 3D simulations both with and without ma
netic helicity, starting from statistically homogeneous a
isotropic random initial conditions, with power spectra su
gested by cosmological applications. We find a strong
verse cascade in the helical case, with equivocal evidence
a weak inverse cascade when only helicity fluctuations
present. In the helical case, we also find a self-similar po
spectrum with an approximatelyk22.5 behavior at highk. We
present energy decay laws that are comparable to th
found in the incompressible case by Biskamp and Mu¨ller @6#,
and in the compressible case by Mac Lowet al. @5#.

II. THE MODEL

We consider the equations for an isothermal compress
gas with a magnetic field, which is governed by the mom
tum equation, the continuity equation, and the induct
equation, written here in the form

]u

]t
52u•“u2cs

2
“ ln r1

J3B

r
1

m

r S ¹2u1
1

3
““•uD ,

~1!

] ln r

]t
52u•“ ln r2“•u, ~2!

]A

]t
5u3B1h¹2A, ~3!

whereB5“3A is the magnetic field in terms of the mag
netic vector potentialA, u is the velocity,J is the current
density,r is the density,m is the dynamical viscosity, andh
is the magnetic diffusivity.

The code for solving these equations@10# uses a variable
third-order Runge-Kutta timestep and sixth-order expli
centered derivatives in space. All our runs are performed
a 1203 grid, and we use periodic boundary conditions, whi
©2001 The American Physical Society05-1
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means that the average plasma density^r0&5r0 is conserved
during runs. Here,r0 is the value of the initially uniform
density, and the brackets denote volume average.

We adopt nondimensional quantities by measuringu in
units of c, wherec is the speed of light,k in units of k1,
wherek1 is the smallest wave number in the box, which h
a size ofLBOX52p, density in units ofr051, and B is
measured in units ofAm0r0c, where m0 is the magnetic
permeability. This is equivalent to puttingc5k15r05m0
51. In the following, we will refer to the mean kinemat
viscosity n, which we define asn[m/r0. The sound speed
cs takes the valuecs51/A3, as appropriate for a relativisti
fluid. With c51, the unit of time is such that the light cros
ing time of the box is 2p.

Our equations are similar to those for the relativistic g
in the early universe using scaled variables and confor
time for nonrelativistic bulk velocities@9#. We expect our
results to change little using the true relativistic equations
our advection velocity is at most only mildly relativistic, an
this only at the beginning of the simulation.

III. ON THE ROLE OF THE INVERSE CASCADE

The magnetic helicityHM is given by

HM5E A•B d3x, ~4!

and characterizes the linkage between magnetic field li
HM is conserved in the absence of ohmic dissipation,
though it is still possible to have local, small-scale helic
fluctuations. Helicity plays an important role in dynam
theory @11,12#, where turbulence is driven.

In many astrophysical and cosmological situations,
magnetic Reynolds numberReM is very large. We define the
magnetic Reynolds number asReM5Lv/h, whereL and v
are the typical length scale and velocity of the system un
consideration andh is the resistivity. The magnetic Reynold
number is a measure of the relative importance of flux fre
ing versus resistive diffusion. In a cosmological context, t
number can be extraordinarily large: causality imposes
weak limit L<ct and relativity demandsv,c. With conduc-
tivities relevant to the era when the electroweak phase t
sition took place@13#, one can, in principle, obtain a mag
netic Reynolds number of about 1016. This is often taken to
mean that the magnetic field is frozen into the plasma,
the scale length of the field increases only with the expans
of the Universe.

However, this simple picture does not necessarily giv
full description of the dynamics because the MHD equatio
especially at high Reynolds numbers where nonlinear te
are important, exhibit turbulent behavior, which can lead t
redistribution of magnetic energy over different length sca
@9#. Energy in a turbulent magnetic field can undergo
inverse cascade and be transferred from high-freque
modes to low-frequency modes, increasing the overall
moving correlation length@11#. This process is due to th
nonlinear terms giving rise to interactions between many
ferent length scales.
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We will take the initial primordial power spectrum a
given and address the question of how such a primor
spectrum evolves as a consequence of the nonlinear e
tions of motion.

IV. INITIAL CONDITIONS

Since one of the aims of the present work is to investig
the role of magnetic helicity in the inverse cascade, we
scribe how the initial conditions for our simulations were s
up. We chose our initial condition by setting up magne
fluctuations with an initial power spectrumPM(k)[^Bk*
•Bk&'kn in Fourier space~and averaged over shells of con
stantk5uku), for low values of the wave-numberk, using an
exponential cutoffkc . @The shell-averaged power spectru
PM(k) is not to be confused with the shell-integrated ene
spectrum,EM54pk23(1/2)PM(k), which is shown in the
plots below.#

The magnetic-field fluctuations are drawn from a Gau
ian random-field distribution fully determined by its pow
spectrum in Fourier space according to the following pro
dure. For each grid point, we use the corresponding w
number to select an amplitude from a Gaussian distribu
centered on zero and with the width

PM~k!5PM,0k
n exp@2~k/kc!

4#, ~5!

where k5uku. We then transform the field back into re
space to obtain the field at each grid point. This is do
independently for each field component.

There is a requirement in cosmology thatn>2, which is
set by causality demanding that the correlation function
the magnetic field vanishes at large distances, and the
that the magnetic field is divergence-free@14#. In the simu-
lations presented, we chose the slope of the power spec
to be n52. We also chosekc530, unless specified other
wise, which gives a power spectrum peaked at a relativ
large value ofk. Biskamp and Mu¨ller @6,7# started with a
spectrum peaked atkc54, which may account for the differ
ent slope in the late-time power spectrum that we obse
~see Sec. V A!.

Our velocity power spectrum was chosen in a simi
way, but with n50 corresponding to white noise at larg
scales~there is no requirement for incompressibility in th
early universe!. The initial magnetic energy was taken equ
to the kinetic energy, and had the value 531023 in all runs,
as the primordial field is thought likely to be weak.

In order to introduce a nonzero average magnetic heli
into the system, it is useful to represent the vector poten
in terms of its projection onto an orthogonal basis formed
ê1 , ê2 , and k̂. The two basis vectorsê1 and ê2 can be
chosen to be the unit vectors for circular polarization, rig
handed and left-handed, respectively. That is,ê65ê16 i ê2,
where ê1 and ê2 are unit vectors orthogonal to each oth
and to k. They are given byê15k3 ẑ/uk3 ẑu and ê25k
3(k3 ẑ)/uk3(k3 ẑ) ẑu, respectively. ẑ is a reference
direction.

Note that since
5-2
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i k̂3ês5skês , ~6!

wheres561, this corresponds to an expansion of the m
netic vector potential into helical modes.

Using these basis vectors, it is easily seen that the m
netic energy spectrum is

EM~k!52pk2^uBku2&, ~7!

where the amplitude of the magnetic field is given by

uBku25~ uAk
1u21uAk

2u2!uku2 ~8!

and the expression for the magnetic helicity spectrumHM(k)
is

HM~k!54pk2^Ak* •Bk&, ~9!

where

Ak* •Bk5~ uAk
1u22uAk

2u2!uku. ~10!

The functionHM(k) is a sensitive measure of the correlati
between the vector potential and the magnetic field.HM(k)
may, of course, be positive in one part of Fourier space
negative in another part. It is, however, bounded in mag
tude by the inequality

uHM~k!u<2k21EM~k!. ~11!

A field that saturates the above inequality is maximally h
lical.

The amplitudesAk
6 can be chosen independently, pr

vided A2k* 65Ak
6 , which is just the condition that the vecto

potential be real. Therefore, it is possible to adjust the a
plitudes uAk

1u and uAk
2u freely and in so doing obtaining

magnetic field with arbitrary magnetic helicity. With ou
method, we are able to put statistically random but ma
mally helical fields in our initial conditions. In our runs wit
initial helicity, we takeHM5Hmax.

Because we evolve our dynamical fields on a discrete
tice we have to be careful when using derivative operati
in Fourier space. In general, the wave vector, which is
eigenvalue of the derivative operator, needs to be replace
some functionkeff(k), which is an eigenvalue of the discre
derivative operator on the lattice. In our case, we have for
sixth-order explicit centered derivative

keff~k!5
1

30
@sin~3k!29 sin~2k!145 sin~k!#. ~12!

In order to be consistent with the scheme used in the si
lation, we usekeff(k) when calculating the initial condition in
Fourier space.

V. RESULTS

In all runs, the mean kinematic viscosityn and the resis-
tivity h were chosen to be equal with values betweenn5h
55310242531025. In our simulations, we typically ob
tain Reynolds numbers of the order of 100–200. The R
05640
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nolds numbers in our simulations are evaluated using
magnetic Taylor microscale, which we calculate here as
ratio of the rms magnetic field and the rms current dens
LT52pBrms/Jrms. The 2p factor is here included so thatLT
represents the typical wavelength~and not the inverse wave
number! of structures in the current density.

A. Spectral evolution

The inverse magnetic cascade for decaying MHD tur
lence is best visualized in terms of magnetic energy spe
EM(k) because information on nonlinear interaction betwe
different scales is contained inEM(k). In Fig. 1, we show a
run with initial magnetic helicity. In Fig. 1, we see evidenc
for a dual energy transfer both toward higher and lower wa
numbers. The inverse cascade is characterized by the tra
of energy from small-scale structures in the magnetic field
larger ones. In Fig. 1, this behavior is clearly seen as in
cated by the rise in the energy spectrum at small wave n
bers. Some energy is also being transported to smaller sc
where the spectrum is decaying due to diffusive effects.
also note that at wave numbers above the peakkp(t), the
spectrum develops a power-law shape. This power law
approximately ak22.5 slope. This differs from the approxi
matelyk25/3 law found by Müller and Biskamp@7#. We sug-
gest that this is due to finite-size effects, which affect t
spectrum if the initial scale separation betweenkp and the
smallest wave number in the box (k51) is insufficient, and
if the flow is strongly helical so that its spectrum is govern
by inverse cascading. In order to check this, we have p
formed a run with larger initial length scale,kc55. In this
case, the magnetic energy spectrum develops into an
proximatek25/3 law at late times. However, this occurs on
after the peak of the spectrum has left the simulation b
i.e., after finite-size effects have begun to play a role.

To check if the magnetic-field evolution is self simila
one can make the following ansatz for the energy spectr

FIG. 1. Magnetic energy spectrumEM(k) for a run with finite
magnetic helicity,n5h5531025. The times shown are 0, 1.0
4.6, 10.0, 21.5, and 46.3. The initial spectrum is indicated by
dashed line. At low wavenumbersk, the energy spectrumEM(k)
increases with time.
5-3
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EM~k,t !5j~ t !2qgM~kj!. ~13!

Here, j is the characteristic length scale of the magne
field, taken to be the magnetic Taylor microscale defin
above, andq is a parameter whose value is some real nu
ber. We callgM(kj) the magnetic scaling function. In Fig. 2
we have plottedj(t)qEM(k,t) versus the scaled variabl
kj(t). The value of the parameterq in this run isq50.7. It is
seen that for each different value of timet, the data collapses
onto a single curve given by the scaling functiongM(kj),
demonstrating the self similarity of the magnetic field evo
tion.

We also performed runs in which the magnetic helic
was zero, in the statistical sense. Magnetic helicity w
present due to fluctuations, but was of very small amplitu
In these runs, no significant inverse cascade was obse
Figure 3 shows the energy spectrum for such a run with o

FIG. 2. The magnetic scaling functiongM(kj) described in the
text, Eq.~13!, versuskj. The straight lines indicate the power law
}(kj)4.0 and}(kj)22.5, respectively.

FIG. 3. Magnetic energy spectrumEM(k) for a run with no net
magnetic helicity.n5h5131024. Here,kc510. The times shown
are 0, 2.2, 4.6, 10.0, 21.5, and 46.3. The initial spectrum is indica
by the dashed line. The peak of the energy spectrumEM(k) is
decreasing with increasing time.
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small magnetic helicity fluctuations present in the initial co
ditions. It is seen that only a weak inverse cascade is pre
at the lowest wave numbers, much smaller than in the hel
case. However, that it seems to be present at all is interes
as the effect could become more pronounced for higher R
nolds numbers. It is possible that this effect is due to
magnetic helicity fluctuations even though they were sm
One simulation was performed with identically zero initi
magnetic helicity fluctuations. In this case, random fluctu
tions develop rapidly and no differences between the t
cases were observed.

B. Energy decay

In Fig. 4, we show the time evolution of the magne
energyEM(t) and the kinetic-energyEK(t) for a run with
initial helicity and ak4 initial energy spectrum slope. It is
seen that the asymptotic decay rate forEM(t) is approxi-
mately t20.7. The Reynolds number for this run was arou
Re;200 at late times. In another run withRe;100, the
decay rate was seen to bet20.8, so there seems to be a d
pendence of the decay rate of the magnetic field on the R
nolds number and perhaps the resulting slope of the s
trum.

The kinetic energy also decays with a power-law behav
at late times. In the case of runs with initial helicity, th
kinetic-energyEK(t) decays with a different, faster rate tha
EM(t). The asymptotic decay rate is close tot21.1. In runs
without initial helicity, the decay rates ofEM(t) and EK(t)
are approximately the same, close tot21.1.

In our runs with EK5EM initially, the kinetic-energy
spectrum shows no evidence of an inverse cascade at
scale. However, when the initial velocity distribution is zer
the kinetic spectrum grows on all scales initially and in t
low wave-number region, the energy continues to grow e
after the high wave-number modes start to decay.

C. Coherence length evolution

During the course of the simulations, the initially sma
scale structures gain in size. A convenient length scale is

d

FIG. 4. Time evolution of the magnetic energyEM(t) and the
kinetic energyEK(t) in the case where there is initial magnet
helicity. n5h5531025. The straight lines indicate the power law
}t20.7 and}t21.1, respectively.
5-4
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INVERSE CASCADE IN DECAYING THREE- . . . PHYSICAL REVIEW E 64 056405
magnetic Taylor microscaleLT , which was defined above
This length scale is mostly characteristic of the small sca
but even they grow during the course of the simulations.

In Fig. 5, we show the evolution ofLT for a run with
initial helicity. The asymptotic behavior of the length scale
seen to grow approximately asLT;t0.5.

In runs with nonhelical initial conditions, the growth o
the magnetic Taylor microscale is slower than in the case
helical initial conditions. In this case, the magnetic Tay
microscale grows approximately asLT;t0.4.

The discussion so far has mainly been concerned with
evolution of causally generated magnetic fields using an
tial k4 slope in the magnetic energy spectrum. Now
briefly comment on the other cases we have looked at. F
white-noise initial spectrumEM(k);k2, the evolution is
qualitatively and quantitatively similar to the causal case.
helical fields, we observe an inverse cascade, while for n
helical fields, a much smaller inverse cascade is present
for the lowest modes.

VI. DISCUSSION

Our simulations show the decay rate of magnetic ene
for compressible turbulence being sensitive to the initial
licity of the magnetic field configuration. A similar resu
was found in@6# in the case of incompressible turbulenc
The fact that magnetic helicity is conserved~except for re-
sistive changes!, and the magnetic energy decays slower
helical fields, is connected with the observed inverse casc
in which magnetic energy is transported toward larger sc
because of nonlinear dynamics.

The decay of kinetic energy does not seem to depend
the initial helicity and its decay rateEK(t);t21.1 is consis-
tent with the earlier work of@5,6#. Note that in the helical
case, we observe the kinetic energy decaying more rap
than the magnetic one; this behavior was also found in@6#.

While these results are not directly applicable to the e
lution of primordial magnetic fields in the early univers
they do suggest that nonlinear magnetohydrodynamical

FIG. 5. Time evolution of the magnetic Taylor microscale f
the case with initial magnetic helicity.n5h5531025. The
straight line indicates the power law}t0.5.
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fects may play an important role in this case.
In any case, it is interesting to compare our results w

the work of other authors interested in the decay proper
of cosmological magnetic fields@15–18#. Ideal MHD has a
scale invariance that leads to the scaling law@15,17#

EM~ t,k!5k2122hc~k12ht !, ~14!

wherec is an unknown function, related togM . Assuming it
is peaked somewhere, andh,0, the characteristic scale o
the field goes asL(t);t1/(12h). It is also often assumed tha
c(0) exists and is nonzero: thus,h is determined by the
initial power spectrum. Hence, for a magnetic power sp
trum of indexn, h52(n13)/2 and

L~ t !;t2/(n15). ~15!

This law may also be recovered by assuming that the c
acteristic time scale for the decay of turbulence on a scalel is
the eddy turnover timet l5 l /v l , wherev l; l 2(n13) is the
velocity averaged on a scalel @16#. If the characteristic scale
of the field is that scale that is just decaying, thentL;t, and
we again find Eq.~15!. One should note that these argumen
ignore helicity conservation.

We recall that our nonhelical runs hadn52 for the mag-
netic power spectrum andn50 for the velocity power spec
trum. The observed growth law for the magnetic Taylor m
croscalet0.4 is not consistent with the predicted power la
for n52, although it does square with the growth law f
n50, and it is possible that the growth in the magnetic fie
length scale is being controlled by the velocity field. Sim
lations at higher Reynolds numbers seem required to res
this issue.

One would expect on integrating the helicity power spe
trum that HM;LIEM , where LI is the integral scale. We
would expect thatLI;LT , and hence, if magnetic helicity i
conserved,

EM;LT
21 . ~16!

However, magnetic helicity is not conserved exactly: we o
serve a decrease inHM by a factor of about two in a run with
viscosityn5531025. Indeed, withLT;t0.5 we find a some-
what steeper relation:EM;t20.7;LT

21.4.
Finally, it is interesting to note that Son’s numerical sim

lations of decaying turbulence@16#, performed in the eddy-
damped quasinormal Markovian~EDQNM! approximation,
show some evidence of a power law developing at highk,
the slope being close tok22.5, although there was no ne
helicity present, and no inverse cascade. Furthermore, F
and Carroll @18#, again using the EDQNM approximation
found that there were self-similar solutions withEM;t22/3

;LT
21 .

VII. CONCLUSIONS

We have shown that for an isothermal and compress
magnetized turbulent fluid, when undergoing a process
free decay, a substantial inverse cascade is present for he
magnetic field configurations, which transfer energy fro
5-5
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smaller-scale magnetic fluctuation to larger-scale ones.
nonhelical magnetic fields, only a weak inverse cascade
observed on the largest scales.

The energy spectrum of the magnetic field shows e
dence for a self-similar evolution with a development o
power law of roughlyk22.5 beyond the peak. Decay laws fo
both the kinematic and magnetic energy were found. T
kinetic-energy decay was approximatelyt21.1 for both heli-
cal and nonhelical magnetic fields. The decay of the m
netic field energy was found to be strongly dependent on
the initial helicity, decaying roughly ast20.7 and t21.1 for
helical and nonhelical initial conditions, respectively. For t
helical case, the magnetic energy decay rate showed a de
dence on the Reynolds number, with a slower decay rate
larger Reynolds numbers.
,
,
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-
ys
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We also observed power-law behavior in the characte
tic length scale of the magnetic field, defined as the Tay
microscaleLT . In the helical caseLT;t0.5, whereas for non-
helical fields the growth was somewhat slower,LT;t0.4, and
we ascribe the faster growth rate to the presence of the
verse cascade in the helical case.
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