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IS NONHELICAL HYDROMAGNETIC TURBULENCE PEAKED AT SMALL SCALES?
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ABSTRACT

Nonhelical hydromagnetic turbulence without an imposed magnetic field is considered in the case where the
magnetic Prandtl number is unity. The magnetic field is entirely due to dynamo action. The magnetic energy
spectrum peaks at a wavenumber of about 5 times the minimum wavenumber in the domain, and not at the
resistive scale, as has previously been argued. Throughout the inertial range, the spectral magnetic energy exceeds
the kinetic energy by a factor of about 2.5, and both spectra are approximately parallel. At first glance, the total
energy spectrum seems to be close to , but there is a strong bottleneck effect and it is suggested that the�3/2k
asymptotic spectrum is . This is supported by the value of the second-order structure function exponent that�5/3k
is found to be , suggesting a spectrum.�1.70z p 0.70 k2

Subject headings: ISM: kinematics and dynamics — magnetic fields — MHD — turbulence

1. INTRODUCTION

It is generally accepted that in hydromagnetic turbulence the
magnetic field tends to be more intermittent than the velocity
field. This is evidenced by many numerical simulations where
the magnetic field is dynamo-generated (Meneguzzi, Frisch, &
Pouquet 1981; Kida, Yanase, & Mizushima 1991; Brandenburg
et al. 1996; Kulsrud et al. 1997). Furthermore, linear theory
predicts that the exponentially growing magnetic energy spec-
trum increases with wavenumber like (Kazantsev 1968).�3/2k
Taken at face value, linear theory would suggest that the mag-
netic energy spectrum should be peaked at the “resistive” cutoff
scale. In the case of the interstellar medium, the resistive cutoff
scale would be tiny (!1010 cm) in comparison with other rel-
evant scales (11018 cm). There is, of course, no doubt that there
are magnetic fluctuations in the interstellar medium at a scale
below 1010 cm, as evidenced by interstellar scintillation mea-
surements (Goldreich & Sridhar 1995), but it remains implau-
sible that magnetic fields at such small scale contribute sig-
nificantly to the energy budget.

The question of small-scale magnetic fields has worried the-
orists for the last decade. Kulsrud & Anderson (1992) have
shown that, independent of the possible presence of magnetic
helicity, thekinematic magnetic energy spectrum follows the
Kazantsev law, and they speculate that this may suppress�3/2k
large-scale dynamo action (ofa2 or aQ type; see also Vainshtein
& Cattaneo 1992). The case of helical dynamos is now rea-
sonably well understood in the case of large magnetic Reynolds
number. The saturation level of helical dynamos is not sup-
pressed, but the saturation time is the resistive timescale (Bran-
denburg 2001). This is not the result of small-scale magnetic
fields in general but due to the helical small-scale fields that
are produced by thea-effect as a by-product (Field & Blackman
2002; Blackman & Brandenburg 2002).

When the degree of kinetic helicity of the flow falls below a
certain threshold, no large-scale dynamo action is possible and
the magnetic energy spectrum is peaked at a scale much smaller
than the forcing scale (Maron & Blackman 2002). This may not
be so much a concern for stellar dynamos where differential
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rotation is important, but it could be a problem for dynamo action
in the interstellar medium and in clusters of galaxies. Analytic
approaches to the nonlinear saturation of nonhelical dynamos
have corroborated the notion that the magnetic energy spectrum
peaks at the resistive scale (Schekochihin et al. 2002a, 2002b).
Numerical simulations have confirmed a peak well below the
forcing scale (Cho & Vishniac 2002a; Maron & Cowley 2001),
but a resolution of up to 2563 collocation points is still insufficient
to establish whether the location of the peak is different from
the resistive scale.

So far there has been no evidence for inertial range�5/3k
scaling of the magnetic energy as in the case of an imposed
field (Goldreich & Sridhar 1995; Cho & Vishniac 2000b; Ma-
ron & Goldreich 2001) or as in decaying hydromagnetic tur-
bulence (Biskamp & Mu¨ller 2000). A difficulty in establishing
power-law scaling is the lack of a sufficiently long inertial
range. In some cases, the use of hyperresistivity (where the

diffusion operator is replaced, for example, by�∇4, in2∇
order to shorten the diffusive subrange) has led to the concern
that it may cause an artificially enhanced “bottleneck effect”
with a shallower spectrum just before the dissipative sub-�1k
range (Biskamp & Mu¨ller 2000). Yet another problem is the
possibility of a physical bottleneck effect (Falkovich 1994) that
will be more extreme in three-dimensional spectra than in the
one-dimensional spectra accessible from turbulence experi-
ments (Biskamp & Mu¨ller 2000; Dobler et al. 2003).

In this Letter, we use simulations at resolutions of up to
10243 meshpoints to study the form of the magnetic and kinetic
energy spectra in the inertial range in the case where the tur-
bulence is driven at large scales and the magnetic field is self-
generated. No hyperviscosity or hyperresistivity is used.

2. EQUATIONS

Here we consider subsonic turbulence in an isothermal elec-
trically conducting gas with constant sound speed in a pe-cs

riodic box of size . The governing equations2p # 2p # 2p
are

Du J � B2p �c � ln r � � F � f, (1)s viscDt r

where is the advective derivative,D/Dt p �/�t � u · � J p
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Fig. 1.—Magnetic, kinetic, and total energy spectra; 10243 meshpoints. The
Reynolds number is .u /nk ≈ 960rms f

Fig. 2.—Spectral magnetic energy per logarithmic wavenumber interval for
runs with different Reynolds numbers. The arrow corresponds to the peak
( ) of the four largest runs.k p 9

is the current density, is the magnetic field, is� � B/m B m0 0

the vacuum permeability, and

12F p n ∇ u � �� · u � 2S · � ln r (2)visc ( )3

is the viscous force, where is the kinematic viscosity,n p const
is the traceless rate of strain tensor,1 1S p (u � u ) � d uij i, j j, i ij k, k2 3

and is a random forcing function (see below). The continuityf
equation is written in terms of logarithmic density,

D ln r
p �� · u, (3)

Dt

and the induction equation is solved in terms of the magnetic
vector potential , where ,A B p � � A

�A 2p u � B � h∇ A, (4)
�t

and is the magnetic diffusivity (or resistivity); weh p const
choose —i.e., our magnetic Prandtl number is unity. Weh p n
adopt a forcing function of the formf

f(x, t) p Re {Nf exp [ik(t) · x � if(t)]}, (5)k(t)

where is the position vector and�x p (x, y, z) p ≤ f(t) ! p
is a (d-correlated) random phase. The normalization factor is

, with a nondimensional forcing ampli-1/2N p f c (kc /dt) f0 s s 0

tude, , and the length of the time step; we chosek p FkF dt
so that the maximum Mach number stays belowf p 0.020

about 0.5 (the rms Mach number is close to 0.12 in all runs.
The vector describes nonhelical transversal waves withfk

and , where is an2 2 2 1/2Ff F p 1 f p (k � e) / [k � (k · e) ] ek k

arbitrary unit vector. At each time step, we select randomly
one of 20 possible wavevectors in the range around1 ≤ FkF ! 2
the forcing wavenumber, .k p 1.5f

The equations are solved using the same method as in Bran-
denburg (2001), but here we employ a new cache and memory

efficient code4 using Message Passing Interface library calls
for communication between processors.

3. RESULTS

In Figure 1, we plot magnetic, kinetic, and total energy spec-
tra, , , and , respectively, for our larg-E (k) E (k) E p E � EM K T M K

est resolution run with 10243 meshpoints.5 The magnetic energy
displays a nearly flat spectrum in the range , peaks1 ≤ k ≤ 5
at , and begins to show an inertial range in ,k ≈ 5 8 ≤ k ≤ 25
followed by a dissipative subrange over one decade. In the
inertial range, is about 2.5. A plot of magneticE (k)/E (k)M K

energy per logarithmic wavenumber interval, , showskE (k)M

that most of the magnetic energy comes from a band of wave-
numbers around —independent of the Reynolds numberk p 9
once the latter is above∼400 (see Fig. 2).

The energy ratio in the inertial range is similar to the ratio
of the dissipation rates of magnetic and kinetic energies,

, which is about 2.3; see Figure 3, which shows that mag-e /eM K

netic and kinetic energy dissipation rates approach 70% and
30%, respectively, of the total dissipation rate, .e p e � eT M K

The convergence of relative dissipation rates is compatible with
Kolmogorov’s concept of a constant, scale-independent energy
flux across the spectrum, which seems to apply also separately
for velocity and magnetic fields. This picture would be difficult
to reconcile if the magnetic energy were to always peak at the
resistive scale. We emphasize that the inertial range is not rep-
resentative of the total energy, which, in turn, is dominated by
small wavenumbers. The ratio of total magnetic to kinetic en-
ergies is only 0.4 and seems again to be asymptotically inde-
pendent of Reynolds number (Fig. 3).

By comparing runs at different resolution, one can clearly
see that in the range the total energy spectrum is3 ≤ k ≤ 20
shallower than (Fig. 4). This could perhaps be due to the�5/3k
bottleneck effect that is known to exist also in wind tunnel
turbulence, where it has been described by a weak contri-�1k
bution (She & Jackson 1993). There are several reasons why
such a bottleneck effect might occur. First, recent studies by
Dobler et al. (2003) have shown that the bottleneck effect is
much stronger in shell-integrated three-dimensional spectra

4 We use the Pencil Code, which is a cache efficient grid-based high-order
code (sixth order in space and third order in time) for solving the compressible
MHD equations; http://www.nordita.dk/data/brandenb/pencil-code.

5 These spectra are, as usual, integrated over shells ink-space and normalized
such that and .1 12 2E dk p Au S E dk p AB S/m∫ ∫2 2K M 0
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Fig. 3.—Approximate convergence of relative magnetic and kinetic energy
dissipation rates (upper panel) and the relative energies (lower panel) as a
function of Reynolds number.

Fig. 4.—Total energy spectra compensated by , where is the rate�2/3 5/3e k eT T

of total energy dissipation. Spectra for different resolution are compared. The
dissipation cutoff wavenumber, , is indicated by short arrows at3 1/4k p (e /n )d T

the top of the plot. The Reynolds number, , is given in the legend.Rep u /nkrms f

Fig. 5.—Fourth-order structure function for runs with 5123 meshpoints.
Clearly, isnot compatible with linear scaling. The inset gives the resultS (l)4

for 2563 meshpoints. The scaling for transversal structure functions (dotted
lines) tends to be better than for the longitudinal ones (solid lines). The statistics
for the 2563 runs is somewhat better than for the shorter 5123 runs.

compared to just longitudinal or transversal one-dimensional
spectra available in wind tunnel turbulence. Second, the bot-
tleneck effect may simply be stronger for hydromagnetic tur-
bulence due to the dynamo effect that is expected to produce
magnetic energy preferentially at , where1/2k ≈ k R ≈ 5 … 10f c

is the critical magnetic Reynolds number for dynamoR ≈ 30c

action (Subramanian 1999). Third, numerical effects such as
hyperdiffusion or other effects causing departures from the
physical diffusion operator could cause an artificial bottle-2∇
neck effect (Biskamp & Mu¨ller 2000; Biskamp, Schwarz, &
Celani 1998), which may also explain the extended range�1k
in compressible nonmagnetic simulations using the piecewise
parabolic method (Porter, Woodward, & Pouquet 1998).

We believe that numerical effects do not cause such artifacts
in our simulations, because we use the physical∇2 diffusion
operator and our discretization is accurate to sixth order in
space and third order in time. We have compared two runs
with identical values ofn andh, one with 2563 meshpoints and
the other one with 5123, and found the same spectra (Haugen,
Brandenburg, & Dobler 2003). We have also compared with
runs using double precision and found the spectra to be the
same. The runs with up to 5123 meshpoints have run for up to
80 turnover times, , which should be long enough to�1(u k )rms f

eliminate transients. The run with 10243 meshpoints has only
run for five turnover times, but the results are otherwise in
qualitative agreement with those of the 5123 run.

By comparing with nonmagnetic runs at the same resolution
(10243 meshpoints), we have found that in hydromagnetic tur-
bulence the bottleneck effect is about equally strong. This
leaves us with the possibility that the bottleneck effect is real,
both for hydrodynamic and for hydromagnetic turbulence, but
that it is simply more pronounced in fully three-dimensional

spectra. It is therefore still possible that at larger Reynolds
numbers the true inertial range spectrum will have a be-�5/3k
havior both for kinetic and magnetic energies (Goldreich &
Sridhar 1995).

Alternatively, a spectrum might be readily explicable in�3/2k
terms of the Iroshnikov-Kraichnan phenomenology (Iroshnikov
1963; Kraichnan 1965). It does of course ignore local anisotropy,
but more importantly, it predicts that the fourth-order structure
function, , scales linearly in the inertial range,S (l) z {4 4

(see Biskamp 1993). To assess this possi-d ln S /d ln l p 14

bility, we calculate the double-logarithmic derivative,z pp

, of the unsigned structure function, ,� pd ln S /d ln l S p AFz F Sp p

where are the Elsasser variables. The scalings� �z p u � B/ m r0

of and turn out to be similar, so we take the average value.� �z z
Figure 5 shows that our data areinconsistent with Iroshnikov-

Kraichnan scaling ( , rather than 1). Instead, our data arez ≈ 1.34

consistent with in the inertial range (Fig. 6). Note thatz p 13

linear inertial range scaling of , i.e., , is an exactS (l) z p 13 3

result for hydrodynamic turbulence (Frisch 1995). Using the
extended self-similarity hypothesis (Benzi 1993), we plotS (l)p

against to obtain a more accurate determination of forS (l) z3 p
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Fig. 6.—Same as Fig. 5, but for . Note that is compatible withS (l) S (l)3 3

linear scaling, i.e., in the inertial range.z p 13

. Our results are compatible with She & Leveque (1994)p ( 3
and hence also with earlier forced simulations with an external
field (Cho, Lazarian, & Vishniac 2002a). In particular, isz � 12

the negative slope of the total energy spectrum: we findz p2

, which is again in agreement with Kolmogorov scaling.0.70
This agrees also with simulations of decaying helical turbulence
(Biskamp & Müller 2000), except that there the higher moments
have been found to be smaller.

4. CONCLUSIONS

For nonhelically forced hydromagnetic turbulence, a reso-
lution of 10243 is necessary in order to begin to establish inertial
range scaling. Nevertheless, the energy spectra show what we
interpret as a strong bottleneck effect. This effect is particularly
strong in the shell-integrated spectra. Throughout the inertial
range, however, the magnetic energy exceeds the kinetic energy
by a factor of about 2.5. Both kinetic and magnetic energies

are dominated by the spectral values at the beginning of the
inertial range and independent of magnetic resistivity. The
values and strongly favor an asymptoticz p 0.70 z p 1.02 3

spectrum.�5/3k
Our results do not support recent claims that the magnetic

energy spectrum peaks at the resistive scale (Maron & Cowley
2001; Maron & Blackman 2002; Schekochihin et al. 2002a,
2002b). However, closer inspection of Figure 3 of Maron &
Cowley (2001) or Figure 1 of Maron & Blackman (2002) reveals
that also in their cases the magnetic energy peaks at about 5, in
agreement with our results. This is comparable to the value

expected based on a nonlinear closure model (Sub-1/2k R ≈ 8f c

ramanian 1999). Here is the critical magnetic ReynoldsR ≈ 30c

number for dynamo action (Haugen et al. 2003), and .k ≈ 1.5f

For , we find the spectrum to be Kolmogorov-like.k ≥ 8
In the interstellar medium, the magnetic Prandtl number is

very large (Kulsrud & Anderson 1992). This is also the regime
in which the claims regarding the peak at the resistive scale are
thought to apply best. On the other hand, preliminary results
suggest that even for a magnetic Prandtl number between 5 and
30 the magnetic energy spectrum still peaks at (Haugenk ≈ 5
et al. 2003). However, the spectrum shows now a possible�1k
tail near the viscous dissipation range where ohmic dissipation
is still weak (Cho, Lazarian, & Vishniac 2002b; Haugen et al.
2003). In the interstellar medium, even though the magnetic
Prandtl number is very large, the Reynolds number is also very
large, so the viscous cutoff scale is still small (∼ 1610 cmp

pc). We expect that in the range pc kinetic and0.003 0.01 … 10
magnetic energy spectra are parallel and show scaling, but�5/3k
currently the numerical resolution is still insufficient to dem-
onstrate this.
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Subramanian for their comments on this Letter. Use of the
parallel computers in Trondheim (Gridur), Odense (Horseshoe),
and Leicester (Ukaff) is acknowledged.

REFERENCES

Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F., & Succi,
S. 1993, Phys. Rev. E, 48, 29

Biskamp, D. 1993, Nonlinear Magnetohydrodynamics (Cambridge: Cambridge
Univ. Press)

Biskamp, D., & Müller, W.-C. 2000, Phys. Plasmas, 7, 4889
Biskamp, D., Schwarz, E., & Celani, A. 1998, Phys. Rev. Lett., 81, 4855
Blackman, E. G., & Brandenburg, A. 2002, ApJ, 579, 359
Brandenburg, A. 2001, ApJ, 550, 824
Brandenburg, A., Jennings, R. L., Nordlund, ., Rieutord, M., Stein, R. F., &Å
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