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Abstract. In the past few years suggestions have emerged that the solar magnetic field might have a bi-helical contribution
with oppositely polarized magnetic fields at large and small scales, and that the shedding of such fields may be crucial for the
operation of the dynamo. It is shown that, if a bi-helical field is shed into the solar wind, positive and negative contributions
of the magnetic helicity spectrum tend to mix and decay. Even in the absence of turbulence, mixing and decay can occur on a
time scale faster than the resistive one provided the two signs of magnetic helicity originate from a single tube. In the presence
of turbulence, positively and negatively polarized contributions mix rapidly in such a way that the ratio of magnetic helicity
to magnetic energy is largest both at the largest scale and in the dissipation range. In absolute units the small scale excess of
helical fields is however negligible.
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1. Introduction

Hydromagnetic turbulence in the solar wind is long known to
have a magnetic power spectrum that is compatible with k− 5/3

(although with substantial error bars, see Matthaeus et al.
1982). The magnitude of the magnetic helicity is small, but
there is some evidence that it is negative above the heliospheric
current sheet and positive below it; see Smith & Bieber (1993)
and Bieber & Rust (1995). Spectra of magnetic energy and he-
licity have later also been calculated by Goldstein et al. (1994),
Leamon et al. (1998), and Smith (1999) under the assumption
of isotropy. They found net magnetic helicity only in the dissi-
pation range. They also reported efficient cancellation of mag-
netic helicity in the inertial range.

The presence of magnetic helicity at small scales is puz-
zling, because magnetic helicity is known to cascade to large
scales (Frisch et al. 1975; Pouquet et al. 1976). This inverse
cascade has also been seen in turbulence simulations both with
helical forcing (Pouquet & Patterson 1978; Balsara & Pouquet
1999; Brandenburg 2001) and without forcing but helical ini-
tial fields that are either tube-like (Horiuchi & Sato 1985, 1986;
Zhu et al. 1995) or turbulent (Christensson et al. 2001). It is
possible, however, that the spectral transfer of magnetic en-
ergy from small to large scales is a process that does not hap-
pen on a dynamical time scale but on a much slower resistive
time scale (Brandenburg & Sarson 2002). In that case the small
scale magnetic helicity will not have had time to cascade to
larger scales in the interval between the time of ejection of the
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observed magnetic field patch from the solar surface and the
time of in situ observation.

The purpose of the present paper is to study the type of in-
teractions that can occur on short dynamical time scales. This
is important in connection with the solar magnetic field. In ac-
tive regions the field is found to be markedly helical (Seehafer
1990; Pevtsov et al. 1995; Rust & Kumar 1996; Bao et al.
1999). On the other hand, the observed absence of net mag-
netic helicity in the inertial range of the solar wind seems to be
in conflict with the observed markedly helical field on the solar
surface. We believe that this may be related to recent theoreti-
cal suggestions that the magnetic helicity ejected from the sun
is bi-helical and has two components with opposite magnetic
helicity: one from intermediate scale fields and one from the
global field of the sun (Blackman & Brandenburg 2003).

The bi-helical nature of the solar magnetic field is high-
lighted by the fact that in active regions the magnetic he-
licity is negative (and positive on the southern hemisphere)
while, on the other hand, bipolar regions are tilted according
to Joy’s law (Hale et al. 1919), i.e. in the clockwise direction
in the north (and anti-clockwise in the south) suggesting that
the swirl of flux tubes is right handed, giving rise to positive
magnetic helicity (and negative magnetic helicity in the south).
This corresponds to what is also known as writhe helicity (e.g.
Longcope & Klapper 1997; Démoulin et al. 2002). This idea
of a bi-helical field is further supported by studies of sigmoids.
Figure 2a of Gibson et al. (2002) shows a TRACE image of
an N-shaped sigmoid (right-handed writhe) with left-handed
twisted filaments of the active region NOAA AR 8668, typi-
cal of the northern hemisphere.
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The puzzle of a bi-helical field structure can be resolved
when one realizes that an overall tilting of flux tubes causes
simultaneously an equal amount of internal twist in the tube
(Blackman & Brandenburg 2003). This is best seen when the
magnetic field is pictured as a ribbon. This picture supports the
notion that the magnetic field generated in the sun by an α-
effect must have opposite signs of magnetic helicity at large
and small scales (Seehafer 1996; Ji 1999; Brandenburg 2001;
Field & Blackman 2002; Blackman & Brandenburg 2002).

Once a magnetic field structure has emerged at the solar
surface, the tilt angle is known to relax gradually on a time
scale of a few days (Howard 1996; Longcope & Choudhuri
2002). This means that also the internal twist must decreases. In
order to understand quantitatively the fate of a bi-helical mag-
netic field after it has been ejected into the solar wind we study,
using simulations of hydromagnetic turbulence, what happens
to a magnetic field that is composed of large and small scale
fields of opposite helicity and different amplitudes. The expan-
sion of the solar wind is not explicitly taken into account, but it
is known that under similar circumstances of cosmological ex-
pansion helical magnetic fields can still show the inverse cas-
cade effect (Brandenburg et al. 1996).

2. The model

We consider a compressible isothermal gas with constant sound
speed cs, constant kinematic viscosity ν, constant magnetic dif-
fusivity η, and constant magnetic permeability µ0. The govern-
ing equations for density ρ, velocity u, and magnetic vector
potential A, are given by

D ln ρ
Dt

= −∇ · u, (1)

Du
Dt
= −c2

s∇ ln ρ +
J × B
ρ
+ Fvisc + f , (2)

∂A
∂t
= u × B − ηµ0 J, (3)

where D/Dt = ∂/∂t + u · ∇ is the advective derivative,
B = ∇ × A is the magnetic field, and J = ∇ × B/µ0 is the
current density. The viscous force is

Fvisc = ν

(
∇2u +

1
3
∇∇ · u + 2νS · ∇ ln ρ

)
, (4)

where Si j =
1
2 (ui, j + u j,i) − 1

3δi j∇ · u is the traceless rate of
strain tensor. In cases with forcing, f � 0 is a nonhelical forc-
ing function, selected randomly at each time step from a set of
nonhelical transversal wave vectors

f k = (k × ê) /
√

k2 − (k · ê)2, (5)

where ê is an arbitrary unit vector needed in order to generate
a vector k × ê that is perpendicular to k.

We use nondimensional quantities by measuring u in units
of cs, x in units of 1/k1, where k1 is the smallest wave number
in the box (side length L = 2π), density in units of the initial
value ρ0, and B is measured in units of

√
µ0ρ0 cs. This is equiv-

alent to putting cs = k1 = ρ0 = µ0 = 1.

In a periodic domain the total helicity,

H =
∫

A · B dV, (6)

is gauge invariant and conserved in the limit of zero magnetic
diffusivity. H is a topological measure of the mutual linkage of
the magnetic flux lines and thus the complexity of the magnetic
field.

Since we are interested in the distribution of helicity be-
tween different scales it is convenient to decompose the total
magnetic helicity into spectral modes, Hk, normalized such that

H =
∫

Hk dk. (7)

Hk is the contribution to H from the wave number interval (e.g.
Brandenburg et al. 2002)

k − δk/2 < |k| < k + δk/2 (k-shell). (8)

3. Results

3.1. No forcing

We first consider the evolution of a simple bi-helical initial field
consisting of a superposition of two Beltrami waves with wave
numbers k1 = (0, 0, 1) and k5 = (5, 0, 0) and helicities H1 =

10−6 and H5 = −10−5. The vector potential is then

A =

√
H1

k1


sin k1z
cos k1z

0

 +
√−H5

k5


0

cos k5x
sin k5x

 . (9)

The net magnetic helicity is negative, but since the small scales
decay faster there will be a time when the net magnetic helicity
turns positive.

Figure 1 shows magnetic and kinetic power spectra,

Ek =
1
2

∫
k-shell

|uk|2dk, Mk =
1
2

∫
k-shell

|Bk|2dk, (10)

at three different times. We find (as expected) resistive decay
of the power on the two wave numbers. Thus, there is no en-
hanced decay. This is readily explained by the absence of any
spectral overlap between the two components. This would not
change even if the wave vectors of the two Beltrami waves were
pointing in the same direction.

3.2. Nonhelical forcing

We now drive turbulence by adding a random forcing term that
acts on large scales with wave numbers between 1 and 2. We
find that the magnetic power in the two modes at k = 1 and 5
spreads rapidly among other wave numbers; see Fig. 2. In ad-
dition, there is also dynamo action giving rise to a magnetic
power spectrum that rises with t; see the last panel of Fig. 2.
The form of the magnetic energy spectrum in the dynamo case
is subject of a separate investigation (Haugen et al. 2003, and
references therein).

It is convenient to divide the magnetic power spectrum into
contributions from positively and negatively polarized waves
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Fig. 1. Magnetic and kinetic power spectra at three different times. No
explicit forcing of the flow. The initial magnetic field consists of a
superposition of two Beltrami fields at k = (0, 0, 1) with H1 = 10−6

and at k = (5, 0, 0) with H5 = −10−5.

Fig. 2. Magnetic and kinetic power spectra at three different times. The
flow is forced nonhelically in the wave numbers interval 1 ≤ |k| ≤ 2.
The initial magnetic field consists of a superposition of two Beltrami
fields at k = (0, 0, 1) with H1 = 10−6 and at k = (5, 0, 0) with H5 =

−10−5.

such that Mk = M+k +M−k (Waleffe 1993, see also Brandenburg
et al. 2002). The magnetic helicity spectrum can then be written
as

Hk = (2/k)
(
M+k − M−k

)
. (11)

Fig. 3. Magnetic power spectra of positive and negative polarized
contributions to the magnetic field. The sign of the magnetic helic-
ity is indicated by black dots (positive) and open squares (negative).
Otherwise like in Fig. 2.

The result is shown in Fig. 3, where we see that at early times
(t ≤ 10), M+k peaks at k = 1 and M−k peaks at k = 5. The mag-
netic helicity spectrum, normalized by k/2, is positive for k ≤ 3
and negative for k around 5. At later times, M+

k ≈ M−k and so the
normalized magnetic helicity, 1

2 kHk, is small, suggesting that
contributions from positively and negatively polarized waves
have mixed almost completely.

In Fig. 4 we plot 1
2 kHk/Mk, i.e. the magnetic helicity spec-

trum relative to the magnetic energy spectrum. Note the sys-
tematically negative values of the normalized magnetic helic-
ity in the dissipative subrange, just like in the plots of Leamon
et al. (1998). This enhancement of (negative) magnetic helicity
is probably the result of a direct cascade that transfers the nega-
tive magnetic helicity from intermediate to still smaller scales.
On the other hand, in absolute units the magnetic helicity re-
mains small at small scales and therefore the enhancement rel-
ative to the magnetic energy spectrum could be regarded as a
typical feature of such normalized plots and is not an indication
of a real excess of small scale magnetic helicity.

To summarize, the decay of magnetic helicity by mixing
occurs on a resistive time scale if there is no externally driven
turbulence. Decay on a faster (turbulent) time scale is possible
in the presence of externally driven nonhelical turbulence. This
is also in qualitative agreement with simulations by Maron &
Blackman (2002) who found that if the helicity of the forcing is
below a certain threshold the large scale field decays rapidly. In
the remainder of this paper we consider the decay of bi-helical
fields without any driving.
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Fig. 4. Magnetic helicity spectrum normalized by magnetic energy for
the same run as shown in Fig. 2, at t = 100. Note the relative magnetic
helicity excess both at largest and smallest scales.

Fig. 5. Decay of M±k (t) for k = 1 (dotted lines) and k = 5 (solid lines).
The lower curves, denoted by (i), are for ν = 2 × η = 10−3 while the
upper ones, denoted by (ii), are for ν = η = 10−3. The run that was
forced helically until t = 5, and was then let to decay. Note that the
field never decays faster than on the resistive rate (here only indicated
for k = 5).

3.3. Decay of a random bi-helical field

We first consider a random initial condition obtained by
stopping a helically driven turbulence run (as studied in
Brandenburg 2001). In Fig. 5 we show the evolution of M +

k
and M−k for those values of k where the spectra are maximum
for the initial condition (k = 1 for M−

k and k = 5 for M+k ). Note
that both M+k and M−k decay at rates that are clearly slower than
the resistive rate (indicated by a straight line). This is because
in three dimensional turbulence the decay of a magnetic field is
easily offset by dynamo action, even if the velocity is decaying
(Dobler et al. 2003).

In addition to the field decaying only slowly we also find
that the bi-helical character of the field prevails. Thus, dynamo
action alone does not produce mixing of the positively and neg-
atively polarized components. In the following section we sug-
gest that this is primarily a shortcoming of our initial condition
lacking positively and negatively polarized components within
a single physically connected flux structure.

3.4. Decay of a bi-helical flux tube

In order to make the connection with the magnetic field struc-
ture in real space it is instructive to consider explicitly a twisted
flux tube. We do this here by constructing the Cauchy solution
of an initially straight flux tube in a simple steady flow field.
The Cauchy solution (e.g. Moffatt 1978) is

Bi(x, τ) =
Gi j(x0, τ)

det G
B0 j(x0), (12)

where τ is the time coordinate for constructing the solu-
tion, Gi j = ∂xi/∂x0 j is the Lagrangian displacement matrix,
B0(x0) = B(x, 0) is the initial condition, and

x(x0, τ) = x0 +

∫ τ

0
U

(
x(τ′)

)
dτ′ (13)

is the position of an advected test particle whose original posi-
tion was at x0.

The flow must have the property of lifting the tube only in
one section and tilting it sideways, hence causing writhe helic-
ity in the tube. A simple steady flow with such properties is

U(x) =


0

ϕz sin x
1 + cos x

 , (14)

where ϕ is a parameter that controls the amount of twist.
Periodic boundary conditions are assumed in the range −π <
(x, y) < π and 0 < z < 2π. With this velocity field, Eq. (13)
reduces to

x(x0, τ) = x0 + U(x0) τ. (15)

This yields

Gi j(x0, τ) =


1 0 0

z0ϕτ cos x0 1 ϕτ sin x0

−τ sin x0 0 1

 . (16)

Note that det G = 1 (incompressibility) and G i j(x0, 0) = δi j, so
B0(x0) = B(x, 0). An example of the resulting magnetic field
structure is shown in Fig. 6 for ϕ = 0.2 and τ = 2. The initial
field was a straight tube with

B0(x) = x̂B0 exp
{
−

[
y2 + (z − h)2

]
/d2

}
, (17)

where h = 1 is the initial height of the tube, d = 0.5 is its radius,
and B0 = 0.1 is the initial field strength. The magnetic helicity
spectrum shows distinctively bi-helical behavior; see Fig. 7.

We use this Cauchy solution as initial condition for our
simulation, i.e. t = 0 corresponds now to τ = 2. The result
at time t = 33 is shown in Fig. 8. Unlike the previous case
(Figs. 1 and 5), the magnetic energies of the positively and neg-
atively polarized components decay at a rate faster than the re-
sistive rate. We characterize the decay of M±(k±, t) at k− = 1
and k+ = 4 in terms of effective diffusivity coefficients, η±, by
writing the decay law as

M±(k±, t) ∼ exp(−2η±k2
±t). (18)

The result is shown in Fig. 9 for two different values of η.
The decay rates are either completely independent of the mi-
croscopic value of η (for k = 1), or depend on it only weakly
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Fig. 6. Magnetic flux tube constructed from the Cauchy solution. τ =
2, ϕ = 0.2.

Fig. 7. Initial spectra of magnetic helicity, Hk, and of magnetic en-
ergy of positively and negatively polarized components, M+k and M−k ,
respectively.

(for k = 4). The decay happens therefore on something like
a “turbulent” resistive time scale. For orientation we use the
maximum rms velocity urms ≈ 0.006 and the estimated effec-
tive wave number of the energy carrying scale during velocity
maximum, keff = 4, to calculate a ‘turbulent’ magnetic diffu-
sivity, ηt ≡ urms/keff . It turns out that the effective diffusivity
coefficients, η±, are of the order of ηt and independent of the
magnetic Reynolds number. A relevant measure of the mag-
netic Reynolds is ηt/η. This ratio is either 1.5 or 15 in the two
cases shown (Fig. 9, solid and dashed lines, respectively), so
the magnetic Reynolds number has changed by a factor of 10
while the actual decay rates (characterized by the values of η+
and η−) are almost unchanged (Fig. 9).

We conclude from this that a single flux tube in a bi-helical
state with writhe and twist helicity of opposite sign relaxes to
a nonhelical state on a dynamical time scale. The final state is
not, however, a simple straight tube, but one with a more com-
plicated internal structure. On the other hand, bi-helical fields
generated randomly decay more slowly and do not tend to mix.
This is explained by dynamo action of the decaying turbulent
flow field and by inverse transfer of magnetic helicity (Pouquet
et al. 1976; Christensson et al. 2001).

Fig. 8. Magnetic flux tube after letting it relax until t = 33.

4. Discussion

Helical driving in the solar convection zone tends to produce
bi-helical fields. In the northern hemisphere the magnetic he-
licity is probably positive at large scales and negative at smaller
scales. In the absence of helical driving, for example in the so-
lar wind, an initially bi-helical field can relax in such a way that
contributions with positive and negative magnetic helicity mix.
The decay of magnetic helicity in the different modes will in
general happen on a turbulent time scale, until a certain level
is reached where a nonhelical magnetic field can be sustained
by nonhelical dynamo action. Even in the absence of any driv-
ing magnetic helicity of opposite signs and at different scales
can mix, provided this involves a singly connected magnetic
field structure (as shown in Sect. 3.4). This is probably related
to the possibility of rapid propagation of twist along the tube
as a torsional Alfvén wave (Longcope & Klapper 1997). If the
different signs of helicity do not reside on a single tube, the
mixing of oppositely oriented writhe and twist can be as slow
as a resistive time scale, as is the case where two orthogonal
Beltrami waves with opposite sign and different wavelengths
are superimposed.

In order to see the distribution of the sign of the magnetic
helicity over different scales one often plots the magnetic he-
licity spectrum normalized by the magnetic energy spectrum.
For the solar wind above the heliospheric current sheet this ra-
tio fluctuates around zero and has a negative excess within the
dissipative subrange (Leamon et al. 1998). Similar behavior is
also found in the present case and seems to be indeed a conse-
quence of magnetic diffusion helping mix oppositely oriented
waves efficiently.

Although there is qualitative support of the idea that there is
large scale magnetic helicity with opposite sign (Gibson et al.
2002), there is to our knowledge no quantitative measurement.
All explicit measurements point to a negative sign in the north-
ern hemisphere. If the solar field is indeed bi-helical, there may
be as yet undetected positive magnetic helicity at larger or per-
haps even at smaller scales. The fact that in the dissipative
range of solar wind turbulence the magnetic helicity is nega-
tive supports the former suggestion that the negative helicity
seen at the solar surface is related to the small scale magnetic
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Fig. 9. Decay of M−1 (t) and M+4 (t) for ν = η = 10−3 (solid lines). The
dotted lines give the result for ν = 10−3 and η = 10−4. The slopes
(dash-dotted lines) are given in units of ηt ≡ urms/keff , where urms is
the peak rms velocity and keff = 4 is the estimated effective wave
number of the energy carrying scale during the time where the velocity
is maximum. The upturn in the M+4 (t) curves after t = 40 is temporary
and caused by field cascading backward from larger wave numbers.

helicity, and that there is positive magnetic helicity on scales
larger than the scale of active regions.

Ideally, one should try to measure this large scale magnetic
helicity from the longitudinally averaged mean field. From syn-
optic maps one can obtain the longitudinally averaged radial
field at the surface. This allows one to calculate the toroidal
component of the magnetic vector potential, Aφ. Using spher-
ical polar coordinates for the axisymmetric mean field, the
gauge-invariant magnetic helicity of Berger & Field (1984) is
simply H = 2

∫
AφBφ dV (see Brandenburg et al. 2002). In or-

der to calculate H one still needs Bφ. Unfortunately, this can-
not be observed directly. Only its sign can be inferred from
the orientation of bipolar regions. Preliminary investigations
(Brandenburg et al. 2003) suggest that there are approximately
equally long intervals where AφBφ is positive and negative dur-
ing one cycle. The result is therefore inconclusive.

The best support for oppositely oriented magnetic helic-
ity at large scales comes from the fact that the footpoints of
emerging magnetic flux tubes are tilted clockwise in the north-
ern hemisphere and counterclockwise in the southern hemi-
sphere (Joy’s law). This corresponds to right-handed tubes in
the northern hemisphere and left-handed tubes in the southern
hemisphere, i.e. to positive magnetic helicity in the north and
negative magnetic helicity in the south. This is also in agree-
ment with studies of sigmoids suggesting that on the northern
hemisphere N-shaped sigmoids with right-handed writhe have
left-handed twisted filaments (Gibson et al. 2002).
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