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Solitons in the noisy Burgers equation

Hans C. Fogedby1,2 and Axel Brandenburg2
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We investigate numerically the coupled diffusion-advective type field equations originating from the canoni-
cal phase space approach to the noisy Burgers equation or the equivalent Kardar-Parisi-Zhang equation in one
spatial dimension. The equations support stable right hand and left hand solitons and in the low viscosity limit
a long-lived soliton pair excitation. We find that two identical pair excitations scatter transparently subject to a
size-dependent phase shift and that identical solitons scatter on a static soliton transparently without a phase
shift. The soliton pair excitation and the scattering configurations are interpreted in terms of growing step and
nucleation events in the interface growth profile. Finally, we show that growing steps perform an anomalous
random walk with dynamic exponentz53/2.
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I. INTRODUCTION

There is a continuing interest in the strong coupling
pects of stochastically driven nonequilibrium systems. T
phenomena in question are ubiquitous and comprise tu
lence in fluids, interface, and growth problems, and chem
and biological systems. In this context the noisy Burg
equation or the equivalent Kardar-Parisi-Zhang~KPZ! equa-
tion, describing the nonequilibrium growth of a noise-driv
interface, provide a simple continuum model of an op
driven nonlinear system exhibiting scaling and pattern f
mation.

In one dimension, which is our concern here, the no
Burgers equation for the local slope,u(x,t)5¹h(x,t), of a
growing interface has the form@1,2#

]u

]t
5n¹2u1lu¹u1¹h, ~1!

^h~x,t !h~0,0!&5Dd~x!d~ t !. ~2!

The height profile~in a comoving frame! h(x,t) is then gov-
erned by the equivalent KPZ equation@3,4#

]h

]t
5n¹2h1

l

2
~¹h!21h. ~3!

In Eqs. ~1! and ~3! n is the damping or viscosity characte
izing the linear diffusive term,l a coupling strength for the
nonlinear mode coupling or growth term, andh a Gaussian
white noise, driving the system into a statistically stationa
state. The noise is correlated according to Eq.~2! and char-
acterized by the strengthD. Moreover, the Burgers equatio
is invariant under the slope-dependent Galilean transfor
tion

x→x2lu0t, u→u1u0 , ~4!

i.e., the interface is superimposed with a constant slope
moving frame.

The Burgers equation~1! and its KPZ equivalent in one
and higher dimensions have been the subject of intense s
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tiny in recent years owing to their paradigmatic significan
within the field theory of nonequilibrium systems@5–15#.

In a series of papers the one-dimensional case define
Eqs.~1! and ~2! has been analyzed in an attempt to unco
the physical mechanisms underlying the pattern format
and scaling behavior. Emphasizing that the noise strengtD
constitutes the relevant nonperturbative parameter tha
driving the system into a statistically stationary state,
method was initially based on a weak noise saddle po
approximation to the Martin-Siggia-Rose functional form
lation of the noisy Burgers equation@16–19#. This work was
a continuation of earlier work based on the mapping o
solid-on-solid model onto a continuum spin model@20#.
More recently the functional approach has been superse
by a canonical phase space methodderiving from the ca-
nonical structure of the Fokker-Planck equation associa
with the Burgers equation@21–27#. Below we briefly sum-
marize these findings.

The functional or the equivalent phase space appro
valid in the weak noise limitD→0 replaces the stochasti
Langevin-type Burgers equation~1! by coupled deterministic
diffusion-advection type mean field equations,

]u

]t
5n¹2u2¹2p1lu¹u, ~5!

]p

]t
52n¹2p1lu¹p, ~6!

for the slopeu(x,t) and a canonically conjugate noise fie
p(x,t), replacing the stochastic noiseh. The field equations
bear the same relation to the Fokker-Planck equations as
classical equations of motion bear to the Schro¨dinger equa-
tion in the semiclassical WKB approximation@28#.

To justify the weak noise limit we recall the analogy wi
the WKB approximation in quantum mechanics which, o
ing to its nonperturbative character, captures features
bound states and tunneling amplitudes, which are gener
inaccessible to perturbation theory. Therefore, we anticip
that the present weak noise approach to the Burgers equ
©2002 The American Physical Society04-1
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also accounts correctly, at least in a qualitative sense, for
stochastic properties even at larger noise strength.

Equations~5! and ~6! derive from a principle of least ac
tion characterized by an actionS(u8→u9,t) associated with
an orbitu8(x)→u9(x) traversed in timet @29#,

S~u8→u9,t !5E
0,u8

t,u9
dt dxS p

]u

]t
2HD ~7!

with Hamiltonian density

H5pS n¹2u1lu¹u2
1

2
¹2pD . ~8!

The action is of central importance and serves as a we
function for the noise-driven nonequilibrium configuration
The action, moreover, yields access to the time-depen
and stationary probability distributions,

P~u8→u9,t !}expF2
S~u8→u9,t !

D G , ~9!

Pst~u9!5 lim
t→`

P~u8→u9,t !, ~10!

and associated moments, e.g., the stationary slope cor
tions

^u~x,t !u~0,0!&5E ) du u9~x!u8~0!

3P~u8→u9,t !Pst~u8!. ~11!

The canonical formulation associates the conserved
ergyE ~following from time translation invariance!, the con-
served momentumP ~from space translation invariance!,
and the conserved areaM ~from the Burgers equation with
conserved noise!:

E5E dxH, ~12!

P5E dx u¹p, ~13!

M5E dx u. ~14!

The field equations~5! and ~6! determine orbits in a ca
nonicalup phase space where the dynamical issue in de
mining Sand thusP is to find an orbit fromu8 to u9 in time
t. In general the orbits in phase space lie on the manifo
determined by the constants of motionE, P, andM. Here the
zero-energy manifoldE50 defines the stationary state. F
vanishing or periodic boundary conditions the zero ene
manifold is composed of the transient submanifoldsp50
and the stationary submanifoldp52nu. Generally, a finite
energy orbit fromu8→u9 in time t migrates to the zero
energy manifold in the limit t→`, yielding according
to Eqs. ~7! and ~10! the stationary distributionPst
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}exp@2(n/D)*dx u2# @30#. Finally, in the long time limit an
orbit from u8→u9 is attracted to the hyperbolic saddle poi
at the origin in phase space implying ergodic behavior in
stationary state. In Fig. 1 we have schematically depic
possible orbits in phase space.

The field equations~5! and~6! admit nonlinear soliton or
smoothed shock wave solutions which are, in the static c
of kinklike form,

u1~x!5u tanhFluuu
2n

xG . ~15!

Propagating solitons are subsequently generated by the
ilean boost~4!. Denoting the right and left boundary value
by u1 and u2 , respectively, the propagation velocity
given by

u11u2522v/l. ~16!

The amplitude of the static soliton isu and the soliton is
located at the origin. The right hand soliton foru.0, i.e., the
soliton with the larger right hand side boundary value, mov
on the noiseless manifoldp50 and is also a solution of the
damped~stable! noiseless Burgers equation forh50. The
noise-induced left hand soliton foru,0, i.e., the soliton with
the larger left hand side boundary value, is associated w
the noisy manifoldp52nu, and is a solution of the~un-
stable! noiseless Burgers equation withn replaced by2n.

The heuristic physical picture that emerges from o
analysis is that of a many body formulation of the patte
formation of a growing interface in terms of a dilute gas
propagating solitons matched according to the soliton con
tion ~16!. For illustration we have shown in Fig. 2 the slop
field u, the corresponding height fieldh, and the noise fieldp
for a four-soliton configuration.

In the present paper we embark on a numerical analysi
the coupled field equations~5! and ~6! with the purpose of
investigating them in more detail and provide a numeri
underpinning of the heuristic quasiparticle picture advan
in the work referred to above. The paper is organized in
following manner. In Sec. II we discuss the soliton modes

FIG. 1. We depict the generic behavior of the orbits inup phase
space. The heavy lines indicate the transient zero-energy subm
fold for p50 and the stationary zero-energy submanifold forp
52nu. The stationary saddle point~sp! is at the origin. The finite
time orbit fromu8 to u9 is attracted to the saddle point fort→`.
4-2
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SOLITONS IN THE NOISY BURGERS EQUATION PHYSICAL REVIEW E66, 016604 ~2002!
Sec. III we introduce the numerical method designed to tr
the inherent instability. In Sec. IV we present our numeri
results for the scattering of two single solitons on a sta
soliton and the scattering of two soliton pairs. In Sec. V
discuss growth and anomalous diffusion associated with
modes investigated numerically. Section VI is devoted t
summary of our results and a conclusion.

II. SOLITON MODES

The exact right and left hand soliton solutions of the fie
equations do not satisfy periodic or vanishing boundary c
ditions in the slope fieldu; the nonvanishing boundary value
u1 andu2 in fact correspond to a deterministic current d
sipated or generated at the soliton centers yielding perma
profile solutions@31#. The kink solitons constitute the e
ementary building blocks or ‘‘quarks’’ in the present a
proach and the interface profile is then built up by match
solitons according to the matching condition~16!.

The simplest mode satisfying periodic boundary con
tions is the two-soliton or pair soliton configuration

u2~x,t !5u1~x2vt2x1!2u1~x2vt2x2!, ~17!

obtained by matching a right hand and a left hand soli
boosted to the velocityv52lu. The two-soliton mode has
amplitude 2u and sizeux22x1u. The associated noise fiel
vanishes for the right hand component and equals 2nu for
the left hand component; we thus have

FIG. 2. We depict the four-soliton representation of the slo
field u and noise fieldpa, and the associated height fieldh. The
arrows indicate the propagation of the solitons.
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~18!
p2~x,t !5H 22nu1~x2vt2x2! for u.0,

12nu1~x2vt2x1! for u,0. ~19!

By inspection it is seen that the pair mode~17! is an approxi-
mate solution to the field equations~5! and ~6!. The correc-
tion terms are of the typeu¹u and u¹p referring to the
distinct components ofu2 and p2 and thus correspond to
local perturbations from a region of sizen/luuu which is
small in the low viscosity limitn→0. We assume that the
correction can be treated within a linear stability analysis a
thus gives rise to a linear mode propagating between
right hand and left hand solitons@27#.

The pair mode thus forms a long-lived excitation or qu
siparticle in the many body description of a growing inte
face. Subject to periodic boundary conditions this mode c
responds to a simple growth situation. The propagation of
pair mode corresponds to the propagation of a step in
height fieldh. At each revolution of the pair mode the inte
face grows by a uniform layer of thickness 2uux22x1u. In
Fig. 3 we have depicted the pair mode inu, the associated
noise fieldp, and the height profileh.

Generally a growing interface can at a given time inst
be represented by a gas of matched left hand and right h
solitons as depicted in Fig. 2 in the four-soliton case. A g
of pair solitons thus constitutes a particular growth mo
where the height profile between moving steps has horizo
segments. However, since we do not posses explicit pro
gating multisoliton solutions of the field equations~5! and
~6! the problem of soliton collisions remains unresolv
from an analytical point of view. Therefore we now turn to
numerical analysis of the problem.

III. NUMERICAL METHOD

The coupled field equations~5! and ~6! are of the
diffusion-advection type with the exception that the evo

e

FIG. 3. We show the slope fieldu2, the associated noise fieldp2,
and the resulting height profileh2 at time t50 for a two-soliton
configuration. The arrows indicate the propagation of the solito
4-3
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HANS C. FOGEDBY AND AXEL BRANDENBURG PHYSICAL REVIEW E66, 016604 ~2002!
tion of p is governed by a negative diffusion coefficien
Standard numerical methods designed to step the equa
forward in time fail because small perturbations with wa
numberk grow in time as exp(nk2t), so perturbations with the
largest possiblek grow fastest, hence rendering the integ
tion unstable. In order to circumvent this problem we ha
designed a method to solve the equations iteratively star
with a trial solution foru and p in the space intervaluxu
<L and time interval 0<t<T. At each iteration step we
proceed in two sweeps. In the forward sweep we step o
the equation foru forward in time usingp(x,t) from the
previous iteration step. In the backward sweep we step
equation forp backward in time, usingu(x,t) from the for-
ward sweep. In this manner the unwanted perturbationsp
decrease exponentially as one moves backward in time.

A drawback of this method is that we can specify init
values only foru, and that we must instead specifyp at the
final time t5T. In the present context where we want
consider collisions of solitons this is not a serious proble
because here it is possible to guess the final solution.
numerical solution serves therefore mainly as a tool to ch
that a certain guess is actually a solution. Furthermore,
method allows us to calculate the precise functional form
u andp during the collision, even if the initial guess aroun
the time of the collision was actually wrong.

We have solved the equations on a mesh withNx51001
mesh points andNt56001 time steps. ForL51/2 we have a
mesh spacing ofDx50.001. For both sweeps we use six
order finite differences to calculate first and second der
tives and a third order Runge-Kutta scheme for the time
tegration ~see, e.g., the appendix of Ref.@32# for these
schemes!.

In order to adequately resolveu andp at all times we must
choose a suitable value ofn. We found empirically thatn
50.005 gave good results, which is the value adopted in
following. For smaller values ofn the u and p functions
become only marginally resolved whereas for larger val
of n the length of the time step is mostly controlled by t
value of n rather than just the propagation speeds of
solitons. Empirically we found that the maximum time st
that can be used isDt5531025 for n50.005. In all cases
we have chosenl51.
at
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IV. SOLITONS, PAIR SOLITONS, AND SOLITON
COLLISIONS

In choosing soliton configurations to be verified by t
numerical method we have found that it is essential to sat
the three conservation laws governing the dynamics of s
tons, namely, the conservation of energy~12!, the conserva-
tion of momentum~13!, and the conservation of area~14!.

A. Solitons and pair soliton

We have numerically verified that the right and left ha
solitons~15! for u.0 andu,0 are solutions. By construc
tion the two-soliton configuration~17! carries energyE25
(216/3)lnuuu3, momentumP2524nuuuu, and for smalln
the areaM2}2nux12x2u. We have shown that, for smalln, a
well-separated two-soliton mode, i.e., withux12x2u@n/lu,
is a long-lived excitation, hence justifying the heuristic arg
ment.

In order to lend support to the heuristic quasiparticle p
ture based on the elementary kink solitons~quarks! and the
composite pair soliton as the basic quasiparticle it is esse
to consider soliton collisions. We have here considered
two symmetric cases:~i! the collision of two propagating
solitons with a static soliton and~ii ! the collision of two pair
solitons. In both cases the configurations are symmetric
the conservation laws are satisfied at all times including
collision regime.

B. Three-soliton collisions

In the first case two propagating solitons moving in opp
site directions collide with a static soliton located at the ce
ter. The trial solution has the form

u~x,t !52sgn~ t !@u1~x1vt !1u1~x2vt !22u1~2x!#,

~20!

~21!
p~x,t !5H 22n@u1~x1vt !1u1~x2vt !# for t,0

24nu1~2x! for t.0, ~22!

and the height field
h~x,t !52sgn~ t !F2n

l G lnUcosh@~luuu/2n!~x2vt !#cosh@~luuu/2n!~x1vt !#

cosh@~luuu/2n!x#
U ~23!
no
the
at-
e-

ise-
with velocity v5lu.
In this mode two left hand solitons with amplitude 2u

propagate with equal and opposite velocities toward a st
right hand soliton with amplitude 4u located at the center
During the collision the left hand solitons are absorbed,
static right hand soliton flips over to a static left hand solito
and two right hand solitons emerge, propagating away fr
the center with equal and opposite velocity. The solitons t
ic

e
,
m
s

collide transparently with the static soliton, i.e., there is
reflection, and there is no phase shift associated with
collision. In terms of the associated height profile this sc
tering situation corresponds to filling in a dip with subs
quent nucleation of a growing tip.

Energy and momentum are associated with the no
induced left hand solitons moving on the noisy manifoldp
52nu. By inspection of Eq.~20! it follows that the total
4-4
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SOLITONS IN THE NOISY BURGERS EQUATION PHYSICAL REVIEW E66, 016604 ~2002!
energyE52(32/3)nlu3, the total momentumP50, and
the total areaM50 are conserved during the collision.

Choosing the amplitudeu52 we have depicted in Fig. 4
the numerical verification of the slope fieldu as a function of
x for different values oft. In Figs. 5 and 6 we show th
associated noise fieldp and the height profileh as a function
of x for the same values oft. In Fig. 7 we show a gray-scal
representation ofu in thext plane. We notice that there is n
phase shift associated with the scattering process.

C. Pair soliton collisions

In the second case we consider the collision of two p
solitons of equal size and amplitude. The trial solution pro
gating with velocityv5lu has the form

u~x,t !52@u1~x2vt1x1!2u1~x2vt1x2!#

1@u1~x1vt2x2!2u1~x1vt2x1!#, ~24!

p~x,t !522n@u1~x2vt1x1!1u1~x1vt2x1!# ~25!

for 0,vt,x2,

u~x,t !52@u1~x2vt1x1!2u1~x!#

1@u1~x!2u1~x1vt2x1!#, ~26!

FIG. 4. Three-soliton collision: The slope fieldu as a function of
x for different values oft.
01660
ir
-

p~x,t !522n@u1~x2vt1x1!1u1~x1vt2x1!# ~27!

for x2,vt,x1,

u~x,t !51@u1~x1vt2x1!2u1~x!#

2@u1~x!2u1~x2vt1x1!#, ~28!

p~x,t !522n@u1~x!1u1~x!# ~29!

for x1,vt,2x12x2, and

u~x,t !51@u1~x1vt2x1!2u1~x1vt22x11x2!#

2@u1~x2vt12x12x2!2u1~x2vt1x1!#,

~30!

p~x,t !522n@u1~x1vt12x12x2!1u1~x2vt12x12x2!#

~31!

for 2x12x2,vt.
In this mode two pair solitons of amplitude 2u propagate

with equal and opposite velocities toward one another. T

FIG. 5. Three-soliton collision: The noise fieldp as a function of
x for the same values oft as in Fig. 4.
4-5
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FIG. 6. Three-soliton collision: The height profileh5*u dx as a
function of x for the same values oft as in Fig. 4.

FIG. 7. Gray-scale representation ofu in the xt plane showing
the three-soliton collision. Note the absence of a phase shift du
the collision.
01660
two leading kink solitons merge to a static soliton and t
two trailing kinks are absorbed. Subsequently, the static r
hand soliton flips over to a static left hand soliton and t
two pair solitons reemerge. Analyzing the collision, it fo
lows that the scattering of pair solitons is transparent a
accompanied by a phase shift in space equal to the so
size ux22x1u or, equivalently, a time delayux22x1u/v. In
terms of the associated height profile the scattering situa
corresponds to filling in a trough due to two colliding ste
and the subsequent nucleation of a growing plateau.

By inspection it again follows that the total energyE5
2(32/3)nlu3, the total momentumP50, and the total area
M50 are conserved during collision.

Choosing the amplitude 2u and the kink positionsx1
50.25 andx250.15 we show in Fig. 8 the numerical verifi
cation of the slope fieldu as a function ofx for different
values oft. In Figs. 9 and 10 we show the associated no
field p and the height profileh as a function ofx for the same
values oft. In Fig. 11 we show a gray-scale representation
u in the xt plane. We notice the phase shift engendered d
ing the transparent collision.

V. GROWTH AND ANOMALOUS DIFFUSION

Since we have achieved numerical justification of thr
specific dynamical soliton configurations, namely,~i! the pair
g

FIG. 8. Pair soliton collision: The slope fieldu as a function of
x for different values oft.
4-6
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SOLITONS IN THE NOISY BURGERS EQUATION PHYSICAL REVIEW E66, 016604 ~2002!
soliton, ~ii ! the collision of two solitons with a static soliton
and~iii ! the collision of two pair solitons, we can proceed
draw some simple conclusions based on the general fra
work discussed in Sec. I. There are two levels of descript
the stochastic Langevin level and the deterministic Fokk
Planck or equation of motion level. On the Fokker-Plan
level yielding the canonical field equations~5! and ~6! the
growth of the interface is interpreted in terms of a gas
propagating solitons~and diffusive modes!. The stochastic
description on the Langevin level is then established in
weak noise limitD→0 by computing the actionSassociated
with a particular dynamical mode and subsequently ded
the probability distribution according to Eq.~9!, i.e., P
}exp(2S/D). This procedure is completely equivalent to t
WKB limit of quantum mechanics. Here the wave functio
F and thus the probabilistic interpretation is given byF
}exp(iS/\), whereS is the action associated with the clas
cal motion @28#. Note that unlike in quantum mechanic
there is no phase interference in the stochastic nonequ
rium case. The long-lived pair soliton~17! has size,5ux1
2x2u, amplitude 2u, and propagates with velocityv52lu.
During a revolution in a system of sizeL with periodic
boundary conditions the height field increases with a laye
thickness 2u,. Since the system is traversed in timet
5L/v the integrated growth velocity is given by 2lu2,/L
which for a single pair of fixed size vanishes in the therm

FIG. 9. Pair soliton collision: The noise fieldp as a function of
x for the same values oft as in Fig. 8.
01660
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FIG. 10. Pair soliton collision: The height profileh5*u dx as a
function of x for the same values oft as in Fig. 8.

FIG. 11. Gray-scale representation ofu in thext plane showing
the pair soliton collision. Note the occurrence of a phase shift d
ing the collision.
4-7
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HANS C. FOGEDBY AND AXEL BRANDENBURG PHYSICAL REVIEW E66, 016604 ~2002!
dynamic limit. On the other hand, the local growth veloc
dh/dt is given by 2lu25(l/2)(¹h)2 which is consistent
with the averaged KPZ equation~3! in the stationary state.

The stochastic properties of the pair soliton growth mo
is also easily elucidated by noting that the action associa
with the pair mode is given byS5(4/3)nluuu3t. Denoting
the center of mass of the pair mode byx5(x11x2)/2 we
haveu5v/l5x/tl and we obtain using Eq.~9! the transi-
tion probability

P~x,t !}expS 2
4

3

n

Dl2

x3

t2 D ~32!

for the ‘‘random walk’’ of independent pair solitons or ste
in the height profile. Comparing Eq.~32! with the distribu-
tion for ‘‘ordinary’’ random walk originating from the
Langevin equation dx/dt5h,^hh&(t)5Dd(t), P(x,t)
}exp(2x2/2Dt), we observe that the growth mode perform
anomalous diffusion. The distribution~32! also implies the
soliton mean square displacement, assuming pairs of
same average size,

^x2&~ t !}S Dl2

n D 1/z

t2/z, ~33!

with dynamic exponentz53/2, identical to the dynamic ex
ponent defining the KPZ universality class. This res
should be contrasted with the mean square displacem
^x2&}Dt2/z, z52, for the ordinary random walk. The growt
modes thus perform superdiffusion. We note that the dis
bution ~32! is also obtained using the mapping of the KP
equation to directed polymers in a random medium@5#.
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VI. SUMMARY AND CONCLUSION

In the present paper we have numerically investigated
coupled diffusion-advection type field equation originati
from the canonical phase space approach applied to the n
Burgers equation or the equivalent KPZ equation in one s
tial dimension. We have shown that the pair soliton mode
the slope field corresponding to moving steps in the hei
field forms a long-lived excitation. We have furthermore i
vestigated two special scattering scenarios, namely, the
lision of two identical moving solitons with a static solito
and the collision of two identical pair solitons. They corr
spond in the height field, respectively, to the nucleation o
growing tip and the formation of a growing plateau. Final
we have applied the canonical phase space approach in o
to estimate the stochastic aspects following from the p
soliton mode propagation.

As discussed above the inherently unstable structure
the field equation makes a direct integration forward in tim
inaccessible and we thus cannot establish solutions a
initial value problem and discuss the equations generica
Consequently, we are limited to numerically check trial s
lutions representing a variety of scattering situations. So
we have been able to verify only the symmetric cases
three-soliton and soliton pair collisions. As a result we a
also unable to address the issue of integrability or nonin
grability of the field equations. In order to extend the pres
numerical approach and thus provide substance to the
ristic quasiparticle representation of a growing interface, i
clearly of interest to design more involved trial solution
Alternatively, a completely different approach to genera
solutions is called for.
v.
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@12# M. Lässig, Phys. Rev. Lett.80, 2366~1998!.
,

@13# M. Lässig, Phys. Rev. Lett.84, 2618~2000!.
@14# F. Colaiori and M.A. Moore, Phys. Rev. Lett.86, 3946~2001!.
@15# F. Colaiori and M.A. Moore, Phys. Rev. E63, 057103~2001!.
@16# P.C. Martin, E.D. Siggia, and H.A. Rose, Phys. Rev. A8, 423

~1973!.
@17# R. Bausch, H.K. Janssen, and H. Wagner, Z. Phys. B24, 113

~1976!.
@18# H.C. Fogedby, Phys. Rev. E57, 4943~1998!.
@19# H.C. Fogedby, Phys. Rev. Lett.80, 1126~1998!.
@20# H.C. Fogedby, A.B. Eriksson, and L.V. Mikheev, Phys. Re

Lett. 75, 1883~1995!.
@21# M. I. Freidlin and A. D. Wentzel,Random Perturbations o

Dynamical Systems~Springer-Verlag, New York, 1984!.
@22# R. Graham and T. Te´l, J. Stat. Phys.35, 729 ~1984!.
@23# R. Graham,Noise in Nonlinear Dynamical Systems, Vol.

Theory of Continuous Fokker-Planck Systems, edited by F.
Moss and P. E. V. McClintock~Cambridge University Press
Cambridge, England, 1989!.

@24# H.C. Fogedby, Phys. Rev. E59, 5065~1999!.
@25# H.C. Fogedby, Phys. Rev. E60, 4950~1999!.
@26# H.C. Fogedby, Europhys. Lett.56, 492 ~2001!.
4-8



- s-

SOLITONS IN THE NOISY BURGERS EQUATION PHYSICAL REVIEW E66, 016604 ~2002!
@27# H.C. Fogedby, Eur. Phys. J. B20, 153 ~2001!.
@28# L. Landau and E. Lifshitz,Quantum Mechanics~Pergamon

Press, Oxford, 1959!.
@29# L. Landau and E. Lifshitz,Mechanics~Pergamon Press, Ox

ford, 1959!.
01660
@30# D.A. Huse, C.L. Henley, and D.S. Fisher, Phys. Rev. Lett.55,
2924 ~1985!.

@31# H.C. Fogedby, Phys. Rev. E57, 2331~1998!.
@32# F.J. Sa´nchez-Salcedo and A. Brandenburg, Mon. Not. R. A

tron. Soc.322, 67 ~2001!.
4-9


