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ABSTRACT 

There is mounting evidence that the ejection of magrletic helicity from the solar surface is important for the 
solar dynamo. Observations suggest that in the northern hemisphere the magnetic helicity flux is negative. 
We propose that this magnetic helicity flux is mostly due to small scale magnetic fields; in contrast to the 
more systematic large scale field of the 11 year cycle, whose helicity flux may be of opposite sign, and may 
be excluded from the observational interpretation. Using idealized sirnulations of MHD turbulence as well 
as a simple two-scale model? we show that shedding small scale (helical) field has two important effects. (i) 
The strength of the large scale field reaches the observed levels. (ii) The evolution of the large scale field 
proceeds on time scales shorter than the resistive time scale, as would otherwise be enforced by magnetic 
helicity conservation. In other words, the losses ensure that the solar dynamo is always in the near-kinematic 
regime. This requires, however, that the ratio of small scale to large scale losses cannot be too small, for 
otherwise the large scale field in the near-kinematic regime will not reach the observed values. 
0 2003 COSPAR. Published by Elsevier Ltd. All rights reserved. 

INTRODUCTION 

In recent years a new term has entered the solar physics vocabulary: magnetic helicity. This topic 
has received significant attention on two quite different fronts that now seem to converge in their mutual 
importance. The detection of helical features has received interest firstly as a purely diagnostic tool to 
characterize topological complexity. As magnetic helicity is a conserved quantity (neglecting boundary 
losses and resistivity), this has secondly been seen to impose constraints on mean-field dynamo theory; 
with the advent of powerful massively parallel computers, these constraints are now also being confirmed 
numerically as progressively larger magnetic Reynolds numbers are becoming possible. 

In the following we discuss briefly the observational aspects relevant to the dynamo problem and turn 
then to the connection with dynamo theory. We then present arguments linking the loss of small scale (SS) 
field to an enhancement of the large scale (LS) dynamo. 

THE OBSERVED LARGE SCALE FIELD 

The question of scales is very important: what is large scale to an observer could be small scale to a dynamo 
theorist, for example. Looking at the magnetic field in helmet strearners reveals structures comparable to 
the solar radius, which might be taken to belong to the large scale field. This may be misleading, however. 
For a dynamo theorist who wants to explain the 11 year solar cycle it matters that there are bipolar regions 
with systematic orientation and tilt, but longitudinal departures from the mean axisymmetric form are 
secondary to the underlying effect that sustains the field. Longitudinal averages are therefore a sensible tool 
to extract what a dynamo theorist might want to call large scale field. 
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Table 1. Phase and amplitude coefFicients describing the mean dipole symmetry radial field at the solar sur- 
face, from Stenflo (1988). The last row gives the contributions to the root-mean-square value of the field, 
&t/d-. The phase is defined relative to the epoch to = 1960yr. 

e 1 3 5 7 9 11 13 
+ePr 0.24 0.29 1.07 1.59 1.95 2.45 2.85 
Be [gauss] 1.49 1.66 3.15 2.28 2.64 1.56 0.92 
Be/,/m[gauss] 0.61 0.44 0.67 0.42 0.43 0.23 0.12 

That such a definition makes some sense can be seen by looking at longitudinally averaged magnetograms 
of the solar surface as a function of latitude and time. We reconstruct such a space-time diagram from the 
amplitude and phase coefficients, Se and $e respectively, given by Stenflo (1988). Following earlier work 
(Stenflo and Vogel 1986, Stenflo and Giidel 1988) he described the radial component of the longitudinally 
averaged field of dipole symmetry in the form 

B,(O, t) = C d,ePe(COSO) COS[U(t - to) + qbe], (1) 
e=1,3,... 

where Pe is the Legendre polynomial and w = 2rj22yeaxs is the cycle frequency; the values of & and $e are 
reproduced in Table 1. 

Since the mean field is (by definition) axisymmetric, its poloidal part can be written in the form BP01 = 
V x (&$). This allows us to relate the surface values of & to 24, 

(2) 

Note that no radial derivatives enter, so that we can obtain ZT, by surface integration. To express &, more 
simply, note that we can also write &,,l in terms of the poloidal potential 3, i.e. 

rB, = r. V x V x (3~) E -L2?$, (3) 

where L2 is the angular part of the Laplacian, in spectral space satisfying -L2 = e(e+l). Since &, = --as/% 
and c3Pt J&2 = Pi, we have 

Z&2$) = - c LBeP,l(COS8) cos[w(t - to) + $41. 
e=13. ‘ce + ‘) 7 7. 

(4) 

In Figure 1 we show both z,. and &, as reconstructed using equations (1) and (4). 
Stenflo’s coefficients suggest that the sun’s large scale magnetic field is dominated by the higher harmonics 

around e = 5. The coefficient of the basic dipole mode, B1, is only the sixth-largest among all coefficients. 
This misrepresents the energy present in the various modes, however. The integral of @ ! over the full 
surface and over one cycle divided by the surface area and the length of the cycle is equal to the sum of 
&/[2(2[ + l)]. In Table 1 its square root, i.e. the contribution to the rms field strength, is given. Although 
the contribution from ! = 5 is still the largest, the basic dipole contribution is now the second largest. In 
that sense one is justified in talking of the Sun’s field as dipolar. 

The magnetic helicity of the large scale field, as defined above, is an important quantity. Magnetic 
helicity, Jx + BdV, can be tricky to work with, since it involves the magnetic vector potential, x (with 
B = V x x), which is not directly observable. Attempts to reconstruct x horn B raise the question of the 
choice of a gauge; and the magnetic helicity is not in general gauge invariant. This problem can be avoided 
by considering instead the gauge invariant magnetic helicity of Berger and Field (1984), 

H= $~+&+(B-BP)~V, J (5) 
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Fig. 1. Mean dipole symmetry radial field, Br, reconstructed from the coefficients of Stenflo, 1988 (upper 
panel). The corresponding toroidal component of the mean vector potential, &, derived from B, (lower panel). 
Solid contours denote positive values, dotted contours negative values. The solar cycle maximum of 1981 is 
highlighted, as is the latitude of 10” where B, was then strongest. The signs of various quantities at or around 
this epoch are also shown (see text for more details). 

where Bp = V x Ap is a potential reference field inside V with the boundary condition r . & = T . B. 
As shown in Brandenburg, Dobler and Subramanian (2002), for an axisymmetric mean field expressed as 
B = B& + v x (&c$), with 24 = I?$ = 0 on the axis, this yields simply1 

H=2 VAdB4dv s- (6) 

There is no way to determine this quantity for the sun without knowing both &, and B$ throughout the -- 
entire sphere. Experience with axisymmetric mean field dynamos shows, however, that the product A@B, 
does not vary strongly in radius, so considering this quantity at the surface may still be useful. 

-- 
‘For comparison, we note that in the Coulomb gauge, s A B dV = 2 s A+B,J dV + $(A& x x) dS, which is different from 
the gauge invariant magnetic helicitp, H, of Berger and Field (1984). 
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-- 
The question of the sign of A$B# is related to the question of the phase relation between toroidal and 

poloidal field, which was investigated in the mid seventies (Stix 1976a,b, Yoshimura 1976). By estimating 
the phase shift between & and E$, it was argued that the radial angular velocity gradient, dR/dr, should 
be negative. This, together with the fact that the solar dynamo wave propagates equatorward, suggested 
that (Y is positive (negative) in the northern (southern) hemisphere. Our knowledge has changed since then: 
(i) we now know horn helioseismology that da/& is positive (suggesting that something may be wrong 
with the observed phase relation); (ii) the direction of propagation of the dynamo wave can be reversed by 
meridional circulation (Durney 1995, Choudhuri, Schiissler and Dikpati 1995). The question of the sign of -- 
A$B$ differs somewhat from that of the phase relation; the former should depend on the sign of a, not on 
the sign of aa/&. Let’us ignore for a moment the problems with the traditional phase relation then, and -- 
discuss what can be said about the sign of A+Bb at the surface. 

Yoshimura (1976) estimated the magnitude of the toroidal field by averaging the unsigned surface flux in 
an appropriate fashion. The idea is that the toroidal field emerges as s2-loops at the surface, and that a 
stronger toroidal field shows up as an increased level of unsigned flux, i.e. ID+ 1 0: 1 B, 1 (note that the modulus 
is underneath the average of BT). He then determined the sign of B@ simply by looking at the orientation 
of the bipolar regions on solar magnetograms. This tells us that during the maximum of Cycle 21 in 1981 
or 1982 the toroidal field was negative (positive) in the northern (southern) hemisphere.2 Comparing with 
&. of Figure 1 (upper panel) we see that B, was positive (solid contours at 10”; here we focus on latitudes -- 
near the equator where B, is strongest); hence B,.Bb was negative. This verifies the original finding of Stix 
(1976a) and Y OS h imura (1976). Comparing with &, of Figure 1 (lower panel), the situation is less clear; -- 
A#Bd may be negative just before solar maximum and positive just after solar maximum. This suggests 
that the gauge invariant magnetic helicity H (given by equation (6)) might be close to zero. This analysis 
clearly requires more complete data for E@, however. Given that a much longer data record is now available, 
it is surprising that the analysis of Yoshimura (1976) has never been repeated; better constraints on this 
quantity would be very useful. 

In the following we emphasize the importance of determining the sign of the magnetic helicity of the LS 
field and we suggest that, on theoretical grounds, its sign should be opposite to that of the SS field. We 
know that in active regions the magnetic helicity is negative (positive) in the northern (southern) hemisphere 
(Seehafer 1990, Pevtsov, Canfield and Metcalf 1995, Bao et al. 1999, DCmoulin et al. 2002). We use this to 
support our expectation that what is observed in active regions is actually the helicity of the SS field. 

RELATIONSHIP BETWEEN LARGE AND SMALL SCALE FIELDS 

Kinematic theory is able to explain the growth of helical fields at large scales (LS) and the growth of 
helical and non-helical fields at small scales (SS). The growth rate of the SS field is usually much larger 
than that of the LS field, and it was therefore thought that the rapid growth of this SS fields tends to 
suppress the growth of the LS field (Kulsrud and Anderson 1992), and that the solar magnetic field may 
therefore be of primordial origin (Vainshtein and Cattaneo 1992). This seemed however to be in conflict 
with several successful numerical simulations of large scale dynamo action that showed the SS field to be 
merely comparable in strength to the LS field (Glatzmaier and Roberts 1995, Brandenburg et al. 1995, 
Brandenburg 2001). 

Meanwhile it has become clear that it is not the SS field as such that causes problems, but only the helical 
part of the SS field that is generated simultaneously with the LS field. This phenomenon has been seen in 
simulations of MHD turbulence with helical forcing (Brandenburg 2001) and has been modeled successfully 
with semi-analytic, nonlinear twoscale theories (Field and Blackman 2002; Blackman and Brandenburg 
2002; Blackman and Field 2002). These approaches assume (perhaps correctly) that the dynamo works 
primarily via helicity-dependent effects, by which we mean both the a-effect (Steenbeck, Krause, Radler 
1966) or the inverse cascade/transfer (Pouquet, Frisch and L&at 1976). Some alternatives have been 
proposed: the Vishniac-Cho (2001) effect (but see Arlt and Brandenburg 2001) and negative turbulent 
magnetic diffusivity (Zheligovsky, Podvigina and Frisch 2001). 

The essence of the nonlinearity of helical dynamos is that the helicity effects produce large scale helical 

2See http://~.hao.ucar.edu/public/education/slides/slidel9.html 
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Fig. 2. Tilting of the rising tube due to the Coriolis force. Note that the tilting of the rising loop causes also 
internal twist. 

magnetic fields, but the total magnetic helicity is conserved, so there must be a simultaneous generation of 
magnetic fields of opposite helicity. Splitting the field into LS and SS components, B = B + b, and likewise 
for the magnetic vector potential, A = x + a, we have to satisfy 

-- 
(A * B) = (A. B) + (a. b) M 0. (7) 

If the LS field were fully helical, and of typical wavenumber k,, we would have lc,(x. B) = I-t(B’), 
depending on the sign of the magnetic helicity of the LS field. For fractional helicity of the forcing one has 
instead 

&,(A. B) = tm@), (8) 
where It,,1 5 1, and t, = 0 for non-helical fields. A similar relation applies to the fluctuating field (of 
wavenumber kf) and its helicity, i.e. ,+(a . b) = q(b2). With these preliminaries we can say that in a 
magnetic helicity conserving situation 

If /cf 1 M It,l, and since Ic, < /q for finite scale separation, we have in this phase (B2) < (b2). We note, 
however, that in c& dynamos where a strong toroidal LS field can be generated from a poloidal LS field, -- 
regardless of helicity ~ so that lc,(B2) > I(J . B)I - one may have ltml < jqj. It is then possible that 
(B2) can be comparable to or in excess of (b2), or at least it helical component (Blackman and Brandenburg 
2002). 

To summarize, magnetic helicity conservation links the magnitude of the helical components of the LS 
and SS fields in a well defined way, depending mainly on the degrees to which LS and SS fields are helical, 
i.e. on the values of tm and tf, For simple dynamos in slab geometry these values can be determined from 
kinematic theory (Blackman and Brandenburg 2002). 

SIMULTANEOUS PRODUCTION OF LARGE AND SMALL SCALE TWIST 

Given that magnetic helicity is conserved in the absence of boundary losses and resistivity, any swirl-like 
motion must simultaneously introduce oppositely helical magnetic fields when starting with an initially non- 
helical magnetic field (Longcope and Klapper 1997). The prime example is of course the formation of an 
Q-shaped flux loop due to magnetic or thermal buoyancy, and the simultaneous tilting due to the Coriolis 
force. This is sketched in Fig. 2. 

We consider now the result of a simulation of a buoyant magnetic flux tube. Similar calculations have 
been carried out many times in the past (e.g. Abbett, Fisher and Fan 2000), but here we arc interested 
in the magnetic helicity spectrum, which seems to have attracted little attention so far. We start with a 
horizontal flux tube in the azimuthal (y-) d irection with vanishing net flux (so there is a weak oppositely 
oriented field outside the tube) and a y-dependent sinusoidal modulation of the entropy along the tube. This 
destabilizes the tube such that it rises in one portion of the box. Although the box is not periodic in the 
vertical direction, the boundary conditions are still sufficiently far away that we can obtain power spectra 
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of the magnetic helicity via Fourier transforms; see Fig. 3. Note that after some time (t = 6 free-fall times) 
the spectrum begins to show mostly positive magnetic helicity (as expected), together with a gradually 
increasing higher wavenumber component of negative spectral helicity density. The latter is the anticipated 
contribution from small scales resulting from the twist of the tube. 

Instead of visualizing the magnetic field strength, which can be strongly affected by local stretching, we 
visualize the rising flux tube using a passive scalar field that was initially concentrated along the flux tube. 
This is shown in Fig. 4. 

WHY SMALL SCALE LOSSES ARE GOOD 

A relatively useful concept is based on the evolution equations for SS and LS fields under the assumption 
that the fields are maximally helical (or have known helicity fractions cm and ef) and have opposite signs 
of magnetic helicity at small and large scales. The details can be found in Brandenburg, Dobler and 
Subramanian (2002, Sect. 4.2) and Blackman and Brandenburg (2003). The strength of this approach is 
that it is quite independent of mean-field theory. 

Losses of large-scale field have been modeled using diffusion terms. The phenomenological evolution 
equation are written in terms of the LS and SS magnetic energies, M, and Mf respectively, where we assume 
M m  = QsCm/lF, and Mf = FpsCf/lcf for fully helical fields (upper/lower signs apply to northern/southern -- 
hemispheres). Here, C, = (J.B) and Cf = (jvb) are the LS and SS current helicities. The phenomenological 
evolution equation for the LS energy then takes the form 

k,‘!$ = -%nkmMm + %dG% (10) 

where Q, and qf are effective magnetic diffusivities that are expected to lie somewhere between between the 
molecular magnetic diffusivity, 7, and the turbulent magnetic diffusivity, qt. The positive sign for the term 
involving Mf reflects the generation of the LS field horn the SS. The case vrn = vf = q was already discussed 
by Brandenburg (2001) who assumed that the small scale magnetic field saturates at a certain time tsat, so 
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Fig. 3. fvlagnetic helicity spectra (scaled by wavenumber k to give magnetic helicity per logarithmic interval) 
taken over the entire computational domain. The spectrum is dominated by a positive component at large scales 
(k=l-5) d an a negative component at small scales (k > 5). 
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Fig. 4. Three-dimensional visualization of a rising flux tube in the presence of rotation. The stratification is 
adiabatic such that temperature, pressure, and density all vanish at a height that is about 30% above the vertical 
extent shown. (The actual computational domain was actually larger in the CL and z directions.) 

that Mf M const for t > t,,,. After that time, Eq. (10) can be solved to give 

(11) 

This equation shows three things: 

l The time scale on which the large scale magnetic energy evolves depends only on qm, not on vf. 

l The saturation amplitude diminishes as r], is increased, which compensates the accelerated growth 
just past lsat (Brandenburg and Dobler 2001). 

l The reduction of the saturation amplitude due to qrn can be offset by having qrn zz qf, i.e. by having 
losses of small and large scale fields that are about equally important. 

The overall conclusions that emerge are: (i) vnl > n is required if the large scale field is to evolve on 
a time scale other than the resistive one; (ii) rlrrl w nf is required if the saturation amplitude is not to be 
catastrophically diminished. Thcsc requirements are perfectly reasonable, but so far they have not been 
borne out by simulations. Brandenburg and Dobler (2001) f ound that most of the losses of magnetic hclicity 
occur on large scale. This is at first glance very surprising, but on the other hand the magnetic helicity is 
a quantity that is strongly dominated by the large scales. However, certain phenomena such as CMEs and 
other perhaps less violent surface events arc not presently included in the simulations. As vindication of 
the concept, however, it has been possible to show that the artificial removal of small scale magnetic fields 
(via Fourier filtering after a certain number of time steps) can indeed lead to significant increase of the 
saturation amplitude (Brandenburg, Dobler and Subramanian 2002). This is shown in Figure 5, where we 
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Fig. 5. The effect of removing small scale magnetic energy in regular time intervals At on the evolution of the 
large scale field (solid lines). The dashed line gives the evolution of (B’) for Run 3 of Brandenburg (2001), where 
no such energy removal was included. In all cases the field is shown in units of B& = popo(u2). The two solid 

lines show the evolution of (B2) after restarting the simulation from Run 3 of BOl at At = 20 and At = 80. Time 
is scaled with the kinematic growth rate X. The curves labeled (a) give the result for At = 0.12X-l and those 
labeled (b) for At = 0.4X-l. The inset shows, for a short time interval, the sudden drop and subsequent recovery 
of the total (small and large scale) magnetic energy in regular time intervals. [Adapted from Brandenburg, Dobler 
and Subramanian (2002).] 

show the evolution of the LS magnetic energy in a run where, in certain time intervals, magnetic energy is 
removed above the wavenumber /C = 4. Comparison with the original curve of Run 3 of Brandenburg (2001) 
shows that the removal of SS magnetic field allows the LS field to grow beyond the original limit, which is 
in agreement with the prediction from the phenomenology given by equation (11). Furthermore, and again 
in agreement with equation (ll), the time scale for saturation is still the resistive time scale. 

DISCUSSION 

After having discussed the relation between LS and SS helical fields, and their significance to losses of 
helical fields through the solar surface, we can now restate the reasons why we expect there to be as yet 
undetected losses of large scale magnetic helicity of positive sign in the northern hemisphere and negative 
sign in the southern hemisphere. Because of magnetic helicity conservation, the observed magnetic helicity 
of one sign must be accompanied by magnetic helicity of the opposite sign (e.g. Blackman and Field 2000). 
Simulations have shown that contributions of opposite sign occur at different length scales, rather than 
at different positions in space. This leaves two possibilities: there could be a change of sign of magnetic 
helicity at a scale less than the resolution cutoff of about 80 km, or there could be magnetic helicity at a 
scale comparable to the size of the entire sun. There are two argument in favor of the latter possibility. (i) 
According to standard expectations, the o-effect should be positive (negative) in the northern (southern) 
hemisphere. Since the a-effect produces the field on the scale of the Sun, the helicity of the latter should also 
be positive (negative) in the northern (southern) hemisphere. (ii) If CY had the opposite sign (as found for 
example in simulations of accretion disc dynamos; see Brandenburg et al. 1995), the observed losses would 
be associated with large scale field. Predominant large scale losses would however diminish the magnitude 
of the observed large scale field, to a level probably far below equipartition. 

CONCLUDING REMARKS 

The magnetic helicity equation has proved to be a valuable tool in understanding mean-field dynamos 
based on helicity effects. This tool is most successful in connection with homogeneous dynamos, where the 
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kinetic helicity distribution is uniform. Of great interest is of course the nonuniform case that has been 
discussed in a number of recent papers by Kleeorin et al. (2000, 2002). The problems that arise if one relaxes 
the restrictions to nonuniformity can be traced back to the absence of gauge invariant formulations of the 
helicity equation in that sense (Brandenburg 2003). Because of these difficulties we have here adopted a 
more phenomenological approach where the helicity gradient terms are simply modeled as diffusion terms. 

Simulations with open boundaries and stratification are needed to check whether more realistic dynamos 
always exhibit bi-helical behavior, as suggested in the present work. This is also related to the question of 
the observational appearance of bi-helical features. In Blackman and Brandenburg (2003) we have suggested 
that the N and S-shaped sigmoidal structures could be a direct manifestation of bi-helical structure. Viewed 
from the top, the flux @be in Fig. 2 would look like a N, in agreement with what is expected from Joy’s law 
for the norther hemisphere, and like a S for the southern hemisphere. It would be an important validation 
of a simulation of large scale dynamo action if such sigmoidal structures could be obtained self-consistently. 
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