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Solar and stellar dynamos – latest developments
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Abstract. Recent progress in the theory of solar and stellar dynamos is reviewed. Particular emphasis is placed on the
mean-field theory which tries to describe the collective behavior of the magnetic field. In order to understand solar and
stellar activity, a quantitatively reliable theory is necessary. Much of the new developments center around magnetic helicity
conservation which is seen to be important in numerical simulations. Only a dynamical, explicitly time dependent theory of
�-quenching is able to describe this behavior correctly.
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1. Introduction

Starspot activity is presumably driven by some kind of dy-
namo process. Many stars show magnetic field patterns ex-
tending over scales of up to ��Æ in diameter. The commonly
used tool to model such magnetic activity is the mean-field
dynamo. Although mean-field theory has been used over sev-
eral decades there have recently been substantial develop-
ments concerning the basic nonlinearity of dynamo theory.
It is the purpose of this review to highlight these recent de-
velopments in the light of applications to stars.

2. Stellar dynamos: spots and cycles

We usually think of star spots as rather extended dark and
strongly magnetized areas on a stellar surface. Observable
spots are much bigger than sunspots. They may in fact be
so big that the spots themselves have sometimes been iden-
tified with solutions of the mean-field dynamo equations
(e.g., Moss et al. 1995). This is in contrast to the much
smaller sunspots which instead show collective behavior in
that sunspot pairs have a systematic orientation and preferen-
tial location which changes with the solar cycle.

The working hypothesis is that extended star spots are just
the extremes of a broad range of possibilities from small to
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large spots. Stellar parameters can change over a consider-
able range and there is scope that different types of behavior
can be identified with different solutions of the mean-field
dynamo equations. Very exiting is the possibility of nonax-
isymmetric solutions, possibly with cyclic nonmigratory al-
ternations of their polarity (the so-called flip-flop effect, see
Jetsu et al. 1999 and references therein).

Already among the more solar-like stars there is a lot to
be learned about the dependence of the period of the activ-
ity cycle on rotation rate and spectral type (cf. Baliunas et al.
1995). An interesting possibility is the suggestion that stellar
activity behavior may change with age (Brandenburg, Saar &
Turpin 1998). The very young and more active stars show ex-
tremely long cycles (3–4 orders of magnitude longer than the
rotation period) whilst older inactive stars like the sun show
shorter cycle periods that are just a few hundred times longer
than the rotation period. These different types of behavior can
be classified according to their location in the Rossby number
versus frequency ratio diagram (Saar & Brandenburg 1999).

In order to make progress in understanding these vari-
ous possible behaviors it is crucial to work with a reliable
theory that has predictive power. Mean-field dynamo theory
has frequently been used as a rather arbitrary theory. Being
based on some ad hoc assumptions, much of its predictive
power is questionable. Particular controversy was caused by
the ill-known contributions of small scale fields which may
catastrophically quench the �-effect (Vainshtein & Cattaneo
1992, Kulsrud & Andersen 1992), which is thought to be re-
sponsible for driving the large scale field. However, signifi-
cant advances in recent years are now beginning to shed some
light on apparently conflicting earlier results on what the fi-
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nal saturation field strength will be. It is likely that progress
will come about in two stages. In the first stage we will have
to make sure that mean-field theory works correctly in the
parameter regime that can be tested using simulations. In
the second stage we have to extrapolate the theory from the
regime that is tested numerically to the regime that is of astro-
physical interest. At the moment we are still struggling with
the first objective.

3. Mean-field theory: it’s all about quenching

As far as the selection of different modes of symmetry is
concerned, there has been some partial success in finding
agreement between simulations and linear dynamo theory.
We mention here the results of local simulations of accretion
discs in a shearing box approximation: changing the upper
and lower boundary conditions from a normal field (“pseudo-
vacuum”) condition to a perfect conductor condition changes
the behavior from an oscillatory mode with symmetric field
about the equator to a non-oscillatory mode with antisym-
metric field about the equator. The same change of behavior
is also seen in mean-field models using the same cartesian ge-
ometry. This result, which has been described in more detail
in earlier papers (e.g. Brandenburg 1998), lends some sup-
port to the basic idea of using mean-field theory to describe
the results of simulations of hydromagnetic turbulence under
the influence of rotation and stratification and in the presence
of boundary conditions.

More serious concern comes from the effects of nonlin-
earity. Broadly speaking, nonlinearity has to do with strong
magnetic fields, where the magnetic energy density ap-
proaches the kinetic energy density of the turbulence. At
the bottom of the solar convection zone, the correspond-
ing equipartition field strength is ��� � � � � � � ��. On the
one hand, magnetic fields of this strength may actually be
required for the dynamo to operate. Babcock (1961) and
Leighton (1969) proposed that magnetic fields of this strength
will become buoyant and produce, under the influence of the
Coriolis force, a systematic tilt as flux tubes emerge at the sur-
face to form a sunspot pair. In many ways magnetic buoyancy
is similar to thermal buoyancy and both lead to an �-effect
(Parker 1955, Steenbeck, Krause & Rädler 1966). However,
Piddington (1972) has argued that, when the magnetic field
approaches the equipartition value, it would be impossible to
entangle and diffuse the magnetic field. This led later to the
idea of catastrophic suppression of turbulent magnetic diffu-
sivity (Cattaneo & Vainshtein 1991) and, by analogy, to the
proposal of catastrophic suppression of the �-effect (Vain-
shtein & Cattaneo 1992). Simulations of Tao et al. (1993)
and Cattaneo & Hughes (1996) show that in the presence of
an imposed magnetic field, ��, the �-effect depends on ��

like

� �
��

� � ���
�
���

�
��

� (1)

where �� is the magnetic Reynolds number which is large
(������� for the sun). Thus, for equipartition field strengths,

�� � ���, � would be 8 to 9 orders of magnitude below the
kinematic (unquenched) value ��, i.e.

� � ���
��
� � � as �� ��� (2)

Over the past ten years there has been an increasing
amount of activity in trying to understand the value of � in
the nonlinear regime. Work by Gruzinov & Diamond (1994,
1995, 1996) and Bhattacharjee & Yuan (1995) has basi-
cally confirmed Eq. (1). Gruzinov & Diamond (1994) did
find however that the turbulent magnetic diffusivity is only
quenched in two-dimensional configurations, which was ex-
actly the case considered numerically by Cattaneo & Vain-
shtein (1991). Although Gruzinov & Diamond (1994) did
agree with the conclusion of catastrophic �-quenching, they
found actually a slightly different form of Eq. (1), which can
be written as

� �
�� � �� ����� ����

�
��

� ����
�
���

��

� (3)

where � � � � ���� is the mean current density and ��
the vacuum permeability. Obviously, when the mean field is
spatially uniform, � � �� � const, then � � � and Eqs (1)
and (3) agree with each other.

In real astrophysical bodies � will always be a tensor
(e.g., Steenbeck et al. 1966, Rüdiger & Kitchatinov 1993, Ro-
gachevskii & Kleeorin 2001). However, much of the work on
the nonlinear�-effect comes from considering periodic boxes
where the � tensor can indeed be isotropic (e.g. Field, Black-
man & Chou 1999). There is a priori no reason to assume
that the �-effect in a periodic box is different from that in a
nonperiodic box. Furthermore, periodic boxes are conceptu-
ally and computationally significantly easier than boxes with
boundaries. If no large scale field is imposed, helical turbu-
lence can still drive a large scale field which itself is helical.
A prototype of such a field is

� � �� 	
�� ��	� �
 ��	� �� � (4)

where �� � �
�� is the smallest wavenumber in a box of
size �	. Other directions and additional phase shifts are pos-
sible; see Brandenburg (2001, hereafter B01); see Fig. 1. An-
imations of �, , and 	 slices of the generated magnetic field,
together with the corresponding power spectra of kinetic and
magnetic energy, as well as magnetic helicity (normalized by
���) are shown in the attached Movies 1–3.

A helical field of the form (4) is called a Beltrami field.
The current density of such a field no longer vanishes; in fact,
��� � ���, so � and � are aligned and

��� �� � ���
�
� const� (5)

Thus, in the large magnetic Reynolds number limit, Eq. (3)
becomes

� � �	����� �� � as �� ��� (6)

This highlights the great ambiguity in concluding anything
about �-quenching from oversimplified experiments. [In the
discussion above we have assumed that �� � �. If �� � �,
as is the case in B01, then both � and � �� are also negative
and Eq. (3) is unchanged.]
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Fig. 1. Visualization of the magnetic field in a three-dimensional
simulation of helically forced turbulence. The turbulent magnetic
field is modulated by a slowly varying component that is force-free.

4. Relation to magnetic helicity

There is a strong connection between �-quenching and mag-
netic helicity conservation. Again, we consider the case of a
periodic box, for which it is easy to show that the magnetic
helicity

� �

�
� �� �� � �� ��	� (7)

is perfectly conserved in the limit of infinite magnetic
Reynolds number. Here, � is the magnetic vector potential,
so the magnetic field is � � � � �, and angular brackets
denote volume averages over the full box. If we start with a
very weak seed magnetic field, the initial magnetic helicity
must also be small and will therefore always remain small if
� is conserved. Thus, a large-scale helical field of the form
(4) is only compatible with conservation of magnetic helicity
if there is an equal amount of magnetic helicity of the oppo-
site sign in the small scales, i.e.

�� ��	 � �� ��	� �� � �	 � � (early times)� (8)

where � and � have been split up into their mean and fluc-
tuating components,

� � �� �� � � �� �� (9)

Overbars refer to the mean-field obtained by horizontal or
azimuthal averaging, for example. Equation (8) is a crucial
condition that must be obeyed by any mean-field theory in
the large �� limit on time scales shorter than the resistive
time scale.

To our knowledge, there have been two approaches to in-
corporate magnetic helicity conservation into mean-field dy-
namo theory. One is to express the mean turbulent electromo-
tive force, � � �� �, as a divergence term (Bhattacharjee &
Hameiri 1986, see also Boozer 1993) and the other is to mod-
ify the feedback onto the �-effect such that Eq. (8) is satisfied
on short enough time scales. The latter approach goes back
to Kleeorin & Ruzmaikin (1982) and Kleeorin et al. (1995),

and has recently been revived by Field & Blackman (2002),
Blackman & Brandenburg (2002), and Subramanian (2002).
In the following we briefly outline the basic idea.

All we know is that in a closed or periodic domain the
magnetic helicity evolves according to

�

��
�� ��	 � 
������ ��	� (10)

where �� ��	� and �� ��	� are magnetic and current he-
licities, respectively, and � is the volume. At the same time
we have to have some theory for the evolution of the mean
magnetic field. The mean-field �� dynamo equations can be
written in the form

��

��
���

�
���� ��
 	� � ������

�
� (11)

From this we can construct the evolution equation for the
magnetic helicity of the mean field,

�

��
�� ��	 � ��� ��	 
 ������ ��	� (12)

where

� � ��
 ������ (13)

is the mean turbulent electromotive force under the assump-
tion of isotropy. Subtracting Eq. (12) from Eq. (10), we obtain
the evolution equation for the magnetic helicity of the fluctu-
ating field,

�

��
�� � �	 � 
��� ��	 
 ������ � �	� (14)

This equation has to be solved simultaneously with the usual
mean field equation. At the moment, however, it is not yet
fully coupled to the mean field equation. In fact, any kind of
coupling, for example of the form

� � � 	�� � �	� �� � �	� (15)

would suffice. A similar relation could in principle also be
applied to the turbulent magnetic diffusivity, ��. However, in
contrast to ��, ����	 and ����	 are pseudo-scalars and change
sign when 	 is changed to
	. Therefore, only quadratic con-
structions of the form �� � �	� and �� � �	� could, at least in
principle, enter into the feedback of ��.

In an isotropic periodic box we have

�� � �	 � ��
 �� � �	� (16)

where �
 can be defined by this relation as the typical
wavenumber of the fluctuating field. Secondly, we use the re-
lation (Pouquet, Frisch & Léorat 1976)

� � 
 �
	
��� � �	� �

	
��� � �	��� (17)

for the residual �-effect. This relation describes a fundamen-
tal form of �-quenching, but there could still be additional
feedback onto �� � �	 and ���	 (Rogachevskii & Kleeorin
2001, Kleeorin et al. 2002), which is ignored here. With
these relations, the equation for � becomes explicitly time-
dependent,

��

��
� 
�����

�



�
���
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 ������ ��	

��
��

�
�
 ��
��

�
� (18)

where �� � 
 �
	
��� ��	 is the kinematic value of �. Here we

have expressed the correlation time � in terms of ��� using
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Fig. 2. Evolution of ��
�

� and ���� (solid and dashed lines, re-
spectively) in a doubly-logarithmic plot for an �� dynamo with
�� � const for a case with ����� � ��. Note the abrupt initial
saturation after the end of the kinematic exponential growth phase
with ��

�

������ � ���, followed by a slow saturation phase during
which the field increases to its final superequipartition value with
��

�

������ � ��. (Adapted from Blackman & Brandenburg 2002.)

�� �
�
	
����	 and ��

�� � ������
�	. The full set of equations

to be solved comprises thus Eqs (11) and (18).

A detailed analysis of this set of equations was given by
Field & Blackman (2002) for the case of the �� dynamo and
by Blackman & Brandenburg (2002) for the �� dynamo. The
main conclusion is that for large magnetic Reynolds number
the large scale magnetic field grows first exponentially such
that Eq. (8) is obeyed at all times. This behavior could not
have been reproduced with an �-effect that is not explicitly
time-dependent, such as for example Eq. (1). The exponential
growth is then followed by a resistively slow saturation phase,
just like in the simulations of B01.

The reason there is this slow saturation phase is that
Eq. (8) is incompatible with a steady state, where the right
hand side of Eq. (10) must vanish, i.e.

�� ��	 � �� ��	� �� � �	 � � (steady state)� (19)

Since the large scale field is helical, Eq. (5) applies and we

have ����
�
	 � �
��

�	, so the large scale field exceeds the
small scale field by a factor �
���. In the simulations of B01
this ratio was 5. In the beginning of the nonlinear regime,

Eq. (8) predicts, instead, that ��
�
	����	 equals ����
 , which

was 25 times smaller in B01. Figure 2 shows this quantita-
tively by solving Eqs (11) and (18); see Blackman & Bran-
denburg (2002).

In order to bring the field ratio from 1/5 to 5 we have to
remove small scale magnetic helicity resistively. The ques-
tion is of course what happens if one considers the effects
of boundaries (both at the equator and at the outer surface):
can boundaries remove small scale magnetic helicity so that
the large scale field can saturate at a higher level? This pos-
sibility was first brought up by Blackman & Field (2000) and
Kleeorin et al. (2000).

5. From closed to open boxes

When the restriction to closed or periodic boxes is relaxed,
there can be a flux of magnetic helicity through the surface,
so Eq. (10) has then an additional term,
��

��
� 
����� 
�� (20)

where � and � are magnetic and current helicities, respec-
tively, and � is the surface integrated magnetic helicity flux.
In the presence of open boundaries, however,� and � are no
longer invariant under the gauge transform � � �� ���.
We use therefore the relative magnetic helicity (Berger &
Field 1984, Finn & Antonsen 1985),

� �

�
�

	����� � 	�
��� ��� (21)

where �� is a potential field used as reference field within
the volume � , and �� is its vector potential. Both � and
�� can have different (arbitrary) gauges.

Following Berger & Field (1984), the reference field
obeys the boundary condition �� � �� � � � ��, i.e. the nor-
mal components of both fields agree on the boundary. In slab
geometry, however, the horizontally averaged mean field has
to be treated separately and the corresponding reference field
is (Brandenburg & Dobler 2001)

�� � ��	 � const� (22)

so �� is just a linear function of 	, �� � 
� ���. Bran-
denburg & Dobler (2001) found from their simulations that
most of the magnetic helicity is lost on large scales, where
the sign agrees with that of the large scale magnetic helicity.
This was a bit disappointing, because one would have hoped
that the loss term in Eq. (20) might supersede resistive losses
at small scales. That small scale losses can at least in principle
enhance the large scale field was shown in subsequent simu-
lations (Brandenburg, Dobler & Subramanian 2002, hereafter
BDS; see also Fig. 3). The hope is now that this behavior can
eventually be demonstrated using more realistic geometries.

6. From boxes to spheres

Spherical geometry is necessary to assess more realistically
the helicity transfer through equator and outer surfaces, and
the relative contributions from rotation, shear, �-effect, and
turbulent magnetic diffusion. In a recent paper, Berger &
Ruzmaikin (2000) estimated that the overall helicity flux at
the surface would be around ������ per 11 year cycle.
This value was also confirmed by BDS, who computed nu-
merically solutions of the mean-field dynamo equations in
spherical geometry. The relative magnetic helicity for an ax-
isymmetric mean field, � � ������ 	����, takes the very
simple form (BDS)

�� � �

�
�

�� �� (23)

where N denotes the volume of the northern hemisphere. The
corresponding integrated helicity transfer through the outer
surface or the equator is

�� � 
�

�
��

�	� ������ 	����� � �	� (24)
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Fig. 3. The magnetic energy spectrum for the closed box simula-
tion (solid line) compared with the case where small scale mag-
netic energy is removed every 100 time steps, corresponding to
Æ� � ��� � ��������

��. Note that the large scale magnetic energy
(at � � �) is enhanced relative to the reference run, whilst the small
scale energy is (as expected) reduced.

where � � � 
�� ���� is the mean toroidal flow. Note that
�� � ��� � ���, where ��� is the contribution from
the outer surface integral and ��� is that from the equato-
rial plane.

It is remarkable that even in the presence of just uniform
rotation alone there is a magnetic helicity flux. For a decaying
magnetic field, the magnetic helicity flux through the equa-
tor or, what is the same, through the northern or southern
hemispheres, is �� per rotation, where � is the magnetic flux
through one hemisphere.

However, once the field is sustained by a dynamo effect
at a constant amplitude, the helicity flux must be balanced by
the electromotive force (averaged over one cycle), so

� � ��� ��	� 
 ������ ��	�

� ����
�
	� 
 ������� ��	��

(25)

where �� � � � �� is the total (microscopic and turbulent)
magnetic diffusivity. Assuming that the dynamo is saturated
by a reduction of the residual helicity, see Eq. (17), �� and
�� must have opposite signs. This is because saturation re-
quires that 
�� 	��� � 

�� 	�� � �	�, but steady state of
Eq. (14) requires that 

�� 	�� � �	� � 
�� 	�� � �	�, and

�� 	�� � �	� � 
�� 	��. This can also be seen from a time
series of magnetic helicity, and the different terms on the right
hand side the ������ equation; see Fig. 4.

Thus, if �� (which denotes only the contributions from
the large scale field), is to be identified with the observed neg-
ative magnetic helicity flux found on the solar surface (Berger
& Ruzmaikin 2000, DeVore 2000, Chae 2000), then we must
conclude that � is negative on the northern hemisphere. This
scenario, where the main magnetic helicity flux results from
the large scales, is consistent with the simulations of BD01.
On the other hand, if small scale magnetic helicity is lost pref-
erentially at small scale, and the sign of the small scale mag-
netic helicity is opposite, then � would in that scenario be

Fig. 4. Time series of the nondimensional ratio ������	�
 com-
pared with magnetic energy (in nondimensional units and scaled by
1/20). Magnetic helicity is mostly positive in the northern hemi-
sphere. The helicity production, �, from �-effect and turbulent mag-
netic diffusion is mostly positive and balanced here by a mostly pos-
itive magnetic helicity flux (dashed and dotted lines refer to the con-
tributions from the angular velocity and the �-effect, respectively).

positive on the northern hemisphere. This would be consis-
tent with the observed negative sign of current helicity on the
northern hemisphere (Seehafer 1990, Pevtsov et al. 1995, Bao
et al. 1999, Pevtsov & Latushko 2000), which is plausibly a
proxy of small scale magnetic helicity.

A negative� would explain the observed migration of the
sunspot belts, so one would not need to resort to meridional
circulation driving the dynamo wave. However, there is as yet
no well established mechanism to explain a negative � (ex-
cept perhaps magnetic buoyancy with shear; cf. Brandenburg
1998).

Observations do not seem to be able to tell us which of the
two scenarios is right, because it is difficult to tell whether the
observed magnetic helicity flux is from large or small scale
fields. If the observed magnetic helicity flux is from small
scale, one might wonder why one cannot see the magnetic
helicity flux from the large scales. On the other hand, if the
observed magnetic helicity flux is actually already due to the
large scales, one might expect to see small scale magnetic
helicity fluxes at higher resolution in the future.

7. Conclusions

Magnetic helicity seems to play a much more prominent role
than what has been anticipated until recently. It has become
clear that � must satisfy an explicitly time-dependent equa-
tion. The dynamical �-quenching theory has significant pre-
dictive power: it describes the different quenching behaviors
for helical and nonhelical fields, the value of the magnetic
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Reynolds number is explicitly incorporated, and the magnetic
helicity equation is satisfied exactly at all times. So far, no
departures between this theory and the simulations have been
found. A major restriction of the theory in its present form is
however the inability to handle cases with spatially nonuni-
form �-effect.
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