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Contributions to the theory of a two-scale homogeneous dynamo experiment

Karl-Heinz Rädler
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The principle of the two-scale dynamo experiment at the Forschungszentrum Karlsruhe is closely related to
that of the Roberts dynamo working with a simple fluid flow which is, with respect to proper Cartesian
coordinatesx, y, and z, periodic in x and y and independent ofz. A modified Roberts dynamo problem is
considered with a flow more similar to that in the experimental device. Solutions are calculated numerically,
and on this basis an estimate of the excitation condition of the experimental dynamo is given. The modified
Roberts dynamo problem is also considered in the framework of the mean-field dynamo theory, in which the
crucial induction effect of the fluid motion is an anisotropica effect. Numerical results are given for the
dependence of the mean-field coefficients on the fluid flow rates. The excitation condition of the dynamo is
also discussed within this framework. The behavior of the dynamo in the nonlinear regime, i.e., with backre-
action of the magnetic field on the fluid flow, depends on the effect of the Lorentz force on the flow rates. The
quantities determining this effect are calculated numerically. The results for the mean-field coefficients and the
quantities describing the backreaction provide corrections to earlier results, which were obtained under sim-
plifying assumptions.
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I. INTRODUCTION

In the Forschungszentrum Karlsruhe, Mu¨ller and Stieglitz
have set up an experimental device for the demonstration
investigation of a homogeneous dynamo as it is expecte
the Earth’s interior or in cosmic bodies@1#. The experiment
ran first time successfully in December 1999, and since t
several series of measurements have been carried out@2–5#.
It was the second realization of a homogeneous dynam
the laboratory. Its first run followed only a few weeks aft
that of the Riga dynamo experiment, working with a som
what different principle, which was pushed forward by Ga
tis, Lielausis, and co-workers@6,7#.

The basic idea of the Karlsruhe experiment was propo
in 1975 by Busse@8,9#. It is very similar to an idea discusse
already in 1967 by Gailitis@10#. The essential piece of th
experimental device, the dynamo module, is a cylindri
container as shown in Fig. 1, with both radius and hei
somewhat less than 1m, through which liquid sodium
driven by external pumps. By means of a system of chan
with conducting walls, constituting 52 ‘‘spin generators,’’ h
lical motions are organized. The flow pattern resembles
of those considered in the theoretical work of Roberts
1972 @11#. This kind of Roberts flow, which proved to b
capable of dynamo action, is sketched in Fig. 2. In a pro
Cartesian co-ordinate system (x,y,z), it is periodic inx and
y with the same period length, which we call here 2a, but
independent ofz. Thex andy components of the velocity ca
be described by a stream function proportional
sin(px/a)sin(py/a), and thez component is simply propor
tional to sin(px/a)sin(py/a). When speaking of a ‘‘cell’’ of
the flow, we mean a unit like that given by 0<x,y<a.
Clearly, the velocity is continuous everywhere, and at le
the x andy components do not vanish at the margins of
1063-651X/2003/67~2!/026401~11!/$20.00 67 0264
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cells. The real flow in the spin generators deviates from
Roberts flow in the way indicated in Fig. 3. In each cell the
are a central channel and a helical channel around it. In
simplest approximation, the fluid moves rigidly in each
these channels, and it is at rest outside the channels.
relate the word ‘‘spin generator flow,’’ in the following to
this simple flow. In contrast to the Roberts flow the sp
generator flow shows discontinuities and vanishes at the m
gins of the cells.

The theory of the dynamo effect in the Karlsruhe dev
has been widely elaborated. Both direct numerical soluti
of the induction equation for the magnetic field@12–18# as
well as mean-field theory and solutions of the correspond
equations@19–24# have been employed. We focus our atte

FIG. 1. The dynamo module~after Ref.@1#!. The signs1 and2
indicate that the fluid moves in the positive or negativez direction,
respectively, in a given spin generator.R50.85 m,H50.71 m, and
a50.21 m.
©2003 The American Physical Society01-1
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tion here on this mean-field approach. In this context m
fields are understood as averages over areas in planes
pendicular to the axis of the dynamo module covering
cross sections of several cells. The crucial induction effec
the fluid motion is then, with respect to the mean magne
field, described as an anisotropica effect. Thea coefficient
and related quantities have first been calculated for the R
erts flow @19,20,22,23,25#. In the calculations with the spin
generator flow carried out so far, apart from the case of sm
flow rates, a simplifying but not strictly justified assumptio
was used. The contribution of a given spin generator to tha
effect was considered independent of the neighboring s

FIG. 2. The Roberts flow pattern. The flow directions cor
spond to the situation in the dynamo module if the coordinate s
tem coincides with that in Fig. 1.

FIG. 3. The spin generator flow pattern. As for the flow dire
tions, the remark given with Fig. 2 applies. The fluid outside
cylindrical regions where flow directions are indicated is at re
There are no walls between the cells.
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generators and in that sense determined under the cond
that all its surroundings are conducting fluid at re
@20,22,23,25#. An analogous assumption was used in calc
lations of the effect of the Lorentz force on the fluid flo
rates in the channels of the spin generators@22,24#. It re-
mained to be clarified which errors result from these assu
tions.

The main purpose of this paper is therefore the calcula
of the a coefficient and a related coefficient as well as t
quantities determining the effect of the Lorentz force on
fluid flow rates for an array of spin generators, taking in
account the so far ignored mutual influences of the spin g
erators. In Sec. II the modified Roberts dynamo probl
with the spin generator flow is formulated. In Sec. III th
numerical method used for solving this problem and the
lated problems occurring in the following sections are d
cussed. Section IV presents in particular results concern
the excitation condition for the dynamo with spin genera
flow. In Sec. V various aspects of a mean-field theory of
dynamo experiment are explained and results for the m
electromotive force due to the spin generator flow are giv
Section VI deals with the effect of the Lorentz force on t
flow rates in the channels of the spin generators. Finally
Sec. VII some consequences of our findings for the und
standing of the experimental results are summarized.

Independent of the recent comprehensive accounts of
mean-field approach to the Karlsruhe dynamo experim
@22–24#, this paper may serve as an introduction to the ba
idea of the experiment. However, we do not strive to rep
all important issues discussed in those papers, but we ma
want to deliver the two supplements mentioned above.

II. FORMULATION OF THE DYNAMO PROBLEM

Let us first formulate the analog of the Roberts dyna
problem for the spin generator flow. We consider a magn
field B in an infinitely extended homogeneous electrica
conducting fluid, which is governed by the induction equ
tion

h¹2B1“3~u3B!2] tB50, “•B50, ~1!

where h is the magnetic diffusivity of the fluid andu its
velocity. The fluid is considered incompressible, so“•u
50. Referring to the Cartesian coordinate system (x,y,z)
mentioned above, we focus our attention on the cell 0<x,y
<a and introduce there cylindrical coordinates (r ,w,z) such
that the axisr 50 coincides withx5y5a/2. We define then
the fluid velocityu in this cell by

ur50 everywhere

uw50, uz52u for 0,r<r 1

uw52vr , uz52~h/2p!v for r 1,r<r 2

uw50, uz50 for r .r 2 ,

~2!

whereu andv are constants,r 1 andr 2 are the radius of the
central channel and the outer radius of the helical chan
respectively, andh is the pitch of the helical channel. Th
coupling betweenuw anduz in r 1,r<r 2 considers the con-

-
s-

t.
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straint on the flow resulting from the helicoidal walls of th
helical channel. The velocityu in all space follows from the
continuation of velocity in the considered cell in the w
indicated in Fig. 3, i.e., with changes of the flow directio
from each cell to the adjacent ones so that the total patte
again periodic inx and y with the period length 2a and
independent ofz.

We characterize the magnitudes of the fluid flow throu
the central and helical channels of a spin generator by
volumetric flow ratesVC andVH given by

VC5pr 1
2u, VH5

1

2
~r 2

22r 1
2!hv. ~3!

We may measure them in units ofah, so we introduce the
dimensionless flow ratesṼC and ṼH ,

ṼC5VC/ah, ṼH5VH /ah. ~4!

We further define magnetic Reynolds numbersRmC andRmH
for the two channels byRmC5ur1 /h and RmH5vr 2(r 2

2r 1)/h. Thus we haveṼC5(pr 1 /a)RmC and ṼH5@(r 1
1r 2)h/2ar2#RmH.

In view of the application of the results for the consider
dynamo problem to the experimental device, we ment
here the numerical values for the radiusR and the heightH
of the dynamo module, the lengthsa, h, r 1, and r 2 charac-
terizing a spin generator and the magnetic diffusivityh of
the fluid: R50.85 m, H50.71 m, a50.21 m, h50.19 m,
r 1 /a50.25, r 2 /a50.5, andh50.1 m2/s. ~More precisely,
the values ofR andH apply to the ‘‘homogeneous part’’ o
the dynamo module, i.e., the part without connections
tween different spin generators. The value ofh is slightly
higher than that for sodium at 120°C, considering the eff
tive reduction of the magnetic diffusivity by the steel wa
of the channels.! The given data implyah575.6 m3/s. Fur-
thermore, we haveṼC50.785RmC and ṼH51.357RmH, so
ṼC and ṼH are, in fact, magnetic Reynolds numbers. Co
cerning deviations from the rigid-body motion of the flu
assumed here and the role of turbulence, we refer to the m
comprehensive representations@22,23#.

We are interested in dynamo action of the fluid motion,
we are interested in growing solutionsB of Eq. ~1! with the
velocity u defined by Eq.~2! and the explanations given wit
them. According to some modification of Cowling’s antid
namo theorem, growing solutionsB independent ofz are
impossible; cf. Ref.@26#. We restrict our attention to solu
tions of the form

B5Re@B̂~x,y,t !exp~ ikz!#, ~5!

whereB̂ is a complex periodic vector field that has again
period length 2a in x andy, andk a nonvanishing real con
stant. In this case we may consider Eqs.~1! in the period
interval2a<x,y<a only and adopt periodic boundary con
ditions. ~SolutionsB with larger period lengths, as were in
vestigated for the Roberts flow@27–29#, seem to be well
possible but are not considered here.!
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If we put B̂(x,y,t)5B̂(x,y)exp(pt) with a parameterp,
for which we have to admit complex values, Eq.~1! together
with the boundary conditions pose an eigenvalue prob
with p being the eigenvalue parameter. Clearly,p depends on
VC, VH , and k. The condition Re(p)50 defines for each
givenk a neutral line~i.e., a line of marginal stability! in the
VCVH diagram, which separates the region ofVC andVH in
which growingB are impossible from that where they a
possible.

III. THE NUMERICAL METHOD

In view of the numerical solution of the induction equ
tion ~1! we expressB by a vector potentialA,

B5“3A. ~6!

Inserting this in Eq.~1! and choosing“•A properly, we may
conclude that

h¹2A1u3B2] tA50. ~7!

Analogous to Eq.~5!, we put

A~x,y,z,t !5Re@Â~x,y,t !exp~ ikz!#. ~8!

Then we have

B̂5“3Â1 ik3Â, ~9!

wherek5ke with e being the unit vector inz direction, and

h~¹22k2!Â1u3B̂2] tÂ50. ~10!

With a solutionÂ we can calculateB̂ according to Eq.~9!
and finallyB according to Eq.~6!.

In the sense explained above we consider Eq.~10! only in
the period unit2a<x,y<a and adopt periodic boundar
conditions. When replacingÂ(x,y,t) by Â(x,y)exp(pt), we
arrive again at an eigenvalue problem withp as eigenvalue
parameter.

Let us, for example, assume thatp is real and consider the
steady case,p50. We may then consider, e.g.,VC as eigen-
value parameter whileVH and k are given. Modifying the
equation resulting from Eq.~8! by an artificial quenching of
VC and following up the evolution ofÂ, the wanted steady
solutions of the original equation~10! and thus the relations
betweenVC andVH for given k andp50 can be found.

For the numerical computations, a grid-point scheme w
used. They were carried out on a two-dimensional mesh t
cally with 60360 or 1203120 points, and some of the re
sults were checked with 2403240 points. Thex and y de-
rivatives were calculated using sixth-order explicitly fini
differences, and the equations were stepped forward in t
using a third-order Runge-Kutta scheme.

IV. THE EXCITATION CONDITION OF THE DYNAMO

Using the described numerical method, solutionsB of the
dynamo problem posed by Eqs.~1!, ~2!, and ~5! have been
1-3
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determined. As in the case of the Roberts flow@28,29#, the
most easily excitable solutions are nonoscillatory, which c
responds to realp, and possess a contribution independen
x andy.

Figure 4 shows the neutral lines in theVCVH diagram for
several values of the dimensionless quantityk defined byk
5ak. In view of the Karlsruhe experiment, the case deser
special interest in which a ‘‘half wave’’ ofB fits just to the
heightH of the dynamo module, sok5pa/H50.929. The
neutral line for this case can provide us a very rough estim
of the excitation condition of the Karlsruhe dynamo. Ho
ever, this estimate neither takes into account the finite ra
extent of the dynamo module nor realistic conditions at
plane boundaries. Let us consider, e.g., the values ofVH
necessary for self-excitation in the experimental device
given VC. The values ofVH obtained in the experiment a
well as those found by direct numerical simulations are b
factor of about 2 higher than the values concluded from
neutral curve fork50.9; see, e.g., Fig. 4 in Refs.@4# and@5#,
Fig. 2 in Ref.@17#, or Fig. 3 in Ref.@18#. The tendency of the
variation of VH with VC is, however, well predicted.~The
influence of the finite radial extent of the dynamo module
the excitation condition will be discussed in Sec. V D.
makes the mentioned factor of about 2 plausible.!

V. THE MEAN-FIELD APPROACH

The Karlsruhe dynamo experiment has been widely d
cussed in the framework of the mean-field dynamo theo
see e.g., Ref.@30#. Let us first discuss few aspects of th
traditional mean-field approach applied to spatially perio
flows and then a slight modification of this approach, wh
possesses in one respect a higher degree of generality
always assume that the magnetic flux densityB is governed
by the induction equation~1! and the fluid velocityu is
specified to be either a Roberts flow or the spin gener
flow as defined above.

A. The traditional approach

For each given fieldF, we define a mean fieldF̄ by taking
an average over an area corresponding to the cross secti
four cells in thex-y plane,

FIG. 4. Neutral lines describing steady dynamo states in
VCVH plane for various values ofk.
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F̄~x,y,z!5
1

4a2E2a

a E
2a

a

F~x1j,y1h,z!djdh. ~11!

We note that the applicability of the Reynolds averagi
rules, which we use in the following, requires thatF̄ varies
only weakly over distancesa in x or y direction. ~The fol-
lowing applies also with a definition ofF̄ using averages
over an area corresponding to two cells only@28#, but we do
not want to consider this possibility here.!

We split the magnetic flux densityB and the fluid velocity
u into mean fieldsB̄ and ū and remaining fieldsB8 andu8,

B5B̄1B8, u5ū1u8. ~12!

Clearly, we haveū50, and thereforeu5u8.
Taking the average of equations in~1!, we see thatB̄ has

to obey

h¹2B̄1“3E2] tB̄50, ¹•B̄50, ~13!

whereE, defined by

E5u3B8, ~14!

is a mean electromotive force due to the fluid motion.
The determination ofE for a givenu requires the knowl-

edge ofB8. Combining Eqs.~1! and~13!, we easily arrive at

h¹2B81“3~u3B8!82] tB852“3~u3B̄!,“•B850,
~15!

where (u3B8)85u3B82u3B8. We conclude from this
that B8 is, apart from initial and boundary conditions, dete
mined byu andB̄ and is linear inB̄. We assume here thatB8

vanishes ifB̄ does so~and will comment on this below!.
ThusE too can be understood as a quantity determined bu
and B̄ only and being linear and homogeneous inB̄. Of
course,E at a given point in space and time depends
simply onu andB̄ in this point but also on their behavior i
the neighborhood of this point.

We adopt the assumption often used in mean-field
namo theory thatB̄ varies only weakly in space and time s
that B̄ and its first spatial derivatives in this point are suf
cient to define the behavior ofB̄ in the relevant neighbor-
hood. ThenE can be represented in the form

Ei5ai j B̄j1bi jk]B̄j /]xk , ~16!

where the tensorsai j andbi jk are averaged quantities dete
mined byu. We use here and in the following the notatio
x15x, x25y, x35z and adopt the summation conventio
Of course, the neglect of contributions toE with higher-
order spatial derivatives or with time derivatives ofB̄ ~which
is in one respect relaxed in Sec. V B! remains to be checked
in all applications.

The specific properties of the considered flow patte
allow us to reduce the form ofE given by Eq.~16! to a more

e

1-4
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specific one. Due to our definition of averages and the p
odicity of the flow patterns inx andy, and its independenc
of z, the tensorsai j and bi jk are independent ofx, y and z.
Clearly, a 90° rotation of the flow pattern about thez axis as
well as a shift by a lengtha along thex or y axes change only
the sign ofu so that simultaneous rotation and shift leaveu
unchanged. This is sufficient to conclude thatai j andbi jk are
axisymmetric tensors with respect to thez axis. Soai j and
bi jk contain no other tensorial construction elements than
Kronecker tensord lm , the Levi-Civita tensore lmn , and the
unit vector e in z direction. The independence of the flo
pattern ofz requires thatai j andbi jk are invariant under the
change of the sign ofe. Finally, it can be concluded on th
basis of Eq.~15! thatE has to vanish ifB̄ is a homogeneous
field in z direction, which leads toa3350. With the specifi-
cation ofai j andbi jk , according to these requirements, re
tion ~16! turns into

E52a'@B̄2~e•B̄!e#2b'“3B̄2~b i2b'!@e•~“3B̄!#e

2b3e3@“~e•B̄!1~e•“ !B̄#, ~17!

where the coefficientsa' , b' , b i , and b3 are averaged
quantities determined byu, and independent ofx, y and z.
The term witha' describes ana effect, which is extremely
anisotropic. It is able to drive electric currents in thex andy
directions, but not in thez direction. The terms withb' and
b i give rise to the introduction of a mean-field diffusivit
different from the original magnetic diffusivity of the fluid
and again anisotropic. In contrast to them, the remain
term with b3 is not connected with“3B̄ but with the sym-
metric part of the gradient tensor ofB̄ and therefore canno
be interpreted in the sense of a mean-field diffusivity.

In the case of the Roberts flow, the coefficienta' has
been determined for arbitrary flow rates, and coefficients
b' , b i , andb3 for small flow rates@19,20,22,23,25#. As for
the spin generator flow, only results fora' have been given
so far @19,20,22,23,25#.

For the determination ofa' , it is sufficient to consider
Eq. ~15! for B8, with B̄ specified to be a homogeneous fie
In this case, which implies“3(u3B8̄)50, this equation
turns into

h¹2B81~B8•“ !u2~u•“ !B82] tB852~B̄•“ !u,

“•B850. ~18!

We may again considerB8 like B̄ as independent ofz. Let us
put B85B '8 1B i8 and u5u'1ui with B '8 5B82(e•B8)e
andB8i5(e•B8)e, andu' andui defined analogously. The
we find

h¹2B '8 1~B '8 •“ !u'2~u'•“ !B '8 2] tB '8 52~B̄•¹!u' ,

h¹2B8i2~u'•¹!B i8 2] tB i8 52~~B̄1B '8 !•¹!ui .
~19!
02640
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We further putu'5u'ũ' andui5uiũi , whereu' andui are
factors independent ofx andy characterizing the magnitude
of u' and ui , and ũ' and ũi fields that are normalized in
some way. Clearly,B '8 is independent ofui , andB i8 linear
in ui . Thex andy components ofu3B8, from whicha' can
be concluded, are sums of products of components ofui and
B '8 and of u' and B i8 . Thusa' must depend in a homo
geneous and linear way onui , whereas the dependence o
u' is in general more complex. This can be observed fr
the results for the Roberts flow. In view of the spin genera
flow, we splitui into two parts,ui1 andui2, of which the first
one is nonzero in the central channel and the second on
nonzero in the helical channel only. We further introduce
corresponding quantitiesui1 andui2. We may then conclude
that a' is linear but no longer homogeneous inui1. Since
ui1 is proportional toVC, we find thata' is linear but not
homogeneous inVC, whereas it shows a more complex d
pendence onVH .

For small flow rates we may neglect the terms withu on
the left-hand side of Eq.~18!. This corresponds to the
second-order correlation approximation often used in me
field dynamo theory. Then the solutionsB8 and furthera'

can be calculated analytically. Starting from the result fou
in this way for the spin generator flow@19,20,25# and using
the above findings we conclude that the general form ofa'

reads

a'5
VH

a2hh
@VCfC~VH /hh!1 1

2 VHfH~VH /hh!# ~20!

with two functions fC and fH satisfying fC(0)5fH(0)
51. Note that the argumentVH /hh is equal to (a/h)ṼH ,
which is in turn equal tov(r 21r 1)(r 22r 1)/2h. Conse-
quently, it is just some kind of magnetic Reynolds numb
for the rotational motion of the fluid in a helical channel. Th
functionsfC andfH have been calculated analytically und
a simplifying assumption@20,25#, which, however, proved
not to be strictly correct. We will give rigorous results fora'

fC, andfH in a more general context in Sec. V C below
As mentioned, we now make a comment on the assu

tion that B8 vanishes ifB̄ does so. Investigations with th
Roberts dynamo problem have revealed that nondecaying
lutionsB of the induction equation~1! whose average over
cell vanishes are well possible@28#. They coincide with non-
decaying solutionsB8 of Eq. ~15! in the caseB̄50. These
solutions are, however, always less easily excitable than
lutions with nonvanishing averages over a cell. They
therefore of no interest in the discussion of the excitat
condition for mean magnetic fieldsB̄. In that sense the abov
assumption is~although not generally true!, at least in the
case of the Roberts flow, acceptable for our purposes.
sumably, this applies also for the spin generator flow.

In view of the following section, we assume for a mome
that B̄ does not depend onx andy but only onz. In that case
we have “3B̄5e3@“(e•B̄)1(e•“)B̄#5e3dB̄/dz, and
therefore Eq.~17! turns into
1-5
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E52a'@B̄2~e•B̄!e#2be3dB̄/dz, b5b'1b3 .
~21!

Interestingly enough, here the difference in the character
the b' andb3 terms in Eq.~17! is no longer visible. While
there are reasons to assume that the coefficientsb' andb i ,
which can be interpreted in the sense of a mean-field di
sivity, are never negative, this is no longer true forb3 and
therefore also not forb. The results for the Roberts flow
show indeed explicitly thatb can take also negative value
@19,22,23#.

B. A modified approach

We now modify the mean-field approach discussed so
in view of the case in whichB̄ does not depend onx andy
but may have an arbitrary dependence onz. All quantities
like B, B̄, B8, or E, which depend onz, are represented a
Fourier integrals according to

F~x,y,z,t !5E F̂~x,y,k,t !exp~ ikz!dk. ~22!

The corresponding representation ofB clearly includes an-

satz~5!. B̂ depends onx, y, k, andt, but B̂̄ andÊ depend only
on k and t. The requirement thatF(x,y,z,t) is real leads to
F* (x,y,k,t)5F(x,y,2k,t). Relations of this kind apply to
B, B̄, B8 andE.

Equations~11! to ~15! remain valid, whereas Eqs.~16!,
~17!, and ~21! have to be modified. Clearly, Eqs.~13! and
~14! are equivalent to

hk2B̂̄2 ik3Ê1] tB̂̄50, e• B̂̄50, ~23!

and

Ê5u3B̂8. ~24!

Instead of Eq.~15!, we have

h~¹22k2!B81~“1 ik!3~u3B̂8!82] tB̂8

52~“1 ik!3~u3 B̂̄!, ~“1 ik!•B̂850, ~25!

where (u3B̂8)85u3B̂82u3B̂8.
Assuming again thatE is linear and homogeneous inB̄,

we conclude that the same applies toÊ andB̂̄ too. Therefore
we now have

Êi~k,t !5â i j ~k!B̂̄ j~k,t !, ~26!

whereâ i j is a complex tensor determined by the fluid flo

Analogous toÊ and B̂̄, it has to satisfyâ i j* (k)5â i j (2k).
From the symmetry properties of theu field we conclude
again that the connection betweenE andB̄ remains the same
02640
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if both are simultaneously subject to a 90° rotation about
z axis, i.e., relation~26! remains unchanged under such

rotation of Ê and B̂̄. This means that the tensorâ i j is axi-
symmetric with respect to the axis defined byk. The general
form of â i j that is compatible withâ i j* (k)5â i j (2k) is given
by

â i j ~k!5a1~ uku!d i j 1a2~ uku!kikj1 ia3~ uku!e i j l kl , ~27!

with reala1 , a2, anda3. Together with Eq.~26! this leads to

Êz5(a11a2k2) B̂̄z . On the other, handÊz is equal to the
average ofuxB̂y82uyB̂x8 , and we may conclude from~25!

that B̂x8 and B̂y8 are independent ofB̂̄z . This in turn implies

a11a2k250. We note the final result forâ i j (k) in the form

âi j ~k!52â'~k!~d i j 2eiej !1 i b̂~k!e i j l kl , ~28!

with two real quantitiesâ' andb̂, which are even functions
of k.

From Eqs.~26! and ~28! we obtain

Ê~k!52â'~k!@ B̂̄2~e• B̂̄!e#2 i b̂~k!k3 B̂̄. ~29!

Together with Eq.~22!, this leads to

E~z,t !52E â'~k!$ B̂̄~k,t !2@e• B̂̄~k,t !#e%exp~ ikz!dk2e

3
]

]zE b̂~k!B̂̄~k,t !exp~ ikz!dk. ~30!

This in turn is equivalent to

E~z,t !52
1

2pE a'~z!$ B̂̄~z1z,t !2@e• B̂̄~z1z,t !#e%dz

2
1

2p
e3

]

]zE b~z!B̂̄~z1z,t !dz, ~31!

with

a'~z!5E â'~k!exp~ ikz!dk,

b~z!5E b̂~k!exp~ ikz!dk. ~32!

Note that botha' andb are even inz.
Let us now expandâ i j (k) as given by Eq.~28! in a Taylor

series and truncate it after the second term,

â i j ~k!52â'~0!~d i j 2eiej !1 ikb̂~0!e i j l el . ~33!

The corresponding expansion ofE as given by Eq.~30! reads
1-6
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E52â'~0!@B̄2~e•B̄!e#2b̂~0!e3dB̄/dz. ~34!

Comparing this with relation~21! of the preceding section
we find

a'5â'~0!, b5b̂~0!. ~35!

Returning again to arbitraryk, we define for later pur-
poses a functionâ(k) by

â~k!5â'~k!1kb̂~k!. ~36!

If â(k) is given, we may determineâ'(k) andb̂(k) accord-
ing to

â'~k!5
1

2
@â~k!1â~2k!#,

b~k!5
1

2k
@â~k!2â~2k!#. ~37!

Moreover, we have

a'5â~0!, b5
dâ~k!

dk
~0!. ~38!

C. The parameters defininga effect, etc.

In view of the determination of the quantitiesâ'(k) and
b̂(k), which includes that ofa' and b, we note that rela-
tions like Eq.~21! or Eq.~29! connectingE with B̄ or Ê with

B̂̄ apply, apart from the explicitly mentioned restrictions, f
arbitrary B̄. Thus we may take these quantities from calc
lations carried out for specificB̄.

Using the method described in Sec. III, we have num
cally determined steady solutions of Eq.~15! for B̂8 with

given VC, VH , k, and a specificB̂̄ of Beltrami type, satisfy-

ing e3dB̂̄/dz5kB̂̄. With these solutions we have then ca

culated the quantityÊ• B̂̄* , that, according to Eq.~29!, has to
satisfy

Ê• B̂̄* 52âu B̂̄u2, ~39!

with â defined by Eq.~36!. From the values ofâ and their
dependence onk obtained in this way,â'(k), b̂(k), a' ,
andb have been determined.

In mean-field models of the Karlsruhe device in the se
of the traditional approach explained in Sec. V A, the co
ficient a' occurs in the dimensionless combinationC
5a'R/h, with R being the radius of the dynamo modul
and the influence ofb can be discussed in terms ofb̃

5b/h. We generalize the definitions ofC and b̃ by putting
02640
-

i-

e
-

C5â'R/h, b̃5b̂/h. ~40!

Now C andb̃ show a dependence onk, which we express by
the one onk5ak.

Thinking first of the traditional approach, we considerC
with k50. Figure 5 shows contours ofC in the VCVH dia-
gram, Fig. 6 the functionsfC andfH , from which a' and
thusC can be calculated. These results deviate for largeVH
significantly from those determined with the simplifying a

FIG. 5. Contours ofC for k50.

FIG. 6. The functionsfC andfH calculated for an array of spin
generators. For comparison, the results of the approximation
sidering single spin generators~i.e., ignoring their mutual influ-
ences! are also given.
1-7
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sumption mentioned above, according to which the mut
influence of the spin generators was ignored@20,25#. In the
region ofVC andVH , which is of interest for the experimen
say 0,ṼC,ṼH,2, the values ofC, fC, andfH for given
VC andVH are somewhat larger than those obtained with t
assumption. One reason for that might be that in the cas
an array of spin generators, compared to a single one
fluid at rest, the rotational motion in a helical channel exp
less magnetic flux into regions without fluid motion, where
cannot contribute to thea effect. Remarkably, in the regio
0,ṼC,ṼH,2, our result forC agrees very well with the one
derived under the assumption of a Roberts flow@22,23#.

Figure 7 exhibits contours ofb̃ for k50 in the VCVH

diagram. We already pointed out thatb̃ can take negative
values. Here we see thatb̃ becomes negative for sufficientl
large values ofVC andVH . Although this happens somewh
beyond the region of interest for the experiment, it sugge
that inside this region the positive values ofb̃ may be small.
The diffusion term in the mean-field induction equation
proportional toh(11b̃). In the investigated region ofVC
andVH , this quantity proved always to be positive.

Let us now proceed toC and b̃ for kÞ0. As already

FIG. 7. Contours ofb̃ for k50 ~calculated as the limitk
→0).

FIG. 8. Contours ofC for k50.9.
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mentioned, in view of the experimental device it seems r
sonable to putk5pa/H50.929. Analogous to Fig. 5, which
applies tok50, Fig. 8 shows contours ofC for k50.9. We
see thatC for givenVC andVH is slightly higher in the latter
case. The results forb̃ are virtually indistinguishable for
both cases.

D. The excitation condition in mean-field models

We consider first again the traditional approach to me
field theory explained in Sec. V A. Equation~13! for B̄ to-
gether with relation~17! for E allows the solutions

B̄5B0@cos~kz!,7sin~kz!,0#exp~pt!,

p52~h1b!k26a'k, ~41!

where B0 is an arbitrary constant. We refer here again
Cartesian coordinates and considerk as a positive paramete
For these solutions, we have¹3B̄56kB̄, i.e., they are of
Beltrami type. This implies that there are no mean elec
currents in thez direction. The solution that corresponds
the upper signs can grow ifa' is sufficiently large. The
condition of marginal stability readsa'5(h1b)k or, what
is the same,

C5~11b̃ !kR, ~42!

whereC and b̃ have to be interpreted as the values fork
50. If we relate this to the dynamo module and putk
5p/H, we have

C5~11b̃ !pR/H. ~43!

Note that the factorR in conditions~42! and~43! result from
the definition ofC only. In fact, they are independent ofR.

Proceeding to the modified approach to the mean-fi
theory and replacing relation~17! for E by Eq. ~30!, we find
formally the same result. However,a' and b have to be
replaced byâ' and b̂, andC and b̃ in Eqs. ~42! and ~43!
have to be taken fork5ak. Condition ~42! interpreted in
this sense defines neutral lines in theVCVH diagram which
have to agree exactly with those shown in Fig. 4. Likewi
condition ~43! defines the special neutral line withk
5pa/H.

One of the shortcomings of estimates of the se
excitation condition of the experimental device based on
solutions of the induction equation used in Sec. IV
equivalently, on a relation like Eq.~43!, consists in ignoring
the finite radial extent of the dynamo module. We point o
another solution of Eq.~13! for B̄, which has been used fo
an estimate of the self-excitation condition of the experim
tal device considering its finite radial extent@20,23,31#. For
the sake of simplicity, we assume thatE is given by Eq.~17!
with b'5b i5b350. We refer to a new cylindrical co
ordinate system (r ,w,z) adjusted to the dynamo module, s
1-8
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that r 50 coincides with its axis andz50 with its midplane.
The solution we have in mind reads

B̄5B0S ]C

]z
,
h~q21k2!1p

a'

C,2
1

r

]

]r
~rC! Dexp~pt!,

C5J0~qr !cos~kz!, ~44!

p52h~q21k2!6a'k,

whereq andk are constants andJ0 is the zero-order Besse
function of the first kind. This solution is axisymmetric wit
respect to thez axis. It has further the property that the no
mal components of“3B̄ vanish both on the cylindrical sur
facesqr5zn , wherezn denotes the zeros ofJ0, and on the
planeskz5( l 11/2)p with integerl. We identify the region
inside the smallest of these cylindrical surfaces between
neighboring planes of that kind with the dynamo module,
we putq5z1 /R, wherez1 is the smallest positive zero ofJ0,
andk5p/H. Then there are no electric currents penetrat
the surface of the dynamo module. The condition of margi
stability for the so specified solution reads

C5p~R/H !@11~z1H/pR!2#. ~45!

In the limit H/R→0, this agrees with Eq.~43! if we put b̃
50. For finiteH/R, however,C is now always larger than
the value given by Eq.~43! with b̃50. This can easily be
understood considering that there is now an additional di
pation of the magnetic field due to its radial gradient.C as
function ofH/R has a minimum atH/R5p/z1. The dynamo
module was designed so thatH/R has just this value. In this
case we have

C52pR/H. ~46!

In other words, the real radial extent of the dynamo mod
enlarges the requirements forC, compared to the case o
infinite extent, by a factor 2. As can be seen from Fig. 5,
the region ofVC and VH in which experimental investiga
tions have been carried out, say 1.3,ṼC,ṼH,1.6, this en-
largement ofC means that if, e.g.,VC is given,VH grows by
a factor between 2.5 and 3.5. We recall here the deviatio
the experimental results from the estimate of the s
excitation condition given in Sec. IV on the basis of Fig.
which just corresponds to Eq.~43!. In the light of these ex-
planations concerning the influence of the radial extent of
dynamo module this deviation is quite plausible. It is ac
ally rather small, which indicates that our reasoning despi
number of neglected effects does not underestimate the
quirements for self-excitation.

We also note that the result~46! is not a completely sat
isfying estimate of the self-excitation condition of the expe
mental device. Apart from the fact that it does not consi
realistic boundary conditions for the dynamo module, it
based on an axisymmetric solution of the equation forB̄.
Several investigations have, however, revealed that a non
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symmetric solution is slightly easier to excite than axisy
metric ones@19,21–23#. The influence of theb' and b3

terms ofE can no longer be expressed byb̃, and there is also
an influence of theb i term. All these influences increase th
marginal values ofC @19#.

VI. THE EFFECT OF THE LORENTZ FORCE
ON THE FLOW RATES

In the theory of the experiment, equations determining
fluid flow rates in the loops containing the central chann
and in those containing helical channels have been der
from the balance of the kinetic energy in these loops. T
rate of change of the kinetic energy in a loop is given by
work done by the pumps against the hydraulic resistance
the Lorentz force. For the work done by the Lorentz for
averaged over a central or a helical channel we w
^u•f&V, where^•••& means the average over this channelV
its volume andf the Lorentz force per unit volume,

f5m21~“3B!3B, ~47!

with m being the magnetic permeability of free space.
We use againB5B̄1B8. For all results reported here, w

have assumed thatB̄ is a homogeneous field and, corr
spondingly,B8 is also independent ofz so that Eq.~18! ap-
plies. Then alsof is independent ofz and^•••& may simply
be interpreted as an average over the section of the cha
with the x-y plane.

We have calculated the quantities^u•f&C and^u•f&H for a
central and a helical channel analytically in two differe
approximations@22,24#. In approximation~i!, all contribu-
tions to f of higher than first order inVC or VH were ne-
glected so that it applies to smallVC andVH only. In approxi-
mation ~ii !, arbitraryVC andVH were admitted, but as in an
earlier calculations of thea effect only a single spin genera
tor surrounded by conducting medium at rest was con
ered, i.e., any influence of the neighboring spin genera
was ignored. We represent the results of both approximat
in the form

^u•f&C52
s

2gC
S VC

sC
D 2

B'
2 cC~VC,VH!,

^u•f&H52
s

2gH
S VH

sH
D 2

B'
2 cH~VC,VH!. ~48!

Heres is the electric conductivity of the fluid,gC andgH are
given by

gC51, gH5
~r 11r 2!21~h/p!2

2~r 1
21r 2

2!1~h/p!2
, ~49!

sC and sH are the cross sections of the central and heli
channels, andB' is the magnetic flux density perpendicul
to the axis of the spin generator, i.e., to thez axis. In approxi-
mation ~i!, we havecC5cH51. In approximation~ii !, cC
1-9
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and cH are functions ofVC and VH satisfying cC(VC,0)
51 for VCÞ0 andcH(VC,0)51 for all VC, varying only
slightly with VC and decaying with growingVH ; see also
Fig. 9. The factorscC andcH in relation~48! for ^u•f&C and
^u•f&H describe the reduction of the Lorentz force by t
magnetic flux expulsion out of the moving fluid by its az
muthal motion.

We may conclude from the relevant equations t
^u•f&Cand ^u•f&H can again be represented in the form~48!
if the complete array of spin generators and arbitraryVC and
VH are taken into account. Only the dependences ofcC and
cH on VC andVH changes.

Before giving detailed results we make a general sta
ment on these dependences. As in the considerations in
paragraph containing Eq.~18!, we may again introduce th
quantitiesB8', B8i, u', ui and use Eq.~19!. With the same
reasoning as applied there we find that for the spin gener
flow B8' is independent ofVC and B8i linear in VC. We
further expressf' andfi , defined analogous toB8' andB8i,
according to Eq.~47! by the components ofB8' and Bi8,

their derivatives and the components ofB̄. In this way we
find that ^u•f&C is a sum of two terms, one proportional
VC and the other proportional toVC

2 . Consequently,cC has
the form cC

(0)(VH)1cC
(21)(VH)VC

21 with cC
(0)(0)51. We

further find that̂ u•f&H is a sum of three terms, one indepe
dent ofVC and the others proportional toVC andVC

2 , andcH

FIG. 9. The dependence ofcH and cC on ṼH for ṼC51 and

ṼC52 for an array of spin generators. For comparison the result
approximation~ii !, which considers a single spin generator only, a
also given.
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has the form cH
(0)(VH)1cH

(1)(VH)VC1cH
(2)(VH)VC

2 with
cH

(0)(0)51. This can be seen explicitly from the calculatio
in the approximation~ii ! mentioned above, in which, by th
way, cH

(2)50.
We have calculatedcC andcH numerically on the basis o

Eq. ~15! using the method described in Sec. III. The result
shown in Fig. 9. Instead of the complete array of spin g
erators, we have also considered an array in which fluid m
tion occurs only in one out of 434 spin generators. The
numerical result obtained for this case agrees very well w
the analytical result of approximation~ii ! shown in Fig. 9.

For a complete array of spin generators the factorscC and
cH in relation~48! are generally larger compared to approx
mation~ii !. In other words, the Lorentz force is less strong
reduced by the azimuthal motion of the fluid. This can
understood by considering that less magnetic flux can
pushed into regions without fluid motion.

VII. CONCLUSIONS

We have first dealt with a modified Roberts dynamo pro
lem with a flow pattern resembling that in the Karlsru
dynamo module. Based on numerical solutions of this pr
lem, a self-excitation condition was found. Since in the
calculations neither the finite radial extent of the dynam
module nor realistic boundary conditions at its plane bou
aries were taken into account, this self-excitation condit
deviates markedly from that for the experimental device.

A mean-field approach to the modified Roberts dyna
problem is presented. Two slightly different treatments
considered, assuming as usual only weak variations of
mean magnetic field in space, or admitting arbitrary var
tions in thez direction. The coefficienta' describing thea
effect and a coefficientb connected with derivatives of th
mean magnetic field are calculated for arbitrary fluid flo
rates. The result fora' corrects earlier results obtained in a
approximation that ignores the mutual influences of the s
generators@25#. It leads to a much better agreement of t
calculated self-excitation condition with the experimental
sults @22,23#. We note in passing that in the case of sm
flow rates our result, although calculated for rigid-body m
tions only, applies also for more general flow profil
@22,23#. The result forb suggests that the enlargement of t
effective magnetic diffusivity by the fluid motion can be pa
tially compensated by another effect of this motion. T
same has been observed in investigations with the Rob
flow @29#. This could be one of the reasons why the resu
calculated under idealizing assumptions, in particular ign
ing the effect of the mean-field diffusivity, deviate only littl
from the experimental results@23#.

In the framework of the mean-field approach, we ha
also given an estimate of the excitation condition which co
siders the finite radial extent of the dynamo module. It sho
that the real extent enhances the critical value ofC, which is
a dimensionless measure ofa' , by a factor 2. In other
words, if in the region ofVC andVH , in which experimental
investigations have been carried out,VC is fixed, VH has to
be larger by a factor between 2.5 and 3.5. If the excitat
condition is corrected in this way it does not underestim

of
1-10
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the requirements for self-excitation.
We have also calculated the effect of the Lorentz force

the fluid flow rates in the channels of a spin generator. Ag
our result corrects a former one obtained in the approxim
tion already mentioned, which ignores the mutual influen
of the spin generators@22,23#. The braking effect of the Lor-
entz force proves to be stronger than predicted by the for
calculations. This means in particular that estimates of
saturation field strengths given so far@22,24# have to be cor-
-

s

H

G

x
r-

-
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rected by factors between 0.8 and 0.9; for more details
the note added in proof in Ref.@24#.
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