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ABSTRACT

We supplement the mean field dynamo growth equation with the total magnetic helicity evolution equa-
tion. This provides an explicitly time-dependent model for �-quenching in dynamo theory. For dynamos
without shear, this approach accounts for the observed large-scale field growth and saturation in numerical
simulations. After a significant kinematic phase, the dynamo is resistively quenched, i.e., the saturation time
depends on the microscopic resistivity. This is independent of whether or not the turbulent diffusivity is resis-
tively quenched. We find that the approach is also successful for dynamos that include shear and exhibit
migratory waves (cycles). In this case, however, whether or not the cycle period remains of the order of the
dynamical timescale at large magnetic Reynolds numbers does depend on how the turbulent magnetic diffu-
sivity quenches. Since this is unconstrained by magnetic helicity conservation, the diffusivity is currently an
input parameter. Comparison with current numerical experiments suggests a turbulent diffusivity that
depends only weakly on the magnetic Reynolds number, but higher resolution simulations are needed.

Subject headings: magnetic fields — MHD — turbulence

1. INTRODUCTION

The large-scale magnetic field of the Sun and other stars
is frequently modeled using �� dynamo theory (Moffatt
1978; Parker 1979; Krause & Rädler 1980; Zeldovich,
Ruzmaikin, & Sokoloff 1983). This theory has been success-
ful in reproducing the cyclic behavior of solar and stellar
activity as well as the latitudinal migration of belts of mag-
netic activity. The cyclic behavior results mainly from the
shear (the �-effect); see the references above. Shear also
helps produce a strong toroidal field, while the �-effect
remains responsible for regenerating a poloidal field from
the toroidal field. Dynamos without (or with weak) shear
can also generate large-scale fields, but then the �-effect also
regenerates a toroidal field from the poloidal field (an �2

dynamo). Such dynamos are usually nonoscillatory. On the
other hand, not all �� dynamos are oscillatory: in oblate
geometries (accretion disks and galaxies), dynamos tend to
be nonoscillatory (e.g., Covas et al. 1999). In simple
Cartesian geometry with periodic boundaries, �-effect
dynamos always exhibit migratory waves once shear is
strong enough.

The viability of an �-effect dynamo has been controver-
sial, primarily because the nonlinear back-reaction of the
growing magnetic field on the dynamo coefficients has not
been well understood. At the center of the debate is how to
incorporate the back-reaction into the �-effect. It is often
taken to be of the form � ¼ �KqðBÞ, where �K is the
kinematic value and

q ¼ 1þ aB
2

B2
eq

 !�1

ð1Þ

is a Lorentzian quenching function. Here, B is the mean
field, Beq is the equipartition field strength, and a is a dimen-

sionless parameter. In recent years, there has been mounting
concern that the value of amight actually be of the order of
the magnetic Reynolds number Rm (Vainshtein & Cattaneo
1992; Gruzinov & Diamond 1994, 1995, 1996; Bhattachar-
jee & Yuan 1995; Cattaneo & Hughes 1996), rather than of
the order of unity (e.g., Rüdiger & Kitchatinov 1993). In
stars, Rm � 108 109, so quenching would set in for rather
weak fields, suggesting that dynamo-generated fields should
be much below the equipartition field strength. This is there-
fore referred to as ‘‘ catastrophic ’’ quenching.

However, quenchings of the form in equation (1) have
traditionally been obtained under the assumption that the
system is in a steady state. This leads to incorrect predictions
about the evolution of the mean field. Since the magnetic
helicity evolution equation must be taken into account, and
because it is time dependent, the functional form for
�-quenching also becomes time dependent. Loosely speak-
ing, a helical field is one with a field-aligned current. While
this primarily characterizes the current helicity density, the
magnetic helicity is really a volume integral that can be
associated with the topological linkage of flux lines. Both
magnetic helicity and topological linkage are conserved in
the nonresistive (large–magnetic Reynolds number) limit.
This imposes a crucial constraint on the field evolution in
general, and the evolution of the �-effect in particular.

There have been a number of important attempts to
incorporate dynamical �-quenching based on magnetic hel-
icity conservation (Kleeorin & Ruzmaikin 1982; Zeldovich
et al. 1983; Kleeorin, Rogachevskii, & Ruzmaikin 1995; see
also Seehafer 1996; Ji 1999). Recently, Field & Blackman
(2002, hereafter FB02) derived from Pouquet, Frisch, &
Léorat (1976) a simple two-scale approach, the solutions
and physical interpretation of which were shown to agree
well with simulations of Brandenburg (2001a, hereafter
B01).

Let us define some terms: we refer to the procedure of
obtaining �-quenching from a time-dependent differential
equation derived from magnetic helicity conservation as
‘‘ dynamical ’’ quenching. In this case, � is obtained by solv-
ing an explicitly time-dependent equation. On the other
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hand, we refer to the quenching as fixed form or ‘‘ alge-
braic ’’ if � is expressed as a fixed function of B, where by
fixed we mean that the functional form is kept fixed in time,
and the only time dependence enters through B. Although
certain algebraic quenching expressions can emerge as a use-
ful approximation in specific temporal regimes, we show
below that only the dynamical quenching is consistent with
the magnetic helicity equation, and the functional form of
�ðBÞmust change with time. The Lorentzian quenching for-
mula in equation (1), when applied for all time, would be an
example of a fixed-form algebraic quenching prescription.

B01 performed three-dimensional simulations of a zero-
shear helical dynamo in a periodic domain and found that
the field attains superequipartition field strengths. The ini-
tial growth phase is kinematic, and it is only at later times
that a saturation phase emerges. The final superequiparti-
tion field strength is reached after a resistive timescale. This
behavior can be reproduced empirically by an �2 dynamo in
which both � and the turbulent magnetic diffusivity �t are
catastrophically quenched according to equation (1) with
a � Rm (B01). Below we show, however, that this form of
the turbulent electromotive force is not universal. The
dynamical expression is degenerate in special cases in which
the mean field is current free or force free; it therefore repro-
duces catastrophically quenched behavior in those cases,
but not in others.

For an �2 dynamo in a periodic box, growth of the large-
scale magnetic field energy is associated directly with the
growth of large-scale magnetic helicity. Since the total mag-
netic helicity can only change resistively, growth of the
large-scale magnetic helicity implies significant growth of
small-scale magnetic helicity of the opposite sign. By taking
� as proportional to the difference between kinetic and cur-
rent helicities (the ‘‘ relative helicity ’’ as derived by Pouquet
et al. 1976) and using a two-scale approach, FB02 developed
a model for the nonlinear dynamical quenching of �, in
which the equation for � is formally equivalent to that of
Kleeorin & Ruzmaikin (1982) and Zeldovich et al. (1983).
Using a two-scale approach, FB02 showed that the growth
of the small-scale magnetic helicity augments the current
helicity contribution to �, which ultimately quenches it. The
coupling between the small- and large-scale magnetic helic-
ity equations in this two-scale time-dependent dynamical
quenching theory predicts that at late times, the quenching
of � is consistent with equation (1) with a � Rm, but that at
early times, the dynamo proceeds kinematically, independ-
ent of Rm. The results agree with the simulations of B01
both in terms of the time evolution of the large-scale field
energy and the saturation value.

An explicitly time-dependent quenching formula has
sometimes been used in mean field models, but the main
motivation in many instances was to study chaotic behavior
in stellar dynamos (Ruzmaikin 1981; Schmalz & Stix 1991;
Feudel, Jansen, & Kurths 1993; Covas et al. 1997, 1998).
One kind of dynamical �-quenching, but with an explicit
time lag, was previously invoked by Yoshimura (1978) in
order to reproduce long-term behavior with multiple peri-
ods. This approach was, however, rather ad hoc and not
based on magnetic helicity conservation. It was only
recently that Kleeorin et al. (1995, 2000) pointed out that
the catastrophic quenching of Vainshtein & Cattaneo
(1992) can emerge from the dynamical quenching approach
under certain circumstances (e.g., when the mean field is
current free or force free).

The plan of the paper is as follows. In xx 2 and 3 we
present the governing equations in a form most suitable for
our analytic and numerical treatment. We then consider
limiting cases such as early- and late-time evolution, the
effective � during the different stages, and the effects of shear
(x 4). We then consider the full time evolution numerically
with and without shear and compare with fully three-
dimensional simulations (x 5). Unlike dynamos without
shear, dynamos with shear can exhibit dynamo waves and
thus cyclic behavior. In addition to being a distinction of
astrophysical relevance, we see below that this distinction is
important in assessing the role of turbulent diffusion.
Finally, we present possible extensions of the model (x 6)
and present our conclusions (x 7).

2. THE DYNAMICAL EQUATION FOR �

We use the magnetic helicity equation for the fluctuating
field as an auxiliary equation that needs to be solved simul-
taneously with the mean field dynamo equation. For the �2

dynamo case, the dynamical quenching theory derived
below is similar to that of FB02, but here we generalize the
approach to the �� dynamo.

In a closed or periodic domain, the magnetic helicity
hA xBi evolves according to

d

dt
A xBh i ¼ �2�l0 J xBh i ; ð2Þ

where A (with B ¼

D

� A) is the magnetic vector potential,
J ¼

D

� B=l0 is the current density, � is the microscopic
magnetic diffusivity, and angular brackets denote volume
averages.We split the magnetic field into mean and fluctuat-
ing components, i.e., B ¼ B þ b (and similarly for all other
quantities). Mean fields are here defined by averaging over
one or two coordinate directions, depending on whether the
mean field is two- or one-dimensional; see below. The evolu-
tion of the mean magnetic vector potential is given by

@A

@t
¼ EþU � B � �l0J �

D

� ; ð3Þ

where E ¼ u� b is the electromotive force resulting from
small-scale velocity and magnetic fields and � is the electro-
static potential of the mean field, which can be chosen
arbitrarily without affecting the magnetic field and magnetic
helicity. From equation (3), one obtains an evolution equa-
tion for the magnetic helicity of the mean field,

d

dt

�
A xB

�
¼ 2
�
E xB

�
� 2�l0

�
J xB

�
; ð4Þ

and an evolution equation for the magnetic helicity of the
fluctuating field,

d

dt

�
a x b

�
¼ �2

�
E xB

�
� 2�l0

�
j x b
�
; ð5Þ

such that the sum of the two equations becomes equation
(2). We note that U does not enter equations (4) and (5). A
remarkable property of equation (5) is that it contains no
triple moments, in contrast to the energy equation for the
fluctuating magnetic field, for example. This property
allows a closure whereby equation (5) is solved along with
the mean field equations to ensure that the magnetic helicity
equation (2) is satisfied exactly.
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We now discuss the functional form of E. In mean field
electrodynamics, one can show that for isotropic homoge-
neous turbulence (Moffatt 1978),

E ¼ �B � �tl0J ; ð6Þ

where � is specified below and �t is the turbulent diffusivity.
The anisotropies induced by the generated large-scale field
are ignored. In equation (6) we have ignored a possible con-
tribution from the cross-helicity effect (Yoshizawa & Yokoi
1993); in what follows, we assume that the small-scale cross-
helicity is always small. We have measured its contribution
to E in a simulation with shear and found it to be �1/20 of
the contribution from the �-effect.

To proceed, we take the nonlinear � of the form originally
proposed in Pouquet et al. (1976), where the residual
(sum of kinetic and magnetic) isotropic and homogeneous
�-effect,

� ¼ �K þ �M ð7Þ

is given by

�K ¼ � 1

3
�hx x ui ; �M ¼ þ 1

3
�
h j x bi
�0

: ð8Þ

Angular brackets denote volume averages. (This implies
that these and other turbulent transport coefficients are con-
stant in space.) Nonisotropic tensorial generalizations to
equation (8) are known (Kleeorin & Rogachevskii 1999;
Rogachevskii &Kleeorin 2001). In equation (8), � is the cor-
relation time, hx x ui is the small-scale kinetic helicity (with
x ¼

D

� u), h j x bi is the small-scale current helicity (with
j ¼

D

� b=l0, where l0 is the vacuum permeability), and �0
is the density, which is assumed constant.

To account for the magnetic influence on the turbulent
magnetic diffusivity, we assume the form

�t ¼ �t0g B
� �

; ð9Þ

where

�t0 ¼ 1
3 �hu

2i ð10Þ

is the kinematic value of the turbulent magnetic diffusivity
and gðBÞ is a quenching function (specified below) normal-
ized such that gð0Þ ¼ 1. We use equation (10) to eliminate �
in equation (8), so

�M ¼ �t0
l0h j x bi

B2
eq

; ð11Þ

with B2
eq ¼ l0�0hu2i.3

In isotropic turbulence, the spectra of magnetic and cur-
rent helicities are related to each other by a k2 factor where k
is the wavenumber. To a good approximation, this also
applies in real space to the helicities at the two scales of the
fluctuating andmean fields. In particular, we have

ha x bi ¼ l0h j x bi
k2f

¼
�MB2

eq

�t0k
2
f

; ð12Þ

where we have used equation (11) to relate ha x bi to �M.
Here, kf is the characteristic wavenumber of the fluctuating
field. After multiplying equation (5) by �t0k

2
f =B

2
eq, we obtain

an evolution equation for �M (Kleeorin & Ruzmaikin 1982;
see also Zeldovich et al. 1983; Kleeorin et al. 1995),

d�M

dt
¼ �2�t0k

2
f

�
E xB

�
B2
eq

þ �M

Rm

 !
; ð13Þ

where we have defined the magnetic Reynolds number as

Rm ¼ �t0
�
: ð14Þ

This result agrees with that in Kleeorin et al. (1995) if their
characteristic length scale of the turbulent motions at the
surface, ls, is identified with 2�=kf and if their parameter l is
identified with 8�2�2t0=ðhu2il2s Þ. Note that solving equation
(3) or (4) together with equation (13) is equivalent to solving
equation (3) or (4) with equation (5); FB02 solved equation
(4) with equation (5) for the �2 dynamo.

The quenching function for magnetic diffusivity, gðBÞ, is
uncertain. Cattaneo & Vainshtein (1991) proposed a cata-
strophic quenching formula for gðBÞ in two-dimensional
turbulence. Gruzinov & Diamond (1994) confirmed this,
but found no quenching in the three-dimensional case, i.e.,
g ¼ 1 for all field strengths. This is in qualitative agreement
with numerical simulations of Nordlund, Galsgaard, &
Stein (1994). Kitchatinov, Rüdiger, & Pipin (1994) as well
as Rogachevskii & Kleeorin (2001) found that g / jBj�1 for
strong fields and is independent of Rm. Instead of using their
detailed functional (and tensorial) formulations, we adopt
here a simple fit formula,

g ¼ 1þ ~gg
B
� ��� ��
Beq

 !�1

ðcase IÞ ; ð15Þ

which was also used in B01, who found ~gg � 16 for runs with
different values of Rm. This formula matches the asymptotic
form of equation (20) of Rogachevskii & Kleeorin (2001)
with ~gg ¼ 5

ffiffiffi
2

p
=� � 2:25 if hb2i � l0�0hu2i is assumed (but it

varies only little with the level of small-scale magnetic
energy: ~gg ¼ 2:78 if hb2i ¼ 0 is assumed, for example). In the
following, we allow for different values of ~gg, including
~gg ¼ 0. We emphasize that our prescription for the quench-
ing of �t is not dynamical, because the quenching depends
on hb2i, which does not obey such a stringent conservation
law as ha x bi, as does that governing �. Nevertheless, for
fully helical fields, hb2i and ha x bi are proportional to each
other. This, as well as earlier work by B01 and FB02, moti-
vates use of the expression

g ¼ �

�K
ðcase IIÞ ; ð16Þ

which is also considered below for comparison.

3. THE COMPLETE SET OF MODEL EQUATIONS

To summarize our approach, the problem consists of
simultaneously solving the two equations

@B

@t
¼

D

� U � B þ �B � ð� þ �tÞl0J
� �

; ð17Þ

d�

dt
¼ �2�t0k

2
f

� B
2

D E
� �tl0 J xB

� �
B2
eq

þ �� �K

Rm

0
@

1
A ; ð18Þ3 In principle, the effective correlation times in the expressions for �M

and �t0 (�M and �K, for instance) could be different. This would correspond
to replacingB2

eq ! ð�M=�K ÞB2
eq in the final expressions involvingBeq.
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where �t depends on B via equation (9). The �t0 coeffi-
cient in equation (18) is, however, constant. (In practice,
we continue solving for A instead of B.) We emphasize
that B is spatially periodic and � and �t are spatially uni-
form. The generalization to nonperiodic B and spatially
varying forms of � and �t is not straightforward and is
discussed at the end of the paper.

Shear (which models differential rotation) can be
implemented in the form U ¼ ð0; Sk�1

1 cos k1x; 0Þ, where
k1 is the minimum wavenumber. In this case, the mean
field is two-dimensional, i.e., B ¼ Bðx; z; tÞ, and com-
parison with corresponding turbulence simulations of
Brandenburg, Bigazzi, & Subramanian (2001, hereafter
BBS01) and Brandenburg, Dobler, & Subramanian
(2002, hereafter BDS02) is possible. A simpler model that
we also consider is one with linear shear, U ¼ ð0; Sx; 0Þ.
In that case, the mean field is one-dimensional, i.e.,
B ¼ Bðz; tÞ. Corresponding turbulence simulations can
be carried out in the shearing sheet approximation, which
allows pseudoperiodic boundary conditions in x. In that
case, however, there are currently only the more compli-
cated simulations relevant to accretion disks (Branden-
burg et al. 1995), so comparison with the present work is
difficult.

The dynamo efficiency is determined by the usual
dynamo parameters

C� ¼ �K

�T0k1
; C� ¼ S

�T0k
2
1

; ð19Þ

where �T0 ¼ � þ �t0. In addition, we have to specify Rm,
kf, and a parameter �f, which measures the degree to
which the small-scale field is helical (defined in x 4). As
a nondimensional measure of kf, we introduce
�f ¼ kf =k1. Furthermore, in the absence of a satisfac-
tory theory for �-quenching, the parameter ~gg also has to
be specified. The problem is therefore completely
described by the six dimensionless parameters C�, C�,
Rm, kf, �f, and ~gg.

When comparing with simulations, we can use the rough
estimate Rm � urms=ð�kf Þ. A crude estimate for C� can be
obtained using equations (8) and (10) together with
hx x ui � ~kkf hu2i, where ~kkf ¼ �f kf , so �K � ~kkf �t0. It is then
convenient to define the nondimensional effective wave-
number of the fluctuating field, ~��f ¼ ~kkf =k1, so

C� �
~��f

	
; ð20Þ

where we have introduced the correction factor

	 � �T0

�t0
¼ 1þR�1

m ; ð21Þ

where �T0 ¼ �t0 þ �. This ratio is just above unity for
Rm41.

In addition to one- and two-dimensional models, we also
consider a one-mode reduction that reduces the one-
dimensional vector equation for A (or equivalently for B) to
two ordinary (complex) differential equations. This proce-
dure is similar, although more general, than that of FB02, in
which only two ordinary differential equations (4) and (13)
were solved for the �2 maximally helical dynamo. In our
present case, nonmaximally helical dynamos with shear can
also be studied.

4. PRELIMINARY CONSIDERATIONS

4.1. Final Field Strength

For helical (or partially helical) fields, the resulting steady
state field strength is determined by hJ xBi ¼ 0; see equation
(2). In terms of mean and fluctuating fields, this means�

J xB
�
¼ �

�
j x b
�
; ð22Þ

see equation (41) of B01.
In order to connect the current helicities with magnetic

energies, we can now define the effective wavenumbers for
mean and fluctuating fields more precisely and write

~kkm ¼ km�m ¼
l0
�
J xB

�
�
B
2� ; ð23Þ

~kkf ¼ kf �f ¼ � l0h j x bi
hb2i

: ð24Þ

Here, km and kf are characteristic wavenumbers of mean
and fluctuating fields, and �m and �f are the fractions to
which these fields are helical. In the final state, km will be
close to the smallest wavenumber in the computational
domain, k1. In the absence of shear, �m is of the order of
unity but can be less if there is shear or if the boundary con-
ditions do not permit fully helical large-scale fields (see
below). In the presence of shear, �m turns out to be inversely
proportional to the magnitude of the shear. The value of ~kkf ,
on the other hand, is determined by small-scale properties
of the turbulence and is assumed known.

Both km and kf are positive. However, �m can be negative,
which is typically the case when �K < 0. The sign of �f is
defined such that it agrees with the sign of �m, i.e., both
change sign simultaneously and hence ~kkm~kkf � 0. In more
general situations, km can be different from k1. Both km and
kf are defined more generally via

k2m ¼
l0 J xB
� �
A xB
� � ; ð25Þ

k2f ¼
l0h j x bi
ha x bi : ð26Þ

Using equations (23) and (24) together with equation (22),
we have

~kkmhB
2i ¼ l0hJ xBi ¼ �l0h j x b

�
¼ ~kkf hb2i ; ð27Þ

which generalizes equation (46) of B01 to the case with frac-
tional helicities; see also equation (79) of BDS02.

Although equation (27) may not be precisely satisfied in
simulations, there is evidence that it is most nearly obeyed
when the kinetic and magnetic Reynolds numbers are large
(B01). In the presence of shear, the large-scale magnetic
energy may be time dependent, in which case equation (27)
is expected to apply only to the time average.

Next, we want to express the final steady state values of
hb2i � b2fin and hB 2i � B2

fin in terms of B2
eq. Using equations

(11) and (24), we have first of all

�M ¼ ��t0~kkf
hb2i
B2
eq

: ð28Þ

On the other hand, in the steady state, we have from
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equations (4) and (6)

�K þ �M � �T~kkm ¼ 0 ; ð29Þ

where �T ¼ � þ �t is the total magnetic diffusivity. These
two relations yield

b2fin
B2
eq

¼ �K � �T~kkm

�t0~kkf
;

B2
fin

B2
eq

¼ �K � �T~kkm

�t0~kkm
: ð30Þ

In models where �t is also quenched, both small-scale and
large-scale field strengths increase as �t is more quenched.

We note that both large- and small-scale field saturation
strengths are determined by helicity considerations. In case
I with g ¼ gfin (for the final state), we have
hb2i=B2

eq ¼ ðC� � gfin~��mÞ	=~��f . Making use of the estimate
in equation (20), we have

b2
� �
B2
eq

� 1� 	gfin~��m

~��f
; ð31Þ

so hb2i � B2
eq in the limit of large C�, i.e., large ~��f , and/or

small ~��m, which is the case for �� dynamos. Regardless of
the value of gfin, we always have

hB2i
b2
� � ¼ ~��f

~��m
ð32Þ

in the final state.
We reiterate that our analysis applies to flows with helic-

ity. In the nonhelical case, �K ¼ ~kkm ¼ ~kkf ¼ 0, so equation
(30) cannot be used. Nevertheless, one would expect a finite
value of hb2i because of small-scale dynamo action. The
present approach is not really designed to handle this case:
if we multiply the first equation in (30) by ~kkf and then set it
equal to 0, we would just obtain 0 ¼ 0 for that equation.

Even in the fully helical case, there can be substantial
small-scale contributions. Closer inspection of the runs of
B01 reveals, however, that such contributions are particu-
larly important only in the early kinematic phase of the
dynamo.4

4.2. Dependence of ~kkm on � and S

In order to estimate bfin and Bfin, it is essential to know the
value of ~kkm. We show here that for �� dynamos, ~kkm is
inversely proportional to the ratio of shear to turbulent
velocities. The resulting relation turns out to be well con-
firmed by the numerical model solutions below.

In a numerical model, the value of ~kkm can be easily calcu-
lated for a given mean field using equation (23). However, in
order to understand the dependence of ~kkm on � and S, we
first consider a one-dimensional model. We consider the
case C�4C� (the �� approximation) so that we can neglect
the �-effect in the equation for the toroidal magnetic field
By. (In the opposite case, C�5C�, we expect ~kkm � k1.) We
employ the gauge � ¼ U xA (Brandenburg et al. 1995), so

equation (3) can then be written as (BBS01)

@A

@t
¼ �S�AAyx̂xþ ��AA0

xŷyþ �TA
00
; ð33Þ

where primes denote z-derivatives, x̂x and ŷy are unit vectors
in the x- and y-directions, respectively, and �T ¼ � þ �t is
the total magnetic diffusivity.

In a marginally excited one-dimensional model with peri-
odic boundaries, the solution consists of traveling waves, so
all volume averages are independent of time. In particular,
hJ xBi and hB 2i are constant during a magnetic cycle.
Therefore, � and �T are constant during the saturated state,
and we can use linear theory to find A in the form ~AAeikz�i!t.
Real and imaginary parts of the relevant eigenvalue (corre-
sponding to growing solutions) are

!cyc � Re! ¼ �Tk
2
m

~CC�
~CC�

2

 !1=2

; ð34Þ


 � Im! ¼ !cyc � �Tk
2
m ; ð35Þ

where ~CC� ¼ �=�Tkm and ~CC� ¼ S=�Tk2m are effective
dynamo numbers based on km (not ~kkm) during the saturated
state. The corresponding eigenvector is

~AA ¼ �ð1þ iÞ
~CC�

2~CC�

 !1=2

x̂xþ ŷy : ð36Þ

This yields for ~kkm ¼ Reð~JJ�~BBÞ=j~BBj2 the result

~kkm ¼
2~CC�

~CC�

� �1=2
km

~CC� þ ~CC�

: ð37Þ

Since the saturated state corresponds to the marginally
excited state, we have 
 ¼ 0, which implies !cyc ¼ �Tk2m and
~CC�

~CC� ¼ 2, so

�m �
~kkm
km

¼ 2
~CC� þ ~CC�

: ð38Þ

Given that we have made the �� approximation, i.e.,
C�5C�, we have �m ¼ 2=~CC�. Since ~CC� ¼ S=�Tk2m, we have

�m � 2�Tk2m
S

: ð39Þ

In the marginal state, !cyc ¼ �Tk2m, so we can write
�m ¼ 2!cyc=S, which is useful for diagnostic purposes.
Another useful diagnostic quantity, considered also in
BBS01, is the ratio of toroidal to poloidal field strength,
Q ¼ ðhBi2y=hBi

2
xÞ

1=2. In the steady state, Q�1 ¼ �m=
ffiffiffi
2

p
.

These relations between Q�1, �m, and C� are com-
pared below with those obtained from the one- and two-
dimensional models.

4.3. The Force-free Degeneracy

Although � can only be obtained by solving an explicitly
time-dependent differential equation, it is of some interest to
estimate the effective values of � during both the growth
and saturated phases and to assess whether or not � is
catastrophically quenched. We first clarify the potentially
misleading finding of B01 that the simulation results are
empirically described by a model where both � and �t are

4 We should also point out that in the saturated state, ~kkf is expected to
show a weak Rm dependence: assuming a Kolmogorov spectrum for b
between kf and the dissipation wavenumber kd with kd=kf � R

3=4
m , one

finds ~kkf ¼ kfR
1=4
m . During the growth phase, however, the spectrum of b

rises with k either as k3/2 (Kulsrud & Andersen 1992) or as k1/3 (Branden-
burg et al. 1996; B01), so in either case, the spectrum of b is peaked near kd,
and ~kkf � kd may then be a better approximation.
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catastrophically quenched. We begin by making the
assumption that the time derivative in equation (18) can be
dropped; see the Appendix for details. This leads to

� ¼
�K þRm�tl0

�
J xB

�
=B2

eq

1þRm

�
B
2�
=B2

eq

; ð40Þ

which we refer to as the adiabatic approximation. Equation
(40) was first derived by Gruzinov &Diamond (1994, 1995),
Bhattacharjee &Yuan (1995), and Kleeorin et al. (1995).

The adiabatic approximation can be applied to nonoscil-
latory dynamos near the final steady state. For oscillatory
dynamos, the adiabatic approximation is generally invalid,
except in the special case where hE xBi is constant in time
(the one-dimensional �� dynamos considered below are
such an example). We note that in the adiabatic approxima-
tion, kf does not enter explicitly. It would only enter if one
were to calculate hb2i for a given solution. We also note that
for an imposed uniform magnetic field, we have J ¼ 0, in
which case equation (40) predicts a catastrophically
quenched �. This is in complete agreement with the numeri-
cal results of Cattaneo & Hughes (1996). One can also see
how in the fully helical case, � appears to be quenched only
in a nonresistive way.

In the special case in which the large-scale field is force
free, which was the case in B01, we have hJ xBiB ¼ hB 2iJ
and can then write the mean turbulent electromotive force
E ¼ �B � �t0l0J , with � from equation (40) and a constant
�t0, as

E ¼
�K þRm�tl0

�
J xB

�
=B2

eq

1þRm

�
B
2�
=B2

eq

B � �t0l0J

¼ �KB

1þRm

�
B
2�
=B2

eq

� �t0l0J

1þRm

�
B
2�
=B2

eq

: ð41Þ

The reformulation allows us to combine the hJ xBi term in
the �-expression with the constant �t0 term into a quenching
expression for �t; see the last term in equation (41). If one
identifies � with �K=ð1þRmhB 2i=B2

eqÞ and �t with
�t0=ð1þRmhB 2i=B2

eqÞ, then this � is different from that con-
sistent with magnetic helicity conservation, but in this par-
ticular case, it yields the same electromotive force. This
explains the excellent agreement between the fully helical
simulations of B01 and models with catastrophically
quenched � and �t. In cases with shear, for example, this
degeneracy is lifted, and then only equation (40), or its time-
dependent generalization equation (18), can be used.

However, if one does assume from the outset that �t / �,
then magnetic helicity conservation and equation (40) pro-
duce a slightly different resistively limited quenching for
both � and �t, as seen below, which is also not a bad fit to
B01 (see FB02).

Before we go on analyzing the early saturation phase, we
discuss in more detail the effective value of � in the fully
saturated state.

4.4. The Effective � during Saturation

In this section we consider the value of � in the final
saturated state. We use the subscript ‘‘ fin ’’ for final and
emphasize that the resulting expressions are only valid in
the steady state, in which case equations (7), (11), and (22)

yield

J xB
� �

¼ � �� �Kð Þ
B2
eq

�t0
: ð42Þ

Therefore, as pointed out in FB02, the � also appears on the
right-hand side of equation (40), and we must manipulate to
solve for �. This is given by

� ¼ �K
1þRmgfin

1þRmðgfin þ B2
fin=B

2
eqÞ

; ð43Þ

where gfin ¼ gðBfinÞ is the fraction by which the turbulent
magnetic diffusivity is quenched in the final state. To
determine the quenching of � in the steady state, one must
specify gðBÞ and solve for �. We consider the two cases of �t
presented in x 2.

For case I, we can see immediately from equation (43)
that for large Rm, �=�K ¼ ð1þ g�1

finB
2
fin=B

2
eqÞ�1, so � is not

resistively quenched unless gfin itself is quenched to resis-
tively small values. For case II, g ¼ �=�K , so we must
manipulate equation (43) further and find a quadratic equa-
tion for �. The appropriate solution for Rm41 is

� ¼
�K 1� B2

fin=B
2
eq

� �
; B2

fin < B2
eq ;

0 ; otherwise ;

	
ð44Þ

so � / �t is quenched resistively all the way to zero if
hB2i=B2

eq > 1, which is usually the case in the simulations.
Using the assumption that a nontrivial stationary state is

reached at late times (justified by simulations), several
important points are revealed by the above results. First,
the reason � can only be weakly quenched for an
unquenched �t is that otherwise the field would eventually
decay through the action of �t, precluding a stationary state
in the first place. Equation (43) also shows that � is
quenched more strongly than �twhen �t is independent of �,
whereas if �t / �, then both � and �t are quenched in
tandem. We therefore expect a higher saturation value of
the field strength for case II of x 2 as compared to case I with
~gg ¼ 0.

Finally, in the case of �t / � (case II), the fact that the sat-
uration ratio of the mean field to the equipartition value
turns out to be4�=�K at saturation is important because it
suggests that the early-time growth must have a less resis-
tively limited form of �. We discuss this in x 4.5. In this con-
text, note again how one might be misled by uniform field
simulations designed to measure �, such as those of Catta-
neo &Hughes (1996), in which the mean field cannot grow.

4.5. Early-Time Evolution

During the early growth phase, the magnetic helicity
varies on timescales shorter than the resistive time, so the
last term in equation (18) can be neglected, and �M then
evolves approximately according to

d�M

dt
� �2�t0k

2
f ð�K þ �M � �t0~kkmÞ

�
B
2�

B2
eq

: ð45Þ

We use this equation to describe the early kinematic time
evolution when hB 2i, and hence also �M, grow exponen-
tially. FB02 showed that the early-time evolution leads to a
nearly Rm-independent growth phase at the end of which a
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significant large-scale field growth occurs. We now derive
this in our present formalism.

In the following discussion, we restrict ourselves to the
case where � is small. Magnetic helicity conservation then
requires that

hA xBi � �ha x bi for t � tkinð Þ ; ð46Þ

where the time t ¼ tkin marks the end of the exponential
growth phase (and the ‘‘ initial ’’ saturation time tsat used in
B01). This time is determined by the condition that the term
in parentheses in equation (45) becomes significantly
reduced, i.e., ��M becomes comparable to �K � �t0~kkm.
Using equations (28) and (46) together with equations (23)
and (25), we obtain the mean-squared field strengths of the
small- and large-scale fields at the end of the kinematic
phase,

b2kin
B2
eq

¼ �K � �t0~kkm

~		�t0~kkf
;

B2
kin

B2
eq

¼ �K � �t0~kkm

~		�t0~kkm

k2m
k2f

; ð47Þ

respectively, where we have included the extra correction
factor

~		 ¼ 1þR�1
m

kf =�f
km=�m

; ð48Þ

which becomes important for intermediate values of Rm.
This correction factor results from restoring the �M=Rm

term from equation (18) into equation (45). Not surpris-
ingly, at the end of the kinematic phase, the small-scale
magnetic energy is almost the same as in the final state; see
equation (30). However, the large-scale magnetic energy is
still smaller by a factor of k2m=k

2
f than in the final state

(although �m may be somewhat different in the two stages).
This result was also obtained by Subramanian (2002) using
a similar approach. Using equations (20) and (47), we can
write

B2
kin

B2
eq

¼ km=�m
~		kf =�f

1� ~��m

~��f


 �
; ð49Þ

which shows that Bkin can be comparable to and even in
excess of Beq, especially when �m is small (strong shear).

As emphasized in FB02, for an �2 dynamo, the initial evo-
lution to Bkin is significantly more optimistic an estimate
than what could have been expected based on Lorentzian
quenching. In the case of an �� dynamo, ~kkm5 km, so Bkin

can be correspondingly larger. In fact, for

�m
�f

� km
kf

; ð50Þ

the large-scale field already begins to exceed the small-scale
field during the kinematic growth phase. Using the estimate
�m � 2=~CC� (x 4.2), and since ~CC� ¼ C� during the kinematic
stage, we see that large- and small-scale fields become com-
parable when �f C� � 2kf =km. Combining this with the
condition for a marginally excited dynamo, C�C� ¼ 2, we
have �f C� � 2ð	=�mÞ1=2 � 2. In simulations of rotating con-
vection, �f � 0:03 (Brandenburg et al. 1996); assuming that
this relatively low value of �f is generally valid, we have
C�e�f =2 � 60 for the condition above which the large-
scale field exceeds the small-scale field during the kinematic
growth phase. This condition is likely to be satisfied both
for stellar and galactic dynamos.

During the subsequent resistively limited saturation
phase, the energy of the large-scale field first grows linearly,

hB2i � B2
kin þ 2�k2m t� tkinð Þ ðfor t > tkinÞ ; ð51Þ

and saturates later in a resistively limited fashion; see
equation (45) of B01.

In the limit of large Rm for the maximally helical case,
equation (46) implies that hB 2i remains of the order of B2

kin
for times tkin < t5 1=�k2f . Using equations (7), (8), and
(12), we also find that toward the end of the kinematic
regime, � is quenched nonresistively as

�

�K
� 1� hB2i

B2
kin

ðfor t � tkinÞ ; ð52Þ

where we have assumed �K4�t0~kkm. The fact that this is
independent of Rm and of the choice of �t contrasts with the
�-formulae for the late-time regime considered in x 4.4. This
highlights the need for a fully time-dependent dynamical
theory to understand the time dependence of �-quenching.

In x 5 we present and discuss results from simple mean
field models using dynamical quenching.

5. THE FULL TIME EVOLUTION

We first consider a one-dimensional �2� dynamo model
with constant shear,U ¼ ð0; Sx; 0Þ. Such a model is some-
times used to model stellar dynamo waves traveling in the
latitudinal direction (e.g., Robinson &Durney 1982), where
ðx; y; zÞ are identified with spherical coordinates
ðr; �; ��Þ. In terms of the mean vector potential Aðz; tÞ,
the uncurled mean field induction equation reads (BBS01)

@A

@t
¼ E� S�AAyx̂x� �l0J ; ð53Þ

where l0J ¼ �@2A=@z2 and Az ¼ 0. In contrast to equation
(33), we do not make the �� approximation. Below, we also
consider two-dimensional models that can be compared
with simulations. For quick parameter surveys, however,
the one-dimensional models in the one-mode truncation are
quite useful.

5.1. The One-Mode Truncation

We first consider the one-mode truncation (k ¼ km ¼ k1),
i.e., we assume A ¼ ÂAeikmz, where ÂAðtÞ is complex, and solve
the set of two ordinary differential equations for ÂAx and ÂAy,

dÂA

dt
¼ ÊE� SÂAyx̂x� �l0ĴJ ; ð54Þ

where l0ĴJ ¼ k2mÂA. The two components of the magnetic
field are B̂Bx ¼ �ikmÂAy and B̂By ¼ ikmÂAx. The electromotive
force is ÊE ¼ �B̂B � �tl0ĴJ, where � is given by equation (7)
and �M is obtained by solving equation (13) using
hE xBi ¼ ReðÊE� x B̂BÞ, where asterisks denote complex con-
jugation. For diagnostic purposes, we also monitor
~kkm ¼ ReðĴJ� x B̂BÞ=jBj2.
In Figure 1 we plot the evolution of hB2i and hb2i for

Rm ¼ 104, C� ¼ 2, kf ¼ 5, and �f ¼ 1. Initially, both quan-
tities grow exponentially at the rate 
 � �Kk1 � �T0k

2
1. This

phase stops rather abruptly at tkin ¼ 
�1 lnðBkin=BiniÞ and
then turns into a resistively limited growth phase. Note,
however, that by the end of the kinematic growth phase, the
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large-scale field is already a certain fraction of the equiparti-
tion field strength, which is independent of the magnetic
Reynolds number.

The equipartition time can be obtained by setting
hB 2i ¼ b2kin in equation (51) and using equation (47), so

2�k2mðt� tkinÞ ¼ 1� km
kf


 �2

; ð55Þ

where we have used, for simplicity, �m ¼ �f ¼ 1. Otherwise,
the expression on the right-hand side of equation (55) would
be more complicated. The main point was to show that the
equipartition time is still resistively limited, which is consis-
tent with Figure 1.

In the example shown in Figure 1, C� ¼ 2, so the dynamo
is only weakly supercritical, and the final field strengths are
b2fin � 0:1B2

eq and hB 2i � B2
eq, in agreement with equation

(30).
We recall that in the fully helical case, because of the

force-free degeneracy, the adiabatic approximation coin-
cides with the catastrophic quenching hypothesis (x 4.3),
and it reproduces the final saturation phase rather well
(B01). For larger values of Rm, however, the adiabatic

approximation gives significantly lower values of hB2i by
the end of the kinematic growth phase (see the dotted line in
Fig. 1). This difference increases with increasing values of
Rm.

In the case of an �2� dynamo, the overall evolution of
small- and large-scale magnetic energy is similar, except that
the large-scale field is in general not fully helical (�m5 1),
because the toroidal magnetic field can be amplified regard-
less of magnetic helicity. It only relies on the presence of a
small poloidal field that must still be regenerated by the
�-effect. The final field amplitude can be much larger than
for the �2 dynamo. In particular, as pointed out in x 4.5, the
mean field can already exceed the small-scale field during
the entire kinematic growth phase if C� is large enough.
This is the case in the example depicted in Figure 2, so there
is no crossing of the two curves as in Figure 1.

For case II (�t / �), the saturation field strength of the
large-scale field is significantly enhanced. Also, because �T is
now much lower in the saturated state, the value of �m (and
hence ~kkm) is now strongly suppressed. This is consistent with
equation (38). Furthermore, �t is now suppressed down to a
microscopic value, so the dynamo period has increased by a
factor of Rm.

Fig. 1.—Top: Evolution of the dimensionless hB2i (solid line) and hb2i
(dashed line) (both in units of B2

eq) in a doubly logarithmic plot for an �2

dynamo with �t ¼ const (case I). The adiabatic approximation gives signifi-
cantly smaller values of hB 2i by the end of the kinematic growth phase.
The dot-dashed line gives hB 2i for case II (�t / �); hb2i is essentially the
same in cases I and II. Note that time is displayed on a logarithmic scale to
comfortably accommodate both the kinematic phase and the final satura-
tion. Bottom: Same three curves in a semilogarithmic plot. The inset shows
the slow and small (�1%) adjustment of hb 2i during the early saturation
phase. Parameters are Rm ¼ 104, C� ¼ 2, C� ¼ 0, �f ¼ 10, �f ¼ 1, and
~gg ¼ 0.

Fig. 2.—Top: Evolution of the dimensionless hB2i and hb2i for an �2�
dynamo (solid and dashed lines, respectively). The dot-dashed line gives
hB 2i for case II (�t / �); hb2i is essentially the same in cases I and II. The
inset shows the evolution of ~kkm. Note that in case II, ~kkm � 0. Bottom:
Plot of By (solid line) and Bx (dashed line). The cycle frequency is of the
order of �Tk

2
1, but the cycle amplitude adjusts on a resistive timescale.

Parameters are Rm ¼ 102, C� ¼ 0:1, C� ¼ 200, �f ¼ 5, �f ¼ 1, and ~gg ¼ 0.
In case II (dot-dashed line), the dynamo period is very long and the ampli-
tude much higher.
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5.2. Comparison with B01

In the simulations of B01, runs 1–3 had a magnetic
Prandtl number of unity (�=� ¼ 1) and Rm � urms=�kf
varied from 2.4 to 18. The run with the highest magnetic
Reynolds number was run 5 with Rm � 100, but there
�=� ¼ 100, so the hydrodynamic Reynolds number was
unity, and there was basically no turbulent mixing. Shear
was absent in those runs, so C� ¼ 0. The other dynamo
parameters are estimated as C� � ~��f =	 � 5; see equation
(20). Assuming ~gg ¼ 0, i.e., �T ¼ �T0, we have from equation
(30) for the final mean-squared field strength

B2
fin

B2
eq

¼ ~��f

~��m
� 	 ¼ 3:6 4:0 ; ð56Þ

for runs 1–3. Here we have put ~��m ¼ 1 for the effective non-
dimensional wavenumber of the large-scale field. The actual
values of B2

fin=B
2
eq are somewhat smaller (for run 3, for

example, B2
fin=B

2
eq ¼ 3:6 instead of 3.9). The agreement with

the theoretically expected value is quite reasonable, even
with ~gg ¼ 0. Full agreement could in principle be achieved
with negative values of ~gg (~gg ¼ �0:13 for run 3, for example).
It is more likely, however, that the actual value of C� is
somewhat less than our estimate ~��f =	.

The saturation behavior of hB 2iðtÞ, as seen in the simula-
tions of B01, was already well reproduced by the adiabatic
approximation (see Fig. 21 of B01). This is because the
values of Rm are still too small to be able to see significant
differences between dynamical quenching and the adiabatic
approximation. For run 5, there is, however, a noticeable
slow-down in the saturation behavior of the field at 
t � 15
if the large-scale field is identified with the spectral energy at
k ¼ k1. This behavior is well reproduced by the one-
dimensional model if Rm ¼ 50 is chosen. The nominal value
of Rm is actually around 100, but this is probably unrealistic
and would also give too high values of the kinematic growth
rate compared to the simulation. The slow-down at 
t � 15,
which is also seen in the one-dimensional model, is not
reproduced in the one-mode truncation. The reason for this
difference lies in the fact that at early and intermediate
times, km ¼ 2 prevails, and only at later times does km ¼ 1
becomes dominant; see Figure 3.

In order to test the dynamical quenching theory more
quantitatively, it would be useful to produce new simula-
tions with smaller scale separation, e.g., kf ¼ 2 3, and an
initial seed magnetic field in which only one of several possi-
ble large-scale eigenfunctions are present.

5.3. �2�Dynamos: A Parameter Study

When shear is included (C� 6¼ 0), the toroidal field can be
regenerated solely by the S-term in equation (54). When
C�4C�, the dynamo efficiency is governed by the product
C�C�. This is the regime in which dynamical and fixed-form
algebraic quenching lead to very different behaviors.

In order to study the effect of changing various input
parameters, we begin with Table 1, in which we show the
results for different values of C�. Note that only for small
values of C� do the results for �m and !cyc=S agree with the
prediction of x 4.2. This is simply because the �� approxi-
mation made in x 4.2 is only valid for C�5C�. As C�

increases, the field strength increases approximately as pre-
dicted by equation (30).

Increasing the value of Rm has no effect on the field geom-
etry and timescales (Q�1, �m, and 
 are unaffected); see
Table 2. The field strength changes only when Rm is close to
unity. Once Rm is above a certain value, the results are
essentially independent of Rm. For ~gg > 0, the field strength
generally increases, as expected, and the cycle frequency
decreases; see Table 3. One can also verify that �m decreases
as ~gg is increased. Models in which �t / � (case II) tend to
produce long cycle periods if the dynamo is sufficiently
supercritical; see Table 4.

5.4. ATwo-dimensional �2�Dynamo

In order to compare with the simulations of BBS01, it
is important to consider the appropriate geometry and
shear profile. As in BBS01, we use sinusoidal shear,
U ¼ ð0; Sk�1

1 cos k1x; 0Þ, and the mean field is B ¼
Bðx; z; tÞ; see x 3. The results are shown in Table 5. The cal-
culations have been carried out using a sixth-order finite-
difference scheme in space and a third-order Runge-Kutta
scheme in time.

As in the simulations of BBS01, we have chosen negative
values of �K, but this choice only affects the direction of

Fig. 3.—Comparison of the spacetime (or butterfly) diagram from run 5
of B01 with that from the one-dimensional model. Dark shades indicate
negative values, while light shades indicate positive values. Parameters are
Rm ¼ 50,C� ¼ 5, and ~gg ¼ 0.
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propagation of the dynamo waves. There are dynamo waves
traveling in the positive z-direction at x ¼ �� and in the
negative z-direction at x ¼ 0, which is consistent with the
three-dimensional simulations. These waves are best seen in
a spacetime (or butterfly) diagram; see Figure 4. Note also
that there is an initial adjustment time during which the
overall magnetic energy settles onto its final value (consis-
tent with resistively limited saturation) and the cycle period
increases by a small amount.

Compared to the one-dimensional model, the values of
Q�1 and �m are about 30% larger in the two-dimensional
model, but !cyc is about 3 times smaller. This may reflect the
fact that in the present geometry, the upward and down-

TABLE 1

The Effect of Changing C� and C� in an �2�Dynamo with Dynamical �-Quenching
using the One-Mode Approximation

C� C� S=�k21 b2fin=B
2
eq B2

fin=B
2
eq Q�1 �m !cyc/S 
/S Remark

3.0....... 0 0 0.42 2.1 1.00 1.00 0 2.0/C� �2 dynamo

3.0....... 2 42 0.48 3.4 0.58 0.71 0.36 1.1 C�/C�=O(1)

3.0....... 20 420 0.59 16 0.11 0.12 0.079 0.27 LargerC�

1.0....... 20 420 0.19 9.5 0.071 0.10 0.050 0.12 SmallerC�

0.3....... 20 420 0.042 2.1 0.071 0.10 0.050 0.045 SmallerC�

0.1....... 20 420 0 0 0.071 0.100 0.050 0 Marginal case

0.1....... 200 4200 0.019 9.5 0.007 0.010 0.005 0.012 SameC�C� as in line 3

Note.—For all runs, Rm ¼ 20 and ~gg ¼ 0.

TABLE 2

The Effect of Changing Rm for Two Different

Values of C� in the One-Mode Approximation

Rm C� b2fin=B
2
eq B2

fin=B
2
eq

1000 ..................... 1.0 0.19 15

100 ....................... 1.0 0.19 15

10......................... 1.0 0.21 17

1........................... 1.0 0.38 30

100 ....................... 0.1 0.019 13

10......................... 0.1 0.021 15

1........................... 0.1 0.037 28

Note.—The increase of small- and large-scale
field strength for small values of Rm is explained by
the large values of 	. For all the models with
C� ¼ 1:0, we find Q�1 ¼ 0:021, �m ¼ 0:014,
!cyc=S ¼ 0:015, and 
=S ¼ 0:045, while for all the
models with C� ¼ 0:1, we find Q�1 ¼ 0:005,
�m ¼ 0:007, !cyc=S ¼ 0:003, and 
=S ¼ 0:011. For
all runs, C� ¼ 300, ~gg ¼ 0, and S=�k21 � 	RmC�

varies between 6� 102 and 3� 105.

TABLE 3

The Effect of Changing ~gg in the One-Mode Approximation

~gg B2
fin=B

2
eq Q�1 �m !cyc/S

0........................ 9.5 0.007 0.010 0.0050

0.3..................... 24 0.0031 0.0043 0.0021

1.0..................... 70 0.0011 0.0015 0.0010

Note.—For all runs, Rm ¼ 20, C� ¼ 0:1, C� ¼ 200,
S=�k21 ¼ 4200, b2fin=B

2
eq ¼ 0:02, and 
=S ¼ 0:012.

TABLE 4

The Effect of Changing C� for Case II in the One-Mode

Approximation

C� B2
fin=B

2
eq Q�1 �m !cyc/S

22....................... 31 0.0032 0.0045 0.0023

30....................... 43 0.0023 0.0033 0.0017

50....................... 75 0.0014 0.0019 0.0010

100 ..................... 161 0.0007 0.0010 0.0005

Note.—The critical value for dynamo action is C� ¼ 20. For
all runs, Rm ¼ 20,C� ¼ 0:1, and b2fin=B

2
eq ¼ 0:02.

Fig. 4.—Spacetime (or butterfly) diagram of By for model S1 with
dynamical quenching. At k1x ¼ ��, the shear has attained a negative maxi-
mum, and a positive maximum at k1x ¼ 0. Dark shades indicate negative
values, while light shades indicate positive values. Parameters are Rm ¼ 30,
C� ¼ 0:35,C� ¼ 33, �f ¼ 5, �f ¼ 1, and ~gg ¼ 3.
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ward traveling dynamo waves can propagate less freely,
because they are now also coupled in the x-direction.

For comparison, in the simulation of BBS01, the inferred
input parameters for modeling purposes are k2m ¼ 2 (the
field varies in x and z), S=�k21 ¼ 2000, Rm � urms=�kf � 80,
and C� � ~��f ¼ 1 2. The resulting nondimensional output
quantities are B2

fin=B
2
eq � 30, Q�1 � 0:02, �m � 0:11,

!cyc=S ¼ 0:005 0:010, and 
=ð�k2mÞ ¼ 30.
Model R1 gives, within a factor of 2, about the right satu-

ration field strength, and in addition, the values of Q�1, �m,
and !cyc=S agree reasonably well with the simulations, but
the kinematic growth rate is too high. In addition, the value
of Rm is probably larger in the simulation in which we esti-
mated Rm � 80. In order to have the right growth rate, C�

has to be lowered. In order to then match the right satura-
tion field strength, we have to have ~gg � 3. One such case is
model AG2, in which Rm ¼ 100. Now cycle frequency and
growth rate, as well as Q�1, agree reasonably well with the
simulation.

The simulation of BDS02 is more resistive (S=�k21 ¼ 1000
and Rm � 30), but the resulting field strength is only some-
what smaller, B2

fin=B
2
eq � 20, whereas Q�1 � 0:02,

�m � 0:11, and !cyc=S ¼ 0:013 0:015 are all somewhat
enhanced relative to BBS01. Models s1–s3 (where ~gg ¼ 1)
and S1–S3 (where ~gg ¼ 3) are now appropriate for compari-
son, because they all have S=�k21 ¼ 1000. Model S1 with
~gg ¼ 3 gives the best agreement for B2

fin, but the cycle fre-
quency is too small. For model s3 with ~gg ¼ 1, !cyc is about
right, but now B2

fin is too small.
In all models, the values of b2fin in Table 5 are smaller than

in the simulations. As discussed in x 4.1, this is readily
explained by the fact that our model does not take into
account small-scale dynamo action resulting from the non-
helical component of the flow.

Comparing the two simulations with different values of
Rm (BBS01; BDS02), the cycle frequency changes by a fac-
tor compatible with the ratio of the two magnetic Reynolds
numbers. This is not well reproduced by a quenching
expression for �t that is independent of Rm (case I). On the
other hand, if �t / � (case II), !cyc becomes far smaller than
what is seen in the simulations. A possible remedy would be
to have some intermediate quenching expression for �t. We
should bear in mind, however, that our current model
ignores the feedback from the large-scale motions. Such
feedback is indeed present in the simulations, which also
show much more chaotic behavior (e.g., Fig. 8 of BBS01)
than our model; see Figure 5. A more realistic model should
therefore allow for more degrees of freedom. In particular,
the quenching should be allowed to be nonuniform in space.
This and other extensions of the model are discussed in x 6.

6. POSSIBLE EXTENSIONS OF THE MODEL

The dynamical quenching model now allows us to test a
number of additional aspects and properties that have been
(or can be) seen in direct simulations.

6.1. Cross-Helicity Evolution and Large-Scale
Velocity Feedback

Although we were justified in ignoring the small-scale
cross-helicity contribution to E, we found from the simula-
tion of BBS01 that the large-scale cross-helicity is nonnegli-
gible. This turned out to be the result of the forcing function
for the large-scale velocity and the asymmetry of the large-
scale field with respect to x ¼ 0, and thus with respect to the
large-scale velocity. The correlation between the forcing
function for the large-scale flow and the large-scale mag-

TABLE 5

Results from the Two-dimensional �2�Dynamo with Dynamical �-Quenching

Model Rm C� C� ~gg S=�k21 b2fin=B
2
eq B2

fin=B
2
eq Q�1 �m !cyc/S 
/S

A1............. 20 0.3 100 0 2000 0.05 4.0 0.032 0.068 0.015 0.018

A2............. 20 1.0 100 0 2000 0.20 15 0.031 0.065 0.016 0.046

A3............. 20 3.0 100 0 2000 0.62 48 0.031 0.064 0.015 0.098

R1*........... 20 1.0 100 0 2000 0.20 15* 0.031 0.065* 0.016 0.044

R2............. 50 1.0 40 0 2000 0.17 5.5 0.076 0.16 0.035 0.055

R3............. 100 1.0 20 0 2000 0.14 2.3 0.15 0.30 0.072 0.061

G1............. 20 0.3 100 0 2000 0.05 4.0 0.032 0.068 0.015 0.018

G2............. 20 0.3 100 0.1 2000 0.05 5.2 0.025 0.053 0.011 0.018

G3............. 20 0.3 100 0.3 2000 0.06 8.2 0.018 0.036 0.009 0.018

G4............. 20 0.3 100 1.0 2000 0.06 23 0.007 0.014 0.007 0.018

G5............. 20 0.3 100 3.0 2000 0.06 56 0.003 0.006 0.0013 0.018

AG1.......... 100 0.3 20 3.0 2000 0.00 0 . . . . . . . . . 0

AG2*........ 100 0.5 20 3.0 2000 0.10 22* 0.011* 0.024 0.006* 0.021*

AG3.......... 100 1.0 20 3.0 2000 0.20 70 0.007 0.015 0.004 0.052

s1 .............. 30 0.25 33 1.0 1000 0.05 3 0.035 0.072 0.017 0.007

s2 .............. 30 0.30 33 1.0 1000 0.06 4 0.032 0.066 0.015 0.012

s3y............. 30 0.35 33 1.0 1000 0.07 6 0.029 0.061y 0.014y 0.016y
S1y ............ 30 0.35 33 3.0 1000 0.07 19y 0.009 0.019 0.005 0.016

S2.............. 50 0.35 20 3.0 1000 0.07 10 0.017 0.035 0.008 0.006

S3.............. 50 0.4 20 3.0 1000 0.08 14 0.015 0.031 0.006 0.011

S4.............. 100 0.4 20 3.0 2000 0.08 14 0.014 0.028 0.008 0.011

BDS02 ...... �30 1–2 . . . . . . 1000 4 20 0.018 0.11 0.013–0.015 0.006

BBS01....... �80 1–2 . . . . . . 2000 6 30 0.014 0.06 0.005–0.010 0.015

Note.—In the last two rows, the results from the simulations of BBS01 and BDS02 are given for comparison. Models AG2 and
perhaps also R1 show some tentative agreement with BBS01; the corresponding numbers are marked with asterisks. Models s3 and S1
give some tentative agreement with BDS02 (where S=�k21 ¼ 1000); the corresponding numbers are marked with daggers.
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netic field serves as a driver in the cross-helicity evolution
equation. In principle, we should explicitly couple the equa-
tion for the cross-helicity into the model. Our models with
imposed shear, however, do not produce the required sym-
metry breaking that would lead to a significant contribution
to the large-scale cross-helicity. This is because we treat the
large-scale velocity as being kinematic. This should be
explored further in future work by accounting for the
dynamical feedback from the large-scale motions.

6.2. Antiquenching

As long as the feedback from the small-scale motions
onto � and �t involves the quantity ha x bi, i.e., as long as
equations (4) and (5) remain fully coupled, equation (2) is
guaranteed to be satisfied. Thus, the magnetic helicity equa-
tion is obeyed regardless of how ha x bi is coupled to � or �t.
It may be that under certain conditions, � and �t may even
increase with increasing field strength, which we refer to as
‘‘ antiquenching.’’ Brandenburg, Saar, & Turpin (1998)
used such models to explain the increase of relative stellar
cycle frequency with increasing field strength. As an illustra-
tive example, we have considered the case � ¼ �K � �M ,
i.e., with the opposite sign as in equation (7), and
�t ¼ �t0ð1þ hb2i2=B2

eqÞ, where hb2i is linked to ha x bi via
equations (24) and (26). Note that �-antiquenching scales
with the fourth power, so that it eventually dominates over
�-antiquenching. The resulting evolution of hB 2i shows the
expected resistively limited saturation phase. Alternatively,
if � is made to increase with increasing small-scale field
strength, the resulting large-scale field can saturate faster
than usual. A similar behavior can be modeled by choosing
~gg < 0, which also speeds up the initial buildup of large-scale
magnetic energy. This is possible, and consistent with the
magnetic helicity equation, because the initial buildup
of hB 2i in this case happens simultaneously with a sharp
burst in hb2i such that the sum of hA xBi and ha x bi is still
approximately constant.

6.3. Magnetic Buoyancy

In solar and galactic dynamo theory, the possibility of ris-
ing magnetic flux tubes contributing to the �-effect has been
discussed (Leighton 1969; Ferriz-Mas, Schmitt, & Schüssler

1994; Hanasz & Lesch 1997; Brandenburg & Schmitt 1998;
Moss, Shukurov, & Sokoloff 1999; Thelen 2000; Spruit
2002). For the Sun, the idea is that flux tubes emerge from
the toroidal magnetic field belt at the bottom of the convec-
tion zone and become twisted by the Coriolis force. We
point out that equation (18) does already capture part of
this effect. If there is a strong, partly buoyant magnetic field
at the bottom of the convection zone, it would contribute to
hJ xBi and therefore, through equation (18), to �. Of
course, this effect cannot constitute a dynamo on its own, as
there is no source of magnetic energy. However, in conjunc-
tion with shear, from which energy can be tapped, this effect
could lead to dynamo action. Modeling this in the frame-
work of dynamical quenching would be a suitable way to
include the effects of magnetic buoyancy such that magnetic
helicity conservation is obeyed.

6.4. Oscillatory Imposed Fields

If there is a uniformly imposed magnetic field that is oscil-
latory in time, equation (18) would predict that � is also
oscillatory. If the oscillation frequency is high enough, the
adiabatic approximation breaks down. One might wonder
whether this would be a way to explicitly test the dynamical
�-quenching concept numerically. However, it turns out
that the resulting averaged � is even smaller on average than
what is predicted based on the adiabatic approximation.
Thus, although dynamical quenching enhances dynamo
generation in the case of self-generated fields, it actually
lowers � in the presence of imposed oscillatory fields.

6.5. Selective Decay

In is interesting to note that equation (18) can also be
applied to the case of decaying magnetic fields. In that case,
it predicts reduced turbulent decay if hJ xBi 6¼ 0. Thus,
accordingly, a fully helical magnetic field should only decay
at the resistive rate, whereas a nonhelical magnetic field
would decay at the turbulent diffusive rate. The slow decay
of helical fields is well known and leads to the so-called
Taylor states in which magnetic helicity is maximized and
magnetic energy minimized (e.g., Montgomery, Turner, &
Vahala 1978).

6.6. Hyperdiffusion

Numerical experiments allow one to understand the
physics described by the equations by modifying certain
terms. Particularly enlightening has been the use of hyperre-
sistivity (or hyperdiffusion), by which the ordinary diffusion
operator, �r2, is simply replaced by �2r4. The diffusion at
small scales is usually fixed by the mesh resolution and kept
unchanged, but with hyperdiffusion, the diffusion at large
scales can be decreased substantially. This method is fre-
quently used in turbulence research, but the effects on helical
dynamos are quite striking: the saturation field strength is
considerably enhanced and the saturation phase prolonged
(Brandenburg & Sarson 2002). Our model reproduces
these features if �k2f is replaced by �2k

4
f , �J is replaced by

��2r2J , and Rm ¼ �t =ð�2k3f Þ is used. The simulations of
Brandenburg & Sarson (2002) showed (for the helical
dynamo without shear) that the large-scale field behavior
depends on the diffusion at the scale of the large-scale field
itself and not, as one might naively expect, on the diffusion
at small scales. This behavior is clearly reproduced by the
dynamical quenching model: reducing the microscopic � in

Fig. 5.—Evolution of the large-scale magnetic energy for model AG2
(solid line). The dotted line gives the comparison with the corresponding
adiabatic approximation (see the Appendix). Parameters are Rm ¼ 100,
C� ¼ 0:5,C� ¼ 20, �f ¼ 5, �f ¼ 1, and ~gg ¼ 3.
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the mean field equation (and not in the dynamical quench-
ing equation) increases saturation time and saturation value
as expected. This can be taken as additional validation of
the dynamical quenching model.

6.7. Losses of Small-Scale Field

Open boundaries may provide a means of shedding mag-
netic helicity and thereby alleviating the magnetic helicity
constraint (Blackman & Field 2000; Kleeorin et al. 2000,
2002). Numerical simulations have shown, however, that
when no additional boundary physics is imposed to prefer-
entially transport quantities of a particular scale, most of
the magnetic helicity is lost by the large-scale field (Branden-
burg & Dobler 2001). In this case, the growth of the large-
scale field cannot be accelerated. In order to check whether
accelerated growth of large-scale fields is at least in principle
possible, we have modeled the preferential shedding of
small-scale fields in two different ways, both with similar
results. Adding an overall loss term of the form ��M=�loss
on the right-hand side of equation (18) leads to a substantial
increase of the large-scale field (note that this is distinct from
the��M=T in Kleeorin et al. 2000, which is just the same as
our second term in eq. [13]). Likewise, setting hb2i (and
hence �M) to 0 in sporadic intervals accelerates the growth
phase and enhances the saturation value. Similar results
have meanwhile also been obtained by restarting run 3 of
B01 after sporadically removing the magnetic field at and
below the forcing scale (see Fig. 14 of BDS02). This
confirms an important prediction from the dynamical
quenching model.

6.8. Generalization to Nonuniform �

Our approach is based on magnetic helicity, which is a
volume integral. However, in astrophysical bodies, kinetic
and magnetic helicities are not spatially constant and
change sign at the equator. Generalizing equation (13) to
the case of a space-dependent �K and �M seems at first
glance straightforward: omit the angular brackets and
replace d=dt by @=@t, as was done already in the early work
of Kleeorin & Ruzmaikin (1982). It may also be necessary
to include a local phenomenological magnetic helicity flux
transport term, for example, of the form ��r2�M (in addi-
tion to whatever global flux terms may be present, e.g.,
Blackman & Field 2000; Kleeorin et al. 2002). In the pres-
ence of large-scale (meridional) flows, it may furthermore
be appropriate to use the advective derivative,
D=Dt ¼ @=@tþU x

D

. However, the magnetic helicity
density a x b is not gauge invariant, and it is no longer strictly
related to j x b locally. The hope would be that the general-
ization outlined above may still be useful as an
approximation.

We have performed calculations with �K ¼ �K0 sin k1z
and C� � �K0=ð�Tk1Þ ¼ 5. The resulting large-scale field
strength is approximately equal to Beq and depends only
weakly on Rm. This is consistent with Kleeorin et al. (2002).
Simulations with the same sinusoidal �-profile (Branden-
burg 2001b) have shown that the resulting large-scale field
varies mostly in the x-direction, which is incompatible with
the present model. In addition, the resulting field strength is
actually significantly below Beq.

In the presence of open boundaries, the present model
predicts large-scale field strengths that decrease inversely
proportional with Rm. This is even steeper than what was

found in the simulations (Brandenburg & Dobler 2001).
Thus, in its present form, the dynamical quenching model
does not satisfactorily reproduce the numerical results when
� varies in space. However, with the help of simulations, it
should be possible to identify which of the steps in the deri-
vation of dynamical �-quenching are no longer satisfied,
and hence what the cause of the problem is.

7. CONCLUSIONS

The magnetic helicity evolution equation is a constraint
that must be satisfied by any dynamo theory. When we
apply this in the mean field formalism with the prescription
that the �-effect is proportional to the difference between
kinetic and current helicities, dynamical �-quenching
emerges as the only theoretically consistent approach to �-
quenching. This is supported by comparisons with numeri-
cal simulations of dynamos with and without shear. Fixed-
form, algebraic quenching prescriptions may apply in a
specific parameter regime (e.g., the saturated phase) but are
invalid for earlier times and are inconsistent with results
from time-dependent analyses. Only dynamical quenching
has predictive power.

A key result from dynamical quenching is that near-
equipartition large-scale field strengths are reached inde-
pendently of the magnetic Reynolds number by the end of
the kinematic phase. Final saturation is only reached on a
resistively limited (Rm-dependent) timescale but with a
saturation value independent of Rm and equal to
B2
fin=B

2
eq ¼ ~kkf =~kkm; see equations (30) and (32).

Although magnetic helicity conservation provides a basis
for a dynamical quenching of �, the form of �t must be pre-
scribed at present. We have shown that current simulations
of �2 (shear-free) dynamos constrain the dynamical quench-
ing of E xB, which is a combination of � and �t, but they do
not separately constrain �t. On the other hand, cycle peri-
ods, emerging only in dynamos with shear, can. At present,
the shear dynamo simulations are best described by a
dynamical quenching theory in which �t is only weakly
dependent on the magnetic field; ~gg � 3 in equation (15).
Higher resolution simulations are needed to verify this.

The two-scale dynamical nonlinear quenching approach
based on magnetic helicity conservation discussed herein
constitutes an improvement over fixed-form algebraic
quenching approaches. Nevertheless, there are aspects of
high–Reynolds number �� dynamos that may require the
theory to be augmented. For example, we have only consid-
ered a spatially uniform �-coefficient. Allowing for spatial
gradients in � introduces local helicity flux terms that are
important for astrophysical bodies in which � changes sign
across the equator. In addition, helicity flux across global
boundaries was also ignored in our calculation, although we
know that real systems have boundaries. The associated
boundary magnetic helicity flow may be important in cou-
pling the dynamo growth to magnetic helicity evolution.
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APPENDIX

THE ADIABATIC APPROXIMATION

We discuss here the justification for when the time derivative in the dynamical quenching expression can be neglected (the
adiabatic approximation).

In the steady state, �M and hB2i are given by equations (29) and (30), respectively. Linearizing equations (17) and (18) about
this state yields

1

2

dq

dt
¼

� �K=~kkm � �t

� 
k2f �k2f

�K=~kkm � �T

� 
k2m 0

2
64

3
75q ; ðA1Þ

where q � ð ln�M ;  lnhB2iÞ is the state vector for the logarithmic departure from equilibrium. For excited solutions, the
terms in the first column of the matrix in equation (A1) are usually positive, even for �� dynamos. Inspecting the diagonal
terms shows that near the saturated state, �M is adjusting rapidly on a dynamical timescale, while hB 2i is marginal and adjusts
only indirectly (via �M) on a resistive timescale. We can therefore use the adiabatic elimination principle (e.g., chapter 7.2 in
Haken 1983) to remove the explicit time dependence of �M by replacing equation (18) with

0 ¼ �hB2i � �tl0hJ xBi
B2
eq

þ �M

Rm
: ðA2Þ

Substituting �M ¼ �� �K and solving for � leads to equation (40).
The adiabatic approximation corresponds to the limit in which memory effects become negligible. This is best seen by

considering the integral form of equation (18),

� ¼ 2�k2f

Z t

0

Gðt; t0Þ �K þRm�tl0
hJ xBi
B2
eq

 !
dt0 ðA3Þ

with the Green’s function

Gðt; t0Þ ¼ exp �2�k2f

Z t

t0
1þRm

hB2i
B2
eq

 !
dt00

" #
: ðA4Þ

As long as the field is weak, the width of the Green’s function is the resistive timescale, but when hB2i=B2
eq is of the order of

unity, the large Rm factor becomes important, and the width of the Green’s function reduces to a dynamical timescale. In
that case, the B-dependent terms in parentheses can be pulled out of the integrals in equations (A3) and (A4), in which case
equation (40) is recovered.
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