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AB S TRACT

The dynamical friction experienced by a body moving in a gaseous medium is different from

the friction in the case of a collisionless stellar system. Here we consider the orbital

evolution of a gravitational perturber inside a gaseous sphere using three-dimensional

simulations, ignoring however self-gravity. The results are analysed in terms of a `local'

formula with the associated Coulomb logarithm taken as a free parameter. For forced

circular orbits, the asymptotic value of the component of the drag force in the direction of

the velocity is a slowly varying function of the Mach number in the range 1.0±1.6. The

dynamical friction time-scale for free decay orbits is typically only half as long as in the case

of a collisionless background, which is in agreement with E. C. Ostriker's recent analytic

result. The orbital decay rate is rather insensitive to the past history of the perturber. It is

shown that, similarly to the case of stellar systems, orbits are not subject to any significant

circularization. However, the dynamical friction time-scales are found to increase with

increasing orbital eccentricity for the Plummer model, whilst no strong dependence on the

initial eccentricity is found for the isothermal sphere.

Key words: hydrodynamics ± waves ± galaxies: clusters: general ± galaxies: kinematics

and dynamics ± galaxies: star clusters.

1 INTRODUCTION

A gravitating body moving through a background medium suffers

from a drag force due to the interaction with its own induced

wake. Generally speaking, the medium may be composed of

collisionless matter, and/or gas. For collisionless backgrounds, the

classical Chandrasekhar formula has proved useful in determining

the orbital decay of galactic satellites and globular clusters around

spherical systems such as elliptical galaxies (e.g. Lin & Tremaine

1983; Cora, Muzzio & Vergne 1997, and references therein), even

though it was inferred for uniform media. For a uniform and

infinite gaseous medium, the gravitational drag on a body moving

at constant velocity on a straight-line orbit, has been estimated

both by linear theory (e.g. Ruderman & Spiegel 1971; Rephaeli &

Salpeter 1980; Ostriker 1999) and from numerical experiments in

different settings (e.g. Shima et al. 1985; Shima, Matsuda &

Inaguchi 1986; Shankar, Kley & Burkert 1993; Kley, Shankar &

Burkert 1995; Ruffert 1996). All these authors consider a uniform

medium because they are mainly interested in the accretion flow

past the body. Here we will investigate the gaseous drag and the

sinking decay of a light body orbiting on a gaseous sphere which

is initially in hydrostatic equilibrium with a given gravitational

potential. In fact, dynamical friction for gaseous and spherical

backgrounds has its relevance to many astrophysical studies, e.g.,

galaxies in galaxy clusters, the relaxation of young stellar clusters,

or the dynamics of massive black holes within their host galaxies.

It will be useful to check in which conditions the drag formula

obtained in linear theory for uniform media works for spherical

backgrounds, in analogy to stellar systems.

The question of dynamical friction for gaseous and spherical

backgrounds has received new interest in connection with recent

studies suggesting that Galactic dark matter may be in the form of

cold molecular clouds either distributed in a disc (Pfenniger,

Combes & Martinet 1994) or in a quasi-spherical halo (e.g. De

Paolis et al. 1995, 1999; Gerhard & Silk 1996; Walker & Wardle

1998; Walker 1999; Sciama 2000). For certain parameters of these

clouds, the assumption of collisionless matter is no longer valid.

Other authors have proposed, based on observational astrophysical

grounds, that dark matter may be self-interacting with a large

scattering cross-section (Spergel & Steinhardt 2000). It is there-

fore important to find out the dynamical implications of having

spherical haloes of collisional matter and, in particular, its effect

on the decay of satellite galaxy orbits.

Deeper physical insight into the question of how dynamical

friction is affected by collisions may be provided by considering

continuous gaseous media. Recently, Ostriker (1999) pointed out

that for supersonically moving bodies the drag in a uniform

gaseous medium is more efficient than in the case of collisionless
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media that are described by the standard Chandrasekhar formula,

and is non-vanishing for subsonic bodies. The same feature is

observed in the case of a perfectly absorbing body (Ruffert 1996).

As a consequence, satellite galaxies may experience more rapid

decay in haloes made up of molecular clouds, especially in earlier

epochs before most of the gas has turned into stars.

In the standard model of cosmological structure formation,

forming substructures continuously exchange orbital energy with

both collisionless material and their surrounding hot medium due

to dynamical friction. An understanding of the processes that can

produce velocity and spatial bias where the concentration and

velocity dispersion is different for different galactic populations,

e.g., mass segregation in clusters of galaxies, is essential for the

interpretation of observational data as well as for semi-analytical

models of the formation of galaxies and galaxy clusters. Clumps

of cold gas moving through a hotter medium may suffer a

hydrodynamical drag that is stronger than the gravitational drag

(e.g. Tittley, Couchman & Pearce 1999). In this work, however,

we focus on a purely gravitational perturber.

The linear response of a spherical system to an orbiting

gravitational perturber was carried out by Balbus & Soker (1990),

motivated by the problem of excitation of internal gravity waves

by galaxies in the core of clusters. In this paper we concentrate on

the dynamical friction of a rigid perturber orbiting in a gaseous

medium that shows a spherical density distribution with a

concentration towards the centre. Initially the gas is at rest and

in hydrostatic equilibrium with an external spherical gravitational

potential. The gravitational perturber is assumed to be very large

(typically the softening gravitational radius is taken a few times

the accretion radius) and unable to accrete matter. We do not

model the existence of a physical surface on the body, i.e., no

inner boundary condition on the body has been imposed. A

discussion on the importance of accretion is given in Section 2.

Our aim is to compute the evolution and sinking time of the

perturber towards the centre.

The assumptions of infinity and homogeneity of the medium,

which were required in Ostriker's analysis, are relaxed, and, in

addition, the contribution of non-local effects on the drag force are

taken into account. Also, an additional difference is that we deal

with extended perturbers whose radius is a significant fraction of

the size of the background system. Since the perturbers in most

cases of interest do not present circular orbits (van den Bosch et al.

1999), and also motivated by the fact that cosmological

simulations show that the majority of satellite orbits have quite

large eccentricities, we consider the dependence of the sinking

times on the eccentricity of the orbits.

There are some similarities with the dynamical evolution of

binary star cores embedded in a common envelope (e.g. Taam,

Bodenheimer & RoÂzyczka 1994, and references therein). In those

systems, however, the gravitational torques of the two cores are

able to spin up the envelope to a high rotation (see also Sandquist

et al. 1998). The fact that the masses of the stars and the envelope

are comparable is crucial for the subsequent evolution of the

system. Here we explore a rather different case in which there is a

single rotating body and its mass is significantly less than that in

the gaseous background mass. Recall that neither wind is injected

in the gaseous component nor radiation is considered in the

present work.

The paper is organized as follows. In Section 2 we highlight the

differences between dynamical friction in collisionless and

collisional media; the importance of having mass accretion by

the perturber is also addressed. The description of the model is

given in Section 3. In Section 4 the orbital decay rate is computed

numerically for a body orbiting around a gaseous sphere, and is

compared with a `local' estimate of the drag force. Implications

and conclusions are given in Section 5.

2 THE EFFECTS OF COLLIS IONS AND

ACCRETION ON DYNAMICAL FRICTION

2.1 Comparing the drag force in collisionless and collisional

backgrounds: a statistical discussion

Dynamical friction may be pictured as the response of the system

which tends to equipartition. The most classical problem is the

motion of a `macroscopic' particle travelling in a fluid. The

evolution of such a particle is described by the Fokker±Planck

equation, with the diffusion tensor depending on the correlations

of the fluctuating force in the unperturbed state (e.g. Isihara 1971).

These fluctuations in the force are generated as a consequence of

the graininess of the background, which may be either collisional

or collisionless.

For collisionless systems, Chandrasekhar & von Neumann

(1942), Lee (1968), Kandrup (1983), Bekenstein & Maoz (1992)

and Colpi (1998), among others, computed the autocorrelation

tensor in a stellar system by making the approximation that each

background particle follows a linear trajectory with constant

velocity. The inclusion of curved orbits does not change the result

appreciably (Lee 1968). Assuming a Maxwellian distribution of

field particle velocities, Kandrup (1983) and Bekenstein & Maoz

(1992) derived a formula identical to the Chandrasekhar formula

from the correlation tensor.

For collisional systems, it is usually assumed that the mutual

encounters between field particles destroy the correlation of each

field particle's orbit with itself. However, from this it does not

follow that scattering of field particles reduces the correlation

tensor and hence the dynamical friction. For instance, Ostriker

(1999) considered the dissipative drag force experienced by a

perturber of mass Mp with velocity V moving through a homo-

geneous gaseous medium of sound speed cs and unperturbed

density r0. Both the linearized Euler equations (Ostriker 1999)

and numerical calculations (SaÂnchez-Salcedo & Brandenburg

1999, hereafter Paper I) show that the gravitational drag in such a

fully collisional medium exceeds the value given by the

Chandrasekhar formula, provided that the Mach number, M ;

V=cs; lies in the range 1±2.5.1

In order to ease visualization, it is convenient to consider the

gaseous medium as a system of a large number of interacting field

particles of identical masses m. In the hydrodynamical limit the

distribution of velocities is always Maxwellian (which is not true

for collisionless systems). Let us assume that in such a limit the

interaction between field particles is large enough that the

effective velocity in each direction is close to cs for the field

particles. An estimate of the force in gaseous media emerges

immediately by extending Chandrasekhar's results. For collision-

less backgrounds, Chandrasekhar (1943) showed that ambient

particles with speeds lower than the object contribute to the drag

force as

Fdf �
4pG2M2

pm

V2

�V

0

dv f �v� lnL1 ln
V2

2 v2

V2

� �

; �1�

1 For the drag force in the case of an absorbing perturber we refer to the

paper by Ruffert (1996).
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whereas field particles moving faster than the perturber contribute

with the lower order term

Fdf �
4pG2M2

pm

V2

�

1

V

dv f �v� ln
v1 V

v2 V

� �

2
2V

v

� �

: �2�

In the equations above f(v) dv is the number of field particles

with velocities between v and v1 dv; and L ; bmax=bmin;
with bmax the characteristic size of the medium and bmin �
max{rmin;GMp=V

2}; where rmin is the characteristic size of the

perturber. Now, if we blindly use the above equations for a

background of particles f �v� � N0d�v2 cs�; with N0 � r0=m; and
keep only the dominant term for V . cs; we get

Fdf � l1
4pG2M2

pr0

V2
ln

Vt

bmin

� �

1O ln�12M
22�

� �

; �3�

where again M � V=cs and bmax < Vt was used. A discussion

about this dependence of bmax can be found in Ostriker &

Davidsen (1968). For V , cs we have

Fdf � l2
4pG2M2

pr0

V2
ln

11M

12M

� �

2 2M

� �

; �4�

where l1 and l2 are dimensionless parameters of order unity. The

first result is that the drag force is non-vanishing even for subsonic

perturbers, as occurs in collisionless backgrounds. We note that

the lower order terms in equation (2) are often ignored in the

literature, which has sometimes led to wrong premises. For

instance, Zamir (1992) ignored such lower order terms and

concluded that an object launched in a homogeneous and isotropic

background with a cut-off in the velocity distribution from below

could even be accelerated.

We may compare the above estimates with the exact values

obtained by computing the gravitational wake behind the body.

Ostriker (1999) showed in linear theory that the drag force is given

by

Fdf �
4pG2M2

pr0

V2
ln

Vt

rmin

� �

1
1

2
ln�12M

22�
� �

; �5�

for M ; V=cs . 1 and t . rmin=�V 2 cs�; and

Fdf �
4pG2M2

pr0

V2

1

2
ln

11M

12M

� �

2M

� �

; �6�

for M , 1 and t . rmin=�cs 2 V�: It was assumed that the

perturber is formed at t � 0: A minimum radius rmin was adopted

in order to regularize the gravitational potential of a point mass.

We see that the expressions (3) and (4) match equations (5) and

(6), respectively, if we take l1 � 1 and l2 � 1=2:2 This suggests
that many features of the dynamical friction for stellar systems,

such as the role of self-gravity or the importance of non-local

effects, may be shared by gaseous systems.

In the next section we analyse the problem of orbital decay in a

spherical and gaseous system. For stellar systems it was shown

that Chandrasekhar's formula is a good approximation (e.g. Lin &

Tremaine 1983; Cora et al. 1997). It is interesting to check

whether Ostriker's formula works also in such geometry, in

analogy to stellar systems.

2.2 Comparison with a totally absorbing perturber

Considerable work has been devoted to studying the hydro-

dynamics of the Bondi±Hoyle±Lyttleton (hereafter BHL)

accretion problem, in which a totally absorbing body interacts

gravitationally with the surrounding gaseous medium. In this case,

two different forces acting upon the accretor can be distinguished:

the gravitational drag caused by the asymmetry distribution of

mass, and the force associated with the accretion of momentum

by the perturber. This case has been considered numerically by

Ruffert (1996). Although the case of a totally absorbing accretor is

different from the non-absorbing one considered in the present

paper, it is interesting to compare the two cases.

Ruffert (1996) showed that there is a gravitational drag on a

totally absorbing body that saturates very quickly in the subsonic

regime, and is roughly one order of magnitude smaller than in the

supersonic models. This is qualitatively similar to the case without

accretion, as described by equations (5) and (6), although the

exact strength of the gravitational drag may be somewhat

different. At first glance, the gravitational drag seems to saturate

or even decline with time in Ruffert's supersonic experiments. By

contrast, in both Ostriker's analysis and in our numerical

simulations with no mass accretion the gravitational drag clearly

increases logarithmically in time.

Ruffert focuses mainly on the case Rsoft ! Rac; where Rac ;

2GMp=V
2 is the accretion radius. Whilst that case is relevant to

BHL accretors, we are mainly interested in the opposite case of

small accretion radii. In order to facilitate comparison, we will

compare the values of the gravitational drag found by Ruffert

(1996) for his largest accretor models, EL, FL, GL and HL, where

the size of the accretor is one accretion radius, with the values

given by equations (5) and (6).

For large accretors, the hydrodynamical force due to accretion

acts also as a drag force (e.g. Ruffert 1996). That situation

corresponds to geometrical accretion of mass which tends to

suppress the flux of mass from the forward side of the accretor to

the back side in the supersonic case. This smears out the

asymmetry of the mass density distribution between both sides

and, consequently, the gravitational drag is expected to be

reduced.

Ruffert (1996) gives the evolution of the gravitational drag

force in units where Rac � cs � r0 � 1: In order to obtain the

result in units of 4pG2M2
pr0=c

2
s ; we have to divide Ruffert's values

by pM4. Thus, for his model GL with M � 3 the value 80 at

time t � 50Rac=cs (see his fig. 5b) corresponds to 0.31. For his

model HL with M � 10 the value 800 at time t � 15Rac=cs (see
his fig. 7b) corresponds to 0.025. These values are somewhat

smaller than those obtained by using rmin approximately the size

of the accretor in equation (5), i.e., 0.55 and 0.045, respectively. In

order to trace the origin of these discrepancies, we have checked

in our records the drag force for M � 3 and Rsoft � Rac (a

resolution of 400 � 800 zones was used, with a mesh width at the

body position of 1=8 accretion radius). At time t � 50Rac=cs we
obtained a dimensionless drag force of 0.37. The remaining 20 per

cent discrepancy may be associated with the fact that Ruffert's

perturbers are absorbing. This confirms our expectations that the

gravitational drag should be smaller for an absorbing perturber,

but note that the total drag (gravitational plus momentum

accretion drag) is stronger.

Larger differences, however, are apparent for subsonic motions.

In fact, the gravitational drag for a body travelling with Mach

number 0.6 (model EL; see fig. 2b in Ruffert 1996) is 4±5 times

2Note that the lower order term of equation (3), which is of order

O(ln21L), must have a coefficient 1/2 to match equation (5).
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larger than predicted by equation (6). This may be a consequence

of the fact that, in the subsonic case, accretion is more efficient in

loading down mass from the forward side than from the back side.

Therefore we conclude that, for large accretors, mass accretion

would be important for dynamical friction in the subsonic regime.

After this short digression we now return, however, to the case of

non-absorbing perturbers with small accretion radii.

3 SET-UP OF THE MODEL

We have performed several 3D simulations to study the dynamical

friction effect on a rigid perturber (or satellite) orbiting within a

partly gaseous and initially spherical system, which is modelling

the primary or central galaxy, with gas density r (r, t). The

equation of state is that of a perfect gas with specific heat ratio

g � 5=3: First, we will assume that the gas is polytropic, P / rG;
where the polytropic index G ranges between 1 and 5=3 ; g; the
limits corresponding to the gas being isothermal and adiabatic,

respectively. The perturber is modelled by a rigid Plummer

model with the corresponding gravitational potential fp �
2GMp=

�������������������

r2 1 R2
soft

p
; where G is the gravitational constant. In the

absence of the perturber, the gas is initially in hydrostatic

equilibrium in the overall potential given by fp 1 fg; where fg is

the potential created by the gas component, and fp by the rest of

the mass. The potential fp is assumed to be fixed in time, and the

centre of the primary fixed in space. Self-gravity of the gas is

ignored, which seems to be a reasonable approximation to reality

(e.g. Prugniel & Combes 1992). For simplicity, we assume that the

combined potential fG � fp 1 fg is also given by a Plummer

potential with softening radius RG and total mass MG. As a

consequence, a polytropic system of pure gas must have

polytropic index G � 1:2 in order to have a self-gravitating

model (e.g. Binney & Tremaine 1987). For G . 1:2 the models

above are not self-consistent at large radii because the gravita-

tional force due to the gas increases faster than j7fGj: However,
we use simple initial conditions, since our aim is to test the

applicability of various fit formulae which should be able to

predict the evolution of the satellite, regardless of the full

consistency of the background system. For completeness, the case

of fG being a King model instead of a Plummer model is also

explored in order to mimic the inner portions of a self-gravitating

sphere; see Section 4.5.

Using an explicit Cartesian code that is sixth-order in space and

third-order in time, we solve numerically the continuity and Euler

equations which, for a polytropic gas, are

r

t
1 7´�rV� � 0; �7�

v

t
1 �v ´ 7�v � 27�h1 fG 1 fp�1 viscous force; �8�

where h is related to the specific enthalpy and is defined by

h�r� �
�r

r0

dP

r
�

Gc2s0
G2 1

r

r0

� �G21

21

" #

if G ± 1

c2s0 ln�r=r0� if G � 1

8

>

>

<

>

>

:

; �9�

where cs0 �
������������

P0=r0
p

; P0 and r0 are the reference values of

pressure and density, respectively, and

fp � 2
GMp

��������������������������������������

�r2 Rp�t��2 1 R2
soft

q �10�

is the gravitational potential generated by the perturber at the

position Rp(t). As in Paper I, an artificial viscosity has been

introduced in the momentum equations. Further details about the

numerical scheme adopted are given in Appendix A.

We will also investigate the more general case in which

equation (8) is replaced by

v

t
1 �v ´ 7�v � 2

7P

r
2 7�fG 1 fp�1 viscous force; �11�

and the specific entropy, s, evolves according to

s

t
1 �v ´ 7�s � viscous heating: �12�

The perturber, which is introduced instantaneously at t � 0;
moves in the (x,y)-plane and evolves according to the equation

Mp

d2Rp

dt2
� 2Mp7fG 1 Fdf ; �13�

with the dynamical friction force, Fdf, given by

Fdf �
�

dr7fp d
3
r; �14�

where dr � r�r; t�2 r�r; 0�: In all the simulations presented here,

V ´ Fdf # 0 and Fdf ´êr # 0 at any time of the run, where eÃr is the

unit vector in the radial direction.

A symmetry condition is applied at z � 0: Apart from that, the

domain is a rectangular box with open boundary conditions. The

size of the box must be taken large enough to ensure that the

density perturbations that have propagated outside the domain do

not contribute significantly to the friction integral (14). To

improve matters, additional spatial extent has been gained by

implementing a non-uniform mesh (see Appendix A for details).

Most of the simulations were carried out with the grid represented

in Fig. 1.

We choose units such that G � RG � r�0; 0� � 1; where r � 0

corresponds to the centre of the primary, and t � 0 is the

beginning of the simulation. The parameters to be specified in the

polytropic case are G, the isothermal sound speed cs0, the mass of

the central galaxy MG, the mass Mp and softening radius of the

Figure 1. Coordinates for meshpoints in the non-uniform grid with a

transformation as given by equation (A1). The dotted line corresponds to

the z-coordinate, and the solid line to the x- and y-coordinates.
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satellite, and its initial distance to the centre, and velocity. We do

not try to simulate the complex case in which the accretion radius

is larger than the softening radius. That would require a detailed

stability analysis of the flow. Objects with softening radius larger

than their accretion radius, like galaxies in clusters, might only

suffer from flip-flop instabilities if a large amount of gas is

replenished (Balsara, Livio & O'Dea 1994). It is still unclear

whether this instability occurs in 3D or not.

Two requirements are imposed in the initial distance of the

satellite. First, the initial distance is required to be a few galactic

core radii (RG) and, secondly, we will consider orbits such that

vc�Rapo�=cs�Rapo� . 1; where Rapo is the apocentric distance of the

perturber's orbit in the absence of drag, vc�r� �
������������������

r dfG=dr
p

is the

circular velocity, and c2s ; GP=r for a polytrope. The first

condition is necessary in order to have the complete history of

the evolution of the merging of an `external' satellite. The second

condition comes from the virial theorem as follows. Applying

the virial theorem for a spherical system with no fluid motions, we

get

V 1 3�G2 1�U 2 4pr3SPjrS � 0; �15�

where V � 2

� rS
0
rv2c d

3
r; and U is the total internal energy within

the sphere of radius rS. We immediately obtain that

v2c
c2s

� 2
r

r

r

r
�16�

for a polytrope, and

v2c
c2s

� 2
r

gr

r

r
�17�

for an isothermal background, assuming that perturbations are

adiabatic. Since the density should decay like 1=r2 or faster

(r2n with n $ 2� in the outer radii, the Mach number satisfies

M � vc=cs $
��������

2=g
p

in the outer parts. Therefore, for a

monatomic gas, circular orbits in the outer parts are always

supersonic.

4 RESULTS

4.1 The reference model

In this subsection the evolution of the perturber is discussed in a

reference model. Variations from this model are considered in

subsequent subsections. Our reference model uses a resolution of

95 � 95 � 40 meshpoints, and a non-uniform grid as shown in

Fig. 1. The gas is assumed to be a polytrope with G � 1: The
satellite has a mass Mp � 0:3; softening radius Rsoft � 0:5; and
an initially circular orbit of radius Rp�0� � 4: We have chosen

MG � 10 and cs � 1:3; so the mass of gas within Rp(0) is

approximately MG.
3 Thus the satellite mass is ,1=30 of the

galaxy mass, and the softening radius is 3 times the Bondi radius.

Notice that the perturber will move supersonically until a radius of

approximately 0.48.

The satellite's angular momentum per unit mass, Jp, and orbital

radius are shown in Fig. 2 as a function of time. We see that the

angular momentum decreases almost linearly with time (solid

line). A snapshot of the density enhancement and the velocity field

at the plane z � 0 and t � 26 is shown in Fig. 3. The strength

of the radial and azimuthal components of Fdf, in units of

4pG2M2
pr0=c

2
s �r0 ; r�r; 0� hereafter] evaluated at the instan-

taneous position of the satellite (the `dimensionless force'

hereafter), are presented in Fig. 4 for the standard model. As

expected, the dimensionless force saturates since the direction of

V changes and, consequently, the wake behind the body

effectively `restarts'. The force shows some oscillations caused

by the combination of the interaction of the satellite with its

own wake, together with small epicyclic motions of the

satellite. For a perturber forced to rotate in its originally

circular orbit at constant velocity, the azimuthal force is constant

with time (dashed line in Fig. 4), reaching a plateau after half an

orbital period. Almost no oscillations in the force are seen in this

case.

Figure 2. Evolution of the satellite in the reference model. The time unit is [Gr (0, 0)]21/2. In panel (a) is plotted the orbit in the (x, y)-plane. The angular

momentum (per unit mass) and orbital radius of the perturber are shown as solid lines in panels (b) and (c), respectively, together with the predictions of the

Local Approximation Prescription (LAP; dotted lines). Symbols mark the time when the orbital phase is zero, so the time between two consecutive symbols is

one orbital period.

3Typical parameters for galaxies are RG � 10 kpc; r0 � 10224 g cm23; so

the mass unit is 1010M(.
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Let us compare the decay rate with the prediction of formulae

(5) and (6). Denoting the azimuthal component of the force by

Fdf,c , this expression yields for Rp . 0:48 (i.e., in the supersonic

regime)

dJp

dt
� 2

Fdf;cRp

Mp

� 2
4pG2Mpr0Rp

v2c
Iadi; �18�

where vc is the circular velocity, and Iadi ; lnL1
1
2
ln�12M

22�
a dimensionless quantity. From Jp � vcRp we have

dRp

dt
� v21

c 22
3

2

R2
p

R2
p 1 1

 !

21
dJp

dt
: �19�

It is noted that now r0 and M depend on the position. In order to

integrate equation (19), the only remaining unknown is lnL. Since

ln L is no longer a linear function of time, we assume that Iadi

takes the following values for M . 1:

Iadi �

ln
vct

rmin

� �

1
1

2
lnSM if t , t , tc

t

t
ln

M

M 2 1

� �

1
1

2
lnSM

� �

if t , t , tc

ln
vctc

rmin

� �

1
1

2
lnSM if t , tc , t;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�20�

where

t ;
rmin

vc 2 cs
; SM ; 12M

22; tc ;
bRp

vc 1 cs
; �21�

with b being a free parameter which is chosen to match the values

of Jp(t) and Rp(t) obtained numerically. The minimum radius is

taken to be rmin � 2:25Rsoft; as was inferred for homogeneous

media (Paper I), provided that the softening radius is larger or

Figure 3. Grey-scale plot of the density enhancement ln�r�r; t�=r�r; 0��; together with velocity vectors, at z � 0 and t � 26; for the reference model with

Mp � 0:3 and Rsoft � 0:5:
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equal to the accretion radius. For t , t , tc a linear interpolation

has been adopted. For times such that tc , t; it is difficult to

suggest any prescription from the linear theory. We therefore

assume that the value remains approximately unchanged com-

pared to the value it has attained just before coming into that

interval. However, this assumption is not completely satisfactory

for bodies moving initially at Mach numbers close to 1. Therefore

we additionally assume that

Iadi �
t

t
ln

M

M 2 1

� �

1
1

2
lnSM

� �

�22�

if t , t and M . 1; regardless of the condition t , tc:
For M , 1 and a homogeneous background, the linear theory

is not able to capture the temporal evolution of the drag force, but

just the asymptotic values; see equation (6). As a consequence, for

a body moving on a curved orbit, no reliable estimate of the drag

force can be proposed straightforward. In the following we shall

refer to equation (6), together with equations (20) and (22) as the

Local Approximation Prescription (LAP). It is `local' in the sense

that the force depends only on quantities at the instantaneous

position of the satellite, even though, of course, the wake extends

far away beyond the satellite. At this stage it becomes clear that

the LAP may fail, at least for M close to or less than unity.

The results of the integration for the reference model are plotted

as dotted lines in Fig. 2 for b � 3:1:We see that they agree closely

with the numerical values. Part of the success of equations (20)±

(22) resides in the fact that the condition t , tc is satisfied very

soon, at Rp . 3:5; for the present case. However, it may be

somewhat different for perturbers moving with Mach numbers

close to 1 for a significant interval of time. This case will be

considered in Section 4.3.

We ran a model which was identical to the reference model,

except that the perturber mass was increased to Mp � 0:5: The
results of the simulation are plotted in Fig. 5(a), together with

LAP curves of different b . There is very good agreement with the

LAP for b � 3:1: In general, it is found that a change by a factor

of 3 in the mass of the perturber produces a slight variation of

about 5 per cent in the azimuthal component of the dimensionless

drag force. Fig. 5(a) also shows Jp(t) for the same perturber, but

initially at orbital radius Rp � 6:0: Once the angular momentum

has decayed to 6.0, the further evolution is quite similar to the

evolution of Jp starting at 6.0.

A new run was done for Mp � 0:5 and Rsoft � 1: The evolution
of Jp is plotted in Fig. 5(b). Again the LAP using b � 3:1
reproduces its evolution reasonably well.

For simulations with resolutions 120 � 120 � 54; the change in

the drag force is less than 0.5 per cent.

A measure of the robustness of the fitting formulae is given by

the dispersion of b for forced circular orbits of different radii,

Figure 4. Different components and strength of Fdf versus time for the

reference model. Fdf (solid line), azimuthal component of Fdf (dotted line)

and radial component of Fdf (dot-dashed line) for a freely decaying

perturber. We have taken the absolute values, but it is worthwhile to recall

that both Fdf ´V and Fdf ´êr have negative values. The temporal evolution of

Fdf,r (triple-dot-dashed line) and Fdf,c (dashed line) for a perturber forced

to rotate in a circular orbit with Rp�0� � 4 are also plotted.

Figure 5. (a) Temporal evolution of the angular momentum (per unit mass)

for the isothermal model with Mp � 0:5; Rsoft � 0:5 and Rp�0� � 4 (solid

line), and for an identical perturber but initially at Rp�0� � 6 (dashed line).

Panel (b) is like panel (a) but now Rsoft � 1 and Rp�0� � 4: The predictions
by LAP with different b are also plotted for the perturbers initially at

Rp�0� � 4: LAP overestimates the drag when the distance of perturber to

the centre becomes comparable to Rsoft.
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which will be referred to as b cir. Using for b cir the expression

bcir �
rmin

Rp

11M
21

�12M
22�1=2

exp�Iadi�; �23�

with Iadi being the asymptotic value of the azimuthal component

of the force obtained numerically, we have bcir � 2:6; 2.9, 3.2 and

3.5 for circular orbits of radii Rp � 4; 3, 2 and 1.5, respectively.

The rotation velocities were taken according to the rotation curve

of the Plummer model. If the perturber moves on a circular orbit

of radius Rp � 4 but M � 1:61; b cir is found to be 3.6 (see

Table 1). These results suggest that bcir depends on M, but could

also contain information about the global density profile. In the

inner regions, b cir should also contain the effect of the excitation

of gravity waves. Strong resonances occur when the local Brunt±

VaÈisaÈlaÈ frequency matches the orbital frequency of the perturber.

The existence of resonances depends strongly on the temperature

profile in the inner regions, and requires in general a large-scale

entropy gradient in that region (Balbus & Soker 1990; Lufkin,

Balbus & Hawley 1995). For satellite galaxies the amplification of

gravity waves, if any, may take place only in the very inner part of

the parent galaxy. However, other effects, such as mass stripping

and tidal deformation of the satellite galaxy as well as friction

with the luminous and collisionless parts of the galaxy, may play

an important role as far as dynamical evolution of the satellite

galaxy is concerned.

For fixed rotation curve, the parameter b may have some

dependence on other variables of the system such as G. This

question will be considered in the next few subsections.

4.2 Testing the accuracy. Constant-velocity perturbers in a

homogeneous background

A measure of the accuracy of our 3D simulations is given by

comparing the force of dynamical friction experienced by a

perturber moving on a straight-line orbit with constant velocity V

in a uniform and isothermal medium, with the axisymmetric

simulations described in Paper I, which had higher resolution. In

Fig. 6 we plot the drag force experienced by a body that moves in

the x-direction using the same resolution as that in our reference

model, together with the values obtained in high-resolution

simulations. The initial position of the body is �24;24; 0� and

it travels at constant velocity with Mach number 0.75 (bottom

lines) and 1.12 (upper lines). In the supersonic experiments the

ratio between Rsoft and the accretion radius defined as 2GMp=V
2;

was 1.5, with a softening radius, of 0.5. As long as the body is

within the region jxj , 6; the accuracy of the force is better than

5 per cent.

4.3 Polytropic gas

Let us now consider the same perturber with Rsoft � 0:5 and mass

Mp that is forced to move on a circular orbit in a polytropic gas,

and compute the value of bcir that matches the results. We do this

for models which have different polytropic indices G. The rotation

curve is assumed to be the same as in the reference model.

Rotation curve and sound speed profiles for models with different

pairs (G, cs0) are drawn in Fig. 7. Since they have different

polytropic indices, we will specify each of these models by just

giving their polytropic index. For the model with polytropic index

5/3, the Mach number of the perturber at Rp � 4 is approximately

the same as in the reference model. The corresponding values of

b cir for each value of G are given in Table 1, except for the case

G � 5=3 at Rp � 2 because for that orbit tc ! t: Table 1 suggests

a remarkable dependence of bcir on M, as well as on G. This

reflects the fact that the asymptotic value of the azimuthal

component of the dimensionless force is not sensitive to the Mach

number whenever M � 1:1±1:6: Given G and Rp, the variation of

the force in that interval of M is less than 5 per cent.

For sinking orbits the value of b may differ somewhat from the

median of bcir, because the orbit of the body loses correlation with

its wake faster than in a fixed circular orbit. The case of G � 5=3
is particularly interesting, because then tc , t for a remarkably

broad range of Rp. The b -parameter seems to be rather arbitrary in

that range. In Fig. 8 the evolution of Jp and Rp is plotted for

Mp � 0:3 (upper panels) and Mp � 0:1 (lower panels). In both

simulations G � 5=3: The prediction of the LAP is plotted as

dotted lines for b � 2:1 in both cases. In the first case the decay is

so fast that the LAP might no longer be a good approximation

(upper panels). However, even for slower decays (the case of

Table 1. bcir as defined in equation (23) for
models which have different G. The body has a
mass of 0.3 and a softening radius of 0.5, and
is forced to move in a circular orbit of radius
Rp with a Mach number which may not
correspond to the rotation curve of the
Plummer model. If bcir are displayed in the
same row for both Rp � 4 and Rp � 2; it
means that they correspond to the rotation
curve given by the model.

G M b cir M bcir

Rp � 4 Rp � 4 Rp � 2 Rp � 2

1.0 1.16 2.6 1.45 3.2
1.0 1.61 3.6
1.2 1.61 2.8 1.67 3.1
1.2 1.27 2.1
1.2 1.41 2.7
1.4 1.27 2.2 1.41 2.7
1.4 1.61 3.0
1.4 1.67 3.0
5/3 1.12 2.4 1.09 ¼

Figure 6. Dimensionless drag force experienced by a body moving

according to Rp � �24� Vt;24; 0� in a unperturbed background of

constant density. The solid lines show the numerical results for high-

resolution axisymmetric simulations, whereas the dotted lines are for 3D

simulations with resolution as in the reference model.
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Mp � 0:1� the LAP is not able to give reliable values of the force

in the subsonic regime. In fact, equation (6) overestimates

significantly the friction, mainly because of two reasons; first,

the wake must restart as a consequence of the curvature of the

orbit and, secondly, the orbital radius and size of the object

become comparable.

Since for the model with G � 5=3 the typical velocities vc=cs
lie in the range 1.0±1.2 at the radius interval [ �2; 4�; one

would expect, according to equation (5), a larger value of the

dimensionless drag force in this case compared to the isothermal

gas model in which the body moves with higher values of M. A

comparison between those forces for G � 5=3 and G � 1 is given

in Fig. 9. Unexpectedly, the dimensionless drag force is stronger

in the run corresponding to G � 1:
Finally, the evolution of Jp of a perturber of mass 0.3 is drawn

in Fig. 10 for G � 1:4 as well as for G � 1:2: The b -parameters

were 2.2 and 3.1, respectively. Clearly, the LAP becomes

inaccurate as soon as the body becomes transonic.

4.4 Non-circular orbits in the Plummer model

The dependence of the orbital sinking times on the eccentricity of

the orbit is of interest for the statistical analysis of merging rates

of substructure in the cosmological scenario (e.g. Lacey & Cole

1993; Colpi, Mayer & Governato 1999), and for the theoretical

eccentricity distributions of globular clusters and galactic satellites

(van den Bosch et al. 1999). On the one hand, the hierarchical

Figure 7. Rotation curve for the Plummer model (solid line), and the

sound speed profiles for G � 5=3 (dot-dashed line), G � 1:4 (triple-dot-

dashed line), and G � 1:2 (dashed line). In the labels gp ; G1.

Figure 8. In the left-hand panels it is shown the evolution of the angular

momentum (per unit mass) for the model with G � 5=3 and Mp � 0:3
(solid line of the upper panel) and Mp � 0:1 (lower panel). The

corresponding evolution of the radial distance of the perturber is plotted

as solid lines in the right-hand panels. Dotted lines show the predictions of

the LAP using b � 2:1: LAP fails as soon as the motion becomes slightly

supersonic.

Figure 9. Dotted lines show the value of the radial component of the force

Fdf for the G � 1 model with Mp � 0:3 (at the top) and for G � 5=3 and

Mp � 0:1 (at the bottom). The azimuthal components are plotted with

dashed lines, whilst the radial ones in dotted lines. In the labels gp ; G1.

Figure 10. Decay of Jp of a perturber of massMp � 0:3 initially in circular
orbit, for different values of G. The dotted lines indicate the prediction of

the LAP.
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clustering model predicts that most of the satellite's orbits have

eccentricities between 0.6 and 0.8 (Ghigna et al. 1998). On the

other hand, the median value of the eccentricity of an isotropic

distribution is typically 0.6 (van den Bosch et al. 1999). Here we

explore the dependence on eccentricity for dynamical friction in a

gaseous sphere in the Plummer potential. The non-singular

isothermal sphere is considered in the next subsection.

We shall discuss the sinking rate in terms of the angular

momentum half-time, t1/2, the time after which the perturber has

lost half of its initial orbital angular momentum. Fig. 11 shows the

dynamical evolution of the satellite on bound orbits having

initially equal energies but different eccentricities (Jp is in units of

the initial value). Here we have used the polytropic model with

G � 1: A good fit to the numerical results is t1=2 / e20:4; where e
is the initial circularity, e ; Jp�E�=Jp;cir�E�; the ratio between the

orbital angular momentum and that of the circular orbit having the

same energy E. The dynamical friction time-scale is found to

increase with increasing eccentricity. This finding makes a clear

distinction between dynamical friction in stellar and gaseous

systems. In fact, the dynamical friction time-scale has been

obtained by direct N-body simulations and in the linear response

theory, suggesting t1=2 / e0:4 for bodies embedded in a truncated

non-singular isothermal sphere of collisionless matter (Colpi et al.

1999; van den Bosch et al. 1999). A notorious difference between

stellar and gaseous backgrounds is that the gaseous force is

strongly suppressed when the perturber falls in the subsonic

regime along its non-circular orbit. In order to discern how much

the above result depends on the model, we will consider in the

next subsection the angular momentum half-time for bodies

orbiting in the non-singular isothermal sphere.

4.5 Sinking perturbers in the non-singular isothermal sphere

The flat behaviour of the rotation curves of spiral galaxies strongly

suggests the existence of isothermal dark haloes around them.

That is the reason why most of the studies about dynamical

friction assume an isothermal sphere as the standard background.

In the case of a self-gravitating sphere of gas, the non-singular

isothermal sphere is also a natural choice. For instance, we may

consider the dynamical friction of condensed objects in early

stages of a star cluster or a galaxy, in which most of the mass of

the system is gas. The gas component is expected to follow the

non-singular isothermal sphere out to great radii.

We use the King approximation to the inner portions of an

isothermal sphere, with softening radius RG and central density

rG(0), i.e.

fG � 24pGrG�0�R2
G

1

x
ln�x1

�������������

11 x2
p

�; �24�

with x � r=RG (Binney & Tremaine 1987). Our units are still

G � RG � r�0; 0� � 1: Even though the rotation curve adopted is

very similar to that of the Plummer model, the detailed evolution,

such as the dependence of the decay rate on eccentricity or the

level of circularization of the orbits, may be somewhat different.

Figure 11. Panel (a) shows the orbital angular momentum in units of the

initial value for orbits having initially the same energy but different

eccentricities in the Plummer model with G � 1: Mp � 0:4 and Rsoft � 0:5

were taken. In panels (b), (c) and (d) the corresponding orbits in the (x, y)-

plane are presented for initial circularities 0.75, 0.6 and 0.5, respectively.

Figure 12. The orbital angular momentum in units of the initial value for

orbits having initially the same energy but different circularities in the

King model.

Figure 13. Circularity as a function of time for the same situation as in

Fig. 12. The circularities are computed at the time when the orbital phase is

zero.
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For the sake of brevity, we only present the results for the case

where the Euler and continuity equations were solved together

with the entropy equation.

Fig. 12 shows the decay of a perturber with Mp � 0:3 and

Rsoft � 0:5 in a King model with rG � 1; i.e., pure gaseous sphere,
for different circularities. There are no appreciable variations of

the decay time for different initial circularities. In order to gain

deeper insight into the differences between the dynamical friction

time-scale in an isothermal sphere of gas instead of collisionless

matter, we have computed the circularity at the times when the

orbital phase is zero (Fig. 13). The circularity does not change at

all for initially circular orbits. For eccentric orbits, deviations in

the circularity occur, but there is no net generation. The lack of

dependence of the decay times on circularity, together with the

absence of any significant amount of circularization, lead us to

conclude that dynamical friction in a gaseous isothermal sphere is

not able to produce changes in the distribution of orbital

eccentricities. Mass stripping which could lead to circularization

has been ignored.

5 D ISCUSS ION AND CONCLUSIONS

In this paper we have presented simulations of the decay of a rigid

perturber in a gaseous sphere. As a first approximation, both the

mass stripping and the barycentric motion of the primary were

neglected. In addition, the softening radii of the perturbers were

taken to be a few times larger than the accretion radius. Simu-

lations of the evolution of very compact bodies �Rsoft ! Rac�; such
as black holes in a spherical background, are numerically very

expensive.

The Linear Approximation Prescription is able to explain

successfully the evolution of the perturber, provided that (i) the

decay is not too fast, (ii) the motion is supersonic, and (iii) the

body is not too close to the center to avoid Rp becoming

comparable to Rsoft. In our simulations the angular momentum of

the perturber decays almost linearly with time. Generally speak-

ing, the associated Coulomb logarithm should depend on the

distance of the perturber to the centre and on its Mach number.

However, the evolution of a free perturber is relatively well

described by just a linear dependence of the maximum impact

parameter of the Coulomb logarithm on radius, except very close

to the centre where the time averaged Mach number is less than

unity.

In Chandrasekhar's formalism the Coulomb logarithm is often

approximated by the logarithm of the ratio of the maximum to

minimum impact parameters of the perturber. In a singular iso-

thermal sphere of collisionless matter, the time for an approxi-

mately circular orbit to reach the center is

ts � 1:2
r2cirVcir

GMp ln
bmax

bmin

;
�25�

where bmax is roughly the virial radius of the primary, and bmin is

of the order of the softening radius of the perturber (Binney &

Tremaine 1987). We have confirmed numerically Ostriker's

suggestion that the Coulomb logarithm should be replaced by

ln
bmax

bmin

! 1

0:428
ln h

Rp�t�
Rsoft

� �

�26�

for the gaseous case, with h . 0:35; and be independent of the

eccentricity. For very light perturbers in near-circular orbits

(objects with mass fractions less than 1 per cent), the time-scale

for dynamical friction is a factor of 2 smaller in the case of a

gaseous sphere than in corresponding stellar systems (e.g.,

globular clusters in the Galactic halo). This factor is somewhat

smaller when Rp becomes comparable to a few Rsoft. The weak

dependence of the decay times on eccentricity suggests that more

eccentric orbits of merging satellites should not decay more

rapidly in the halo during the epoch in which matter is mainly gas.

Thus they do not touch the disc at an earlier time than less

eccentric orbits. Our simulations give support to the idea that

dynamical friction does not produce changes in the distribution of

orbital eccentricities.

The analysis must be modified if one wishes to account for the

existence of clouds in a non-uniform medium. So far, in a variety

of systems it is assumed that the perturber has condensed from

fragmentation of the gas; thus the gaseous component must be

thought of as being distributed in clumps or clouds even more

massive than the `perturbers'. In certain situations, compact

perturbers may not be dragged but heated (e.g. Gorti & Bhall

1996). For this reason one may be pessimistic towards a recent

suggestion by Ostriker (1999) that, because of the contribution of

the gaseous dynamical friction force, young stellar clusters should

appear significantly more relaxed than usually expected.
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APPENDIX A: DESCRIPTION OF THE CODE

We solve equations (7)±(12) on a non-uniform Cartesian mesh,

(x, y, z). This is accomplished using a coordinate transformation to

a uniform mesh, (j ,h , z ), with

x � x�j� � j

12 �j=Lj�4
; �A1�

where Lj is a length parameter, and similarly for y � y�h� and

z � z�z�: The transformed equations are solved using sixth-order

centred finite differences,


nf

jn

� �

i

� 1

Djn

X

3

j�23

c�n�j f �xi1j� �A2�

for the nth j-derivative. The coefficients c�n�j are given in Table A1.

The expressions for the h - and z -derivatives are analogous to

equation (A2).

The corresponding x-derivative of a function f �j�x�� is obtained
using the chain rule, so

f

x
� j

x

f

j
� u 0

x 0
; �A3�

where primes denote j -derivatives. For the second derivative we

have


2f

x2
� u 00x 0 2 u 0x 00

x 03
: �A4�

Again, the expressions for the y- and z-derivatives are analogous.

Since the scheme is accurate to Dj6, x-derivatives are accurate to

Dx6(j ), which varies, of course, across the mesh.

The third-order Runge±Kutta scheme can be written in three

steps (Rogallo 1981):

1st step : f � f 1 g1Dtf_; g � f 1 z1Dtf_;

2nd step : f � g1 g2Dtf_; g � f 1 z2Dtf_;

3rd step : f � g1 g3Dtf_;

�A5�

where

g1 �
8

15
; g2 �

5

12
; g3 �

3

4
; z1 � 2

17

60
; z2 � 2

5

12
:

�A6�
Here, f and g always refer to the current value (so the same space

in memory can be used), but fÇ is evaluated only once at the

beginning of each of the three steps. The length of the time-step

must always be a certain fraction of the Courant±Friedrich±Levy

condition, i.e., Dt � kCFLDx=Umax; where kCFL # 1 and Umax is

the maximum transport speed in the system.

The non-uniform mesh allows us to move the boundaries far

away, so the precise location of the boundaries should not matter.

In all cases, we have used open boundary conditions by

calculating derivatives on the boundaries using a one-sided

difference formula accurate to second order. This condition

proved very robust and satisfied our demands.

Equations (7)±(12) are solved in non-conservative form. This is

sufficiently accurate because of the use of high-order finite

differences, and because the solutions presented in this paper are

sufficiently well resolved.

This paper has been typeset from a TEX/LATEX file prepared by the author.

Table A1. Coefficients for the derivative
formulae.

j 0 ^1 ^2 ^3

c�1�j � 60 0 ^45 79 ^1

c�2�j � 180 2490 1270 227 12
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