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Bottleneck effect in three-dimensional turbulence simulations
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At numerical resolutions around 5123 and above, three-dimensional energy spectra from turbulence simu-
lations begin to show noticeably shallower spectra thank25/3 near the dissipation wave number~‘‘bottleneck
effect’’!. This effect is shown to be significantly weaker in one-dimensional spectra such as those obtained in
wind tunnel turbulence. The difference can be understood in terms of the transformation between the one-
dimensional and three-dimensional energy spectra under the assumption that the turbulent velocity field is
isotropic. Transversal and longitudinal energy spectra are similar and can both accurately be computed from
the full three-dimensional spectra. Second-order structure functions are less susceptible to the bottleneck effect
and may be better suited for inferring the scaling exponent from numerical simulation data.

DOI: 10.1103/PhysRevE.68.026304 PACS number~s!: 47.27.Gs, 47.27.Ak, 47.11.1j, 47.27.Eq
m

y-

-
ve
l
th

-
n

t i
be

y

at
c

ch
used
be-
rgy
ex-

are
nal
of
d

e
in
-
um-

is
-
lds

r is
ible
po-

e-
um-
0.2
ility
up-
mu-

g a
t
ctral
I. INTRODUCTION

Based on dimensional analysis, Kolmogorov@1# con-
cluded that the energy spectrum for isotropic hydrodyna
turbulence has the form

E~k!5CKe2/3k25/3 ~1!

for wave numbersk in the inertial range between the energ
carrying and the dissipation wave numberkd5e1/4n23/4

~wheren denotes the kinematic viscosity,e the spectral en-
ergy flux, andCK is nowadays called the ‘‘Kolmogorov con
stant’’!. This scaling has been confirmed experimentally o
several orders of magnitude@2,3#. Nevertheless, numerica
simulations consistently show excess power just before
dissipation wave numberkd , which manifests itself particu
larly at high resolution@4#. This phenomenon has bee
named ‘‘bottleneck effect’’@5,6# and is usually explained by
the lack of smaller-scale vortices at wave numbersk.kd ,
which makes the energy cascade less efficient aroundkd .
According to a related interpretation, the bottleneck effec
the consequence of viscosity stabilizing small vortex tu
against the kink instability@7#.

The effect is particularly strong when an unphysical h
perviscosity is used; see Refs.@8,9# for results from two-
dimensional hydromagnetic turbulence. In experimental d
on the other hand, the bottleneck effect is less pronoun

*Electronic address: Wolfgang.Dobler@kis.uni-freiburg.de
†Electronic address: Nils.Haugen@phys.ntnu.no
‡Electronic address: Tarek.Yousef@mtf.ntnu.no
§Electronic address: Brandenb@nordita.dk
1063-651X/2003/68~2!/026304~8!/$20.00 68 0263
ic

r

e

s
s

-

a,
ed

@10,11#, and it has previously been noticed that it is mu
weaker when the one-dimensional energy spectra are
@9#. In the present paper we discuss a simple relation
tween the one-dimensional and three-dimensional ene
spectra, which agrees well with the simulation data and
plains this difference.

The data we use for discussing the bottleneck effect
from a weakly compressible isothermal three-dimensio
forced turbulence simulation at a numerical resolution
10243 grid points. The forcing has vanishing net helicity an
the forcing wave numberkf is between 1 and 2. The box siz
is Lx5Ly5Lz52p, which discretizes the wave numbers
units of k151. The viscosityn is chosen such that the Rey
nolds number based on the inverse mean forcing wave n

ber, urms/(n k̄f), is around 1700. The Taylor microscale
A5urms/v rms'0.14, wherev rms is the root mean square vor
ticity, so the corresponding Taylor microscale Reyno
number is 350. The average dissipation ratee is such that
kd /kf is around 130. The root mean square Mach numbe
between 0.17 and 0.20; for this type of weakly compress
simulations, we find that the energies of solenoidal and
tential components of the flow have a ratioEpot/Esol
'1024– 1022 for most scales; only towards the Nyquist fr
quency the ratio increases to about 0.1. Even for Mach n
bers between 0.5 and 10, this ratio is only about 0.1–
@12,13#. It is thus reasonable to assume that compressib
is irrelevant for the results presented here. This is also s
ported by the fact that incompressible pseudospectral si
lations at a resolution of 10243 show a bottleneck effect@4#.

The simulations discussed here were carried out usin
high-order finite-difference code@14# and thus complemen
the results that have so far been obtained using spe
©2003 The American Physical Society04-1
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codes. Figure 1 shows the three-dimensional spectrumE(k)
together with the longitudinal and transversal on
dimensional spectraEL(k) and ET(k) in the upper panel.
The ‘‘compensated spectra’’ in the lower panel allow ea
identification of the bottleneck effect and show that it is pra
tically present only in the three-dimensional spectrumE(k).

In order to reduce the otherwise huge fluctuations,
one-dimensional spectra have been averaged horizontal

EL~k!5
1

NxNy
(

p,q51

Nx ,Ny

uũz~xp ,yq ,k!u2, ~2!

ET~k!5
1

NxNy
(

p,q51

Nx ,Ny
1
2 uũ'~xp ,yq ,k!u2, ~3!

whereuũ'u25uũxu21uũyu2. Here

ũ~x,y,k!5S Lz

2p D 1/2 1

Nz
(
n51

Nz

eikznu~x,y,zn! ~4!

is the one-dimensional Fourier transform of the velocity v
tor u(x), andk scans the interval@0,kNy#5@0,p/dz# at the
resolution dk52p/Lz . The three-dimensional spectru
E(k) has been obtained by integrating the three-dimensio
spectral energy density over shellski2dk/2<k,ki1dk/2 in
analogy to Eq.~A6!, with dk52p/Lx ~and Lx5Ly5Lz).
The spectra are normalized such that

E
0

`

E~k!dk5
1

2
^u2&53E

0

`

EL~k!dk53E
0

`

ET~k!dk.

~5!

II. RELATIONS BETWEEN THE ONE- AND
THREE-DIMENSIONAL SPECTRA

While most experimental measurements yield longitu
nal one-dimensional spectraEL(k), the discussion of the re
lation between the one-dimensional~1D! and three-
dimensional spectra is significantly simpler for the total on
dimensional spectrumE1D(k). We thus split this section in
two parts: we first outline the relations for the total on
dimensional spectrumE1D(k), while in the second part we
obtain analogous results for the longitudinal spectra, wh
are of direct relevance for experiments.

A. The total one-dimensional spectrum

The total one-dimensional spectrumE1D(k) is the sum of
the longitudinal and twice~for the two directions! the trans-
versal one-dimensional spectra,

E1D~k!5EL~k!12ET~k!. ~6!

It is thus in some sense ‘‘more isotropic’’ than its constit
ents which results in simpler relations to the fully isotrop
three-dimensional spectrum. In Sec. 1 of the Appendix
show thatE1D(k) is related toE(k) by
02630
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E1D~k!5E
k

` E~k8!

k8
dk8, ~7!

which can also be inverted to give

E~k!52k
dE1D

dk
, ~8!

provided the turbulence is isotropic. AsE(k) must be posi-
tive, Eq. ~7! shows directly that the one-dimensional spe
trum E1D(k) must be monotonously decreasing. On the ot
hand, no such restriction holds forE(k), which is in fact
increasing neark50, sinceE(0)50.

Equation ~8! is a local relationship, and thus the func
tional form ofE(k) is fully determined by the local behavio
of E1D(k) at a given wave number. To relate it to the bottl
neck effect, we introduce the compensated spectra

Ẽ1D~k![k5/3E1D~k!, Ẽ~k![k5/3E~k!, ~9!

and rewrite Eq.~8! in the form

FIG. 1. Comparison of the averaged one-dimensional longitu
nal and transversal spectra,EL(k) andET(k), respectively, with the
three-dimensional spectrumE(k) for a forced turbulence simulation
at 10243 grid points. Top: the spectra. Bottom: ‘‘compensated sp
tra’’ e22/3k5/3E(k), e22/3k5/3EL/T(k); the horizontal line represent
a k25/3 Kolmogorov spectrum. The local maximum ofE(k) around
k'30 represents the bottleneck effect. The dissipation wave n
ber iskd5e1/4n23/4'200.
4-2
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Ẽ~k!5F5

3
2

d ln Ẽ1D~k!

d ln k
G Ẽ1D~k!. ~10!

Several conclusions can be drawn from Eq.~10!. First, if
there is a finite interval where the Kolmogorov scaling~1!
holds for the one-dimensional spectrum, then the same s
ing will hold for the three-dimensional spectrum, and vi
versa. Further, Eq.~10! shows explicitly that even ifẼ1D(k)
is monotonous and nonincreasing,Ẽ(k) may show a maxi-
mum nearkd , provided thatẼ1D(k) bends towards the dis
sipative range sufficiently suddenly. For example, if the o
dimensional spectrum has the form

E1D~k!5k25/3exp@2~k/kd!n#, ~11!

then for small wave numbersk the compensated three
dimensional spectrum behaves like

Ẽ~k!'
5

3
1S n2

5

3D S k

kd
D n

~ for k!kd!, ~12!

which shows that there will be a bottleneck effect in t
three-dimensional spectrum when the one-dimensional s
trum falls off with an exponentn.5/3. Finally, if E1D(k)
shows a bottleneck effect, i.e.,Ẽ1D(k) shows a local maxi-
mum at some wave numberkm , then Eq.~10! shows that
Ẽ(k) will also have an enhanced value there,Ẽ(km)
5(5/3)Ẽ1D(km), and thus the three-dimensional spectru
E(k) must show a bottleneck effect, too.

B. The longitudinal and transversal one-dimensional spectra

For isotropic turbulence, the one-dimensional longitudi
and transversal spectra are related to the three-dimens
spectrum by~see Sec. 2 of the Appendix!

EL~k!5
1

2Ek

`S 12
k2

k82D E~k8!

k8
dk8, ~13!

ET~k!5
1

4Ek

`S 11
k2

k82D E~k8!

k8
dk8, ~14!

and

E~k!5k2EL9~k!2kEL8~k! ~15!

~the primes denoting derivatives!. Differentiating Eq.~13!,
we obtain

EL8~k!52kE
k

` E~k8!

k83
dk8,0, ~16!

which shows thatEL(k) @just like E1D(k)] must be monoto-
nously decreasing.

Equation~15! is again a local relationship, and thus th
functional form ofE(k) is fully determined by the local be
havior of EL(k) at a given wave number. As in Eq.~9!, we
introduce the compensated spectra
02630
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Ẽ~k![k5/3E~k!, ẼL~k![k5/3EL~k!, ~17!

and rewrite Eq.~15! in the form

Ẽ5
55

9
ẼL2

13

3
kẼL81k2ẼL9 . ~18!

The conclusions that can be drawn from Eq.~18! are similar
to those forE1D(k). If there is a finite interval where the
Kolmogorov scalingEL(k)5CK

L e2/3k25/3 holds for the lon-

gitudinal spectrum~which implies ẼL85ẼL950), then the
same scaling will hold for the three-dimensional spectru
and vice versa. The Kolmogorov constantCK of the three-
dimensional spectrum is then a factor 55/9'6.1 larger than
the corresponding constantCK

L for EL(k); cf. Eq.~16.378! of
Ref. @15#.

Equation~18! shows that even ifẼL(k) is monotonously
nonincreasing,Ẽ(k) may show a maximum nearkd , pro-
vided that the term involvingẼL8 dominates over the curva

ture termk2ẼL9 . Finally, if EL(k) shows a bottleneck effect

then beyond the local maximum,ẼL8(k),0. If the maximum

is wide enough, Eq.~18! implies thatẼ will show a bottle-
neck effect, too. The situation is less clear ifkm

2 ẼL9(km) is

large @corresponding to a narrow maximum ofẼL(k)], but
numerical experiments with model spectra suggest that
three-dimensional spectrumẼL(k) will still be nonmonoto-
nous, although it may vary in a more complicated manne

III. SAMPLE SPECTRA

A. Model spectra

For illustration purposes, we consider a longitudinal sp
trum of the form

EL~k!5S k

kd
D 25/3

exp@2~k/kd!n#. ~19!

The compensated spectrum ẼL(k)[(k/kd)5/3EL(k)
5exp@2(k/kd)

n# is monotonously decreasing and thusEL(k)
shows no bottleneck effect at all. Atk5kd the compensated
three-dimensional spectrum has the value

Ẽ~kd!5e21S 55

9
1

16

3
nD , ~20!

which shows thatẼ(kd).55/9 ~a sufficient condition for the
bottleneck effect in the three-dimensional spectrum! if n
.(55/48)(e21)'1.97; this is illustrated in Fig. 2. A more
thorough analysis reveals thatẼ(k) will have a maximum if
and only if n.5/3, but for n&2 the maximum is hardly
discernible.

As we have seen, in order to get a bottleneck effect,
need a one-dimensional spectrum with a more complica
form than justk25/3exp(2k/kd). One functional form where
this is given has been proposed by She and Jackson@10#,
based on experimental data:
4-3
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EL~k!

EL~kp!
5F S k

kp
D 25/3

10.8S k

kp
D 21Ge20.63k/kp. ~21!

Figure 3~a! shows this spectrum@for EL(kp)5kp51], to-
gether with the corresponding three-dimensional spect
~15!. The compensated spectra clearly show a bottleneck
fect in the three-dimensional spectrum, which is~practically!
absent in the one-dimensional spectrum.

Quian @16# has proposed a spectrum that shows quit
marked bottleneck effect. Based on a closure model, he
gests the functional form

E~k!5e2/3k25/3F1.1916.31S k

kd
D 2/3Gexp@25.4~k/kd!4/3#.

~22!

Figure 3~b! shows the longitudinal and three-dimension
spectra. For this model, the bottleneck effect is very pro
nent inE(k), and also evident~although weaker! in the lon-
gitudinal one-dimensional spectrumEL(k).

B. Spectra from direct numerical simulations

1. Three-dimensional spectrum from EL„k…

To avoid~double! numerical differentiation of our spectra
we use a parametrization forEL(k). The one-dimensiona
spectrum shown in Fig. 1 is well approximated by the f
mula

EL
(p)~k!5~ k̂25/31a0k̂a1!e2a2k̂

a31a4k̂1a5k̂2

11a6k̂1a7k̂2
, ~23!

with

ai5~2.131028,4.3,0.42,0.85,1.2,0.000 48,20.0068,0.34!,

where k̂[k/kp . The peak dissipation wave numberkp'18
is the location of the maximum of the dissipation spectr
k2EL , and is about one order of magnitude smaller thankd
@10#. Figure 4 shows the parametrized one-dimensional sp

FIG. 2. Compensated three-dimensional spectrumẼ(k)
5(k/kd)5/3E(k) corresponding to the longitudinal spectrum~19! for
exponentsn51,2,4. The bottleneck effect appears forn*2.
02630
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trum EL(k) according to Eq.~23!, together with the derived
three-dimensional spectrumE(k) from Eq.~15!. Also shown
are data points from the numerical simulation~diamonds and
crosses!. Comparing the calculated three-dimensional pro
~solid line! with the data points~crosses!, we find that Eq.
~15! agrees quite well with the numerical data for not t
small k. The discrepancy for very small wave numbers c
be explained by the fact that the periodicity of the numeri
box precludes isotropy at the largest scales.

It is quite evident from Fig. 4 thatẼ(k) shows a much
more pronounced local maximum near the dissipation w
numberkd than doesẼL(k). The width and structure of the
maximum is well reproduced by Eq.~15! applied to our pa-
rametrization~23! of EL(k).

FIG. 3. Comparison of compensated spectraẼL(k) andẼ(k) for
the models of She and Jackson, and of Quian.~a! Longitudinal
spectrum~21!, together with the derived three-dimensional spec
longitudinal and total 1D spectra; the spectra are normalized
cording tokp5EL(kp)51. Note the appearance of a mild bottle

neck effect, i.e., a maximum inẼ(k). ~b! Three-dimensional spec
trum ~22!, together with the derived one-dimensional spectra;
spectra are normalized according tokd5e51. The bottleneck ef-
fect is quite pronounced and appears in both, one- and th
dimensional spectra. Note that in both plots, the amplitudes of
one-dimensional spectra have been scaled to get matching pla
in the inertial range. The dotted horizontal lines are drawn for o
entation.
4-4



la

ne

ca
ct
ta
o

re

art

es-
e

the

er

-
uc-
ture
ight
ents
ate

er
ller,
u-

ed
is
e
nc-

s

n-
hed.

se,
e-
low
ble

-

t

g

tru

ow
m
on

Eq
he

BOTTLENECK EFFECT IN THREE-DIMENSIONAL . . . PHYSICAL REVIEW E 68, 026304 ~2003!
2. One-dimensional spectra from E„k…

In contrast to experiments, data from numerical simu
tions easily provide the three-dimensional spectrumE(k).
Sometimes it may be interesting to determine the o
dimensional spectraEL(k) and ET(k) from the three-
dimensional spectrum. The corresponding relations~13! and
~14! were given above. Here we apply them to our numeri
data to see how well the inferred one-dimensional spe
agree with those directly obtained from the simulation da
Figure 5 shows the longitudinal and transversal spectra
tained by applying Eqs.~13! and ~14! to the three-
dimensional spectrum using the trapezoidal rule. The ag

FIG. 4. Compensated longitudinal energy spectrumk̂5/3ÊL( k̂)
according to parametrization~23! and the corresponding three

dimensional spectrumk̂5/3Ê( k̂) from Eq. ~15!. For comparison,
crosses and diamonds show the spectra obtained directly from

simulation. The spectra have been normalized by introducink̂

[k/kp , ÊL[EL /EL(kp), andÊ[E/EL(kp), wherekp is the peak
dissipation wave number. The three-dimensional energy spec
agrees quite well with the numerical data fork>4dk, wheredk
52p/Lx'0.06kp is the wave number resolution.

FIG. 5. Compensated one-dimensional energy spectra. Sh
are the longitudinal spectrumEL(k) and the transversal spectru
ET(k). Data points obtained directly from the numerical simulati
are indicated as boxes (EL) and crosses (ET). The dashed and
dotted lines show the one-dimensional spectra obtained from
~13! and ~14!, respectively. The spectra agree quite well with t
numerical data fork>2dk.
02630
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ment is quite good for both one-dimensional spectra ap
from the very lowest wave number.

IV. STRUCTURE FUNCTIONS

Another classical tool in turbulence research is the inv
tigation of structure functions@6#. The second-order structur
function

S2~r !5^@u~x!2u~x1r!#2& ~24!

is related to the three- and one-dimensional spectra via
Fourier-type integral transforms~cf. Ref. @15#!

S2~r !54E
0

`S 12
sinkr

kr DE~k!dk ~25!

54E
0

`

~323 coskr1kr sinkr !EL~k!dk. ~26!

Similarly, the longitudinal and transversal second-ord
structure functions

S2
(L)~r !5^@uz~x!2uz~x1r ẑ!#2&, ~27!

S2
(T)~r !5^@uz~x!2uz~x1r x̂!#2& ~28!

can be expressed as

S2
(L/T)~r !54E

0

`

~12coskr !EL/T~k!dk. ~29!

Localized variations ofE(k) or EL(k) in wave number
space, such as the bottleneck effect, will influenceS2(r ) and
S2

(L/T)(r ) in a nonlocal fashion. Correspondingly, little in
sight into the bottleneck effect can be expected from str
ture functions. On the other hand, this means that struc
functions are less sensitive to the bottleneck effect and m
thus form a more robust tool for assessing scaling expon
and possibly even the Kolmogorov constant at moder
Reynolds number.

However, while structure functions are much smooth
than spectra, their scaling range is considerably sma
which adds its own difficulties to that method. In three n
merical simulations at 2563, 5123, and 10243 grid points, we
find the value of the structure function exponent deriv
from S2(r ) to be 0.74, 0.67, and 0.68, respectively, which
quite close to Kolmogorov’s value of 2/3. However, if w
use the two transversal and the longitudinal structure fu
tions~corresponding to thez displacement of theux , uy , and
uz components of the velocity vector!, the values are far les
accurate and span the intervals@0.67,0.79#, @0.62,0.72#,
@0.60,0.72#, respectively, for the three resolutions, which i
dicates that the convergence may not have yet been reac

The situation for the Kolmogorov constant is even wor
because fromS2(r ) we get the values 3.96, 1.93, 1.8, r
spectively, for the three resolutions. So in practice, the s
convergence may well render this method more unrelia
than the use of one-dimensional spectra.

he

m

n

s.
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Similar to the spectra, the second-order structure fu
tions can be transformed into each other~assuming isotropy!
according to the relations

S2~r !5r
dS2

(L)~r !

dr
13S2

(L)~r !, ~30!

S2
(L)~r !5

1

r 3E0

r

S2~r 8!r 82dr8, ~31!

S2
(T)~r !5

S2~r !2S2
(L)~r !

2
. ~32!

Like in the case of relations~13!–~15!, this has implications
for the monotonicity of the compensated structure functio
S̃(r )[Sr22/3(r ) near the boundaries of the scaling interv
see also Ref.@6#. Normally, however, none of the structur
functions S2(r ), S2

(L)(r ), S2
(T)(r ) show a secondary bum

near the edges of the scaling interval, as can be seen in
6, which implies that we cannot directly apply the results
Secs. II and III to structure functions.

V. CONCLUSIONS

In this paper, we have highlighted the discrepancy
tween the one-dimensional and three-dimensional spe
Well-known relations between the spectra show that
three-dimensional spectrum may show the bottleneck ef
even if the one-dimensional spectra do not show it at
while the converse cannot happen. The spectra always a
in the inertial range,E(k)}EL(k)}k25/3, but in current nu-
merical simulations the length of the inertial range is limit
to about one decade, so the discrepancy is quite notice
Indeed, the topic of a bottleneck effect in hydrodynamic t
bulence has only emerged in the past ten years since num
cal simulations have shown this to be a strong effect. On
other hand, the relation linking one-dimensional to thre

FIG. 6. Compensated second-order structure functions from
direct numerical simulation data. The amplitudes have been sc
to get matching plateaus representing the Kolmogorov cons
CK .
02630
c-

s
;

ig.
f

-
ra.
e
ct
l,
ree

le.
-
ri-
e
-

dimensional spectra has been known for 50 years, but it
to our knowledge never been explicitly discussed in conn
tion with the bottleneck effect. In the present paper, we h
shown that much of the bottleneck effect seen in numer
turbulence simulations is simply the result of the mathem
cal discrepancy between the one- and three-dimensi
spectra.

The bottleneck effect has no evident manifestation in
second-order structure functions, where localized feature
k space appear in a delocalized manner. This implies tha
order to obtain the asymptotic energy spectrum exponen
may be easier to use second-order structure function e
nents, although in practice the reduced scaling range m
render this method difficult.

ACKNOWLEDGMENTS

We thank Åke Nordlund for useful comments on the su
ject. Use of the parallel computers in Trondheim~Gridur!,
Odense~Horseshoe! and Leicester~Ukaff! is acknowledged.

APPENDIX: RELATIONS BETWEEN THE ONE- AND
THREE-DIMENSIONAL SPECTRA

In this appendix, we derive the relations between
three-dimensional spectrumE(k) and the one-dimensiona
spectraEL(k), EL(k), E1D(k), most of which can also be
found in Refs.@15,17,18#.

1. Total one-dimensional spectrum

We derive the relation between the three-dimensio
spectrum E(k) and the total one-dimensional spectru
E1D(k)[EL(k)12ET(k). Consider a periodic box of vol-
umeV5LxLyLz with a turbulent velocity fieldu(x), which
has the Fourier transform

û~k!5
1

A~2p!3V
E

V
eik•xu~x!dx3, ~A1!

with the inversion

u~x!5A V

~2p!3E e2 ik•xû~k!dk3. ~A2!

The one-dimensional kinetic energy spectrum is

E1D~kz!52E E ^uû~k!u2&
2

dkxdky ~kz>0!, ~A3!

where^•& denotes an ensemble average andk5(kx ,ky ,kz).
The factor 2 in Eq.~A3! accounts for the fact thatE1D does
not distinguish between positive and negativekz . Normal-
ization of E1D(kz) is such that

E
0

`

E1D~kz!dkz5
urms

2

2
[

1

VEV

^uu~x!u2&
2

dx3. ~A4!

Equation~A3! can also be written as thexy average

ur
ed
nt
4-6
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E1D~kz!5
1

LxLy
E ^uũ~x,y,kz!u2&dxdy ~A5!

and is for homogeneous turbulence equal to^uũ(x,y,kz)u2& at
any point (x,y).

The three-dimensional velocity energy spectrum is giv
by

E~k![E
4p

^uû~k!u2&
2

k2dVk , ~A6!

wheredVk denotes the solid angle element ink space.E(k)
satisfies the relation

E
0

`

E~k!dk5
urms

2

2
. ~A7!

If u is statistically isotropic in the sense that the ensem
average of the spectral energy of the velocity^uu(k)u2& is
only a function ofk5uku, thenE(k) becomes

E~k!54pk2 ^uû~k!u2&
2

. ~A8!

To evaluateE1D in this case, we introduce cylindrical coo
dinates (k,f,kz) in k space and write the double integr
~A3! in the form

E1D~kz!52E
0

`^uû~k!u2&
2

2pkdk54pE
kz

`^uû~k!u2&
2

kdk,

~A9!

sincek25k22kz
2 . Comparing with Eq.~A8!, we see that

E1D~kz!5E
kz

`E~k!

k
dk, ~A10!

the inversion of which gives

E~k!52k
dE1D~k!

dk
52E1D

dlnE1D~k!

dlnk
. ~A11!

2. The longitudinal and transversal one-dimensional spectra

In this section, we derive the relation between the lon
tudinal and transversal one-dimensional energy spe
EL(k), ET(k), and the three-dimensional energy spectr
E(k).

For homogeneous, isotropic turbulence, the energy s
trum tensor is given by~see, e.g., Refs.@15,17,18#!

Fpq~k![^ûp~k!ûq* ~k!&5@FL~k!2FT~k!#
kpkq

k2
1FT~k!dpq .

~A12!
02630
n

le

i-
ra

c-

If we assume incompressibility, the longitudinal compone
FL vanishes, and thus

Fpq~k!5S dpq2
kpkq

k2 D FT~k!5S dpq2
kpkq

k2 D E~k!

4pk2
,

~A13!

and in particular

2pFzz~k!5S 12
kz

2

k2D E~k!

2k2
, ~A14!

2p@Fxx~k!1Fyy~k!#5S 11
kz

2

k2D E~k!

2k2
. ~A15!

The longitudinal one-dimensional spectrum

EL~kz![2E E Fzz~k!

2
dkxdky ~A16!

thus becomes

EL~kz!5E
0

`

Fzz~k!2pkdk5
1

2Ekz

`S 12
kz

2

k2D E~k!

k
dk,

~A17!

using the same substitution as in Eq.~A9! above. Similarly,
we can write the transversal one-dimensional spectrum

ET~kz![2E E Fxx~k!1Fyy~k!

4
dkxdky , ~A18!

in the form

ET~kz!5
1

4Ekz

`S 11
kz

2

k2D E~k!

k
dk. ~A19!

Taking the derivative of Eq.~A17!, we find

EL8~kz!

kz
52E

kz

` E~k!

k3
dk, ~A20!

and thus

E~k!5k2EL9~k!2kEL8~k!. ~A21!

Inserting this relation into Eq.~A19! allows us to express
ET(k) throughEL(k) as

ET~k!52k
EL8~k!

2
1

EL~k!

2
. ~A22!
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