PHYSICAL REVIEW E 69, 056407(2004

Magnetic helicity evolution in a periodic domain with imposed field
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In helical hydromagnetic turbulence with an imposed magnetic {igldch is constant in space and tiine

the magnetic helicity of the field within a periodic domain is no longer an invariant of the ideal equations.
Alternatively, there is a generalized magnetic helicity that is an invariant of the ideal equations. It is shown that
this quantity is not gauge invariant and that it can therefore not be used in practice. Instead, the evolution
equation of the magnetic helicity of the field describing the deviation from the imposed field is shown to be a
useful tool. It is demonstrated that this tool can determine steady state quenching of the alpha-effect. A simple
three-scale model is derived to describe the evolution of the magnetic helicity and to predict its sign as a
function of the imposed field strength. The results of the model agree favorably with simulations.
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I. INTRODUCTION effect in mean-field electrodynamics and derive a model

) o - ~equation in order to understand the evolution of the magnetic
Magnetic helicity has traditionally been used as a diagnejicity for different imposed field strengths.
nostic tool to characterize magnetic field topology. Only in

recent years has magnetic helicity also become a useful tool

in understanding large scale dynamo action. Magnetic helic- IIl. MAGNETIC HELICITY EQUATION

ity is important because it is conserved in the limit of van-

ishing resistivity. This isot the case with the kinetic helic- The evolution of the magnetic field is governed by
ity, which is also conserved in the inviscid case, but the

kinetic helicity dissipation rate diverges in the inviscid limit —=-VXE, V-B=0, (1)
[1]. In this sense kinetic helicity is not even approximately at

conserved at large Reynolds numbers, while magnetic he"‘i/'vhere the electric field is obtained from Ohm’s law
ity is very nearly conserved at large magnetic Reynolds num-
bers[2]. E=-uXB+7J, (2

A key result that has emerged from the concept of mag-
y g p gWhereu is the velocity,J the current density, andy the

netic helicity conservation is that, in a periodic domain, a™" > =~ . )
large scale magnetic field generated by theffect [3,4] resistivity. Throughout this paper we adopt Sl units, but we
set the permeability to unity. We consider all quantities to be

saturates on eesistivetime scal€[5]. This time scale can be > | odi an d LW ider th
very long. The helicity concept has also provided us with a"Ply Periodic over a cartesian domain. We consider the case

simple explanation for the final saturation field strength ofWlth a finite mean field

helic_al Qynamos in peri_odic d_omains; see F{é]:for_ details. (B) = By = const 0, (3)

In this light, the case with an imposed magnetic field has also

been considerefB,7], where it was found that above a cer- where angular brackets denote full volume averages. Such

tain field strength the dynamo is suppressed. averages have no spatial dependence, but they can still de-
In the present paper we use similar ideas to obtain a moréend on time. However, because of periodicity, the volume

detailed understanding of the case with an imposed field. waverage of the curl in Eql) vanishes, and henceR)/dt

begin with the equation governing the evolution of the mag—=0. In other wordsB is not only constant in space, but it is

netic helicity in a periodic domain in the presence of analso constant in time.

imposed field. It is well known that in that case the magnetic Next, we split the field into a mean and a fluctuating

helicity of the fluctuating magnetic field is no longer con- componentB=B,+b and introduce the magnetic vector po-

served in the nonresistive limi8], but we also point out that tential for the fluctuating component vie=V X a, wherea is

a certain generalizedor total) magnetic helicity that has periodic. The uncurled induction equation reads

sometimes been used instead is gauge dependent and there-

fore cannot be used in the present case. We then discuss a—a:_(E+V¢), (4)

applications of the magnetic helicity equation to the alpha- Jt

where ¢ is the scalar potential.
We now consider the magnetic helicity. The imposed field
*Electronic mail: brandenb@nordita.dk is constant in space and does not therefore contribute to the
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magnetic helicity. We therefore consider only the magnetic t

helicity of the fluctuating fieldH=(a-b). This quantity is Ao(t)=f Eot)at’. (13
gauge invariant because adding a gradient termmdoes not 0
changeH

(@+Ve)-b)=H+(V-(ph)) = (pV-b)=H. (5

Here we have used the solenoidality mfand the fact that _ .
the volume average over a divergence term vanishes for a at 21 - b). (14)
periodic domain. The equation for tligauge-dependente-

licity density of the fluctuating field can be obtained in the Indeed, this equation reduces to E8) after inserting Eqgs.
form (12) and(13) into Eq. (14).
9 The symbolA, is chosen to make the extra term in Eq.
E(a' b)=-2E-b-V-[(E-V¢) X a]. (6)  (12) look like a magnetic helicity, even thoud%x Ay=0
# By. The reason foV X Ay # By is thatA, corresponds to a
The divergence term vanishes after volume averaging, so slowly varying variable, whose curl give8, at a higher
order, and not the order we are working in; see &®) of
E(a -by=—2(E - b) %) Ref. [11]. ConverselyB, corresponds to the curl &, at a
dt ' lower order. A rigorous scale expansion is given in the Ap-

Note thatH is constructed such that it satisfies the equation

ndix of Ref.[11].

. . e
where all terms are gauge-independent. Making use of ECP. In the nonresistive limit, the right-hand side of Ed4)

(2), we have . N
vanishes, and sél is conserved. One may be tempted to
d : , conclude that in the steady stag,b)=0. This is not gener-
dt(a- b) = 2{(u X Bo) - b) = 27] - b), (8) ally true, however, and it would be in conflict with Eq40)

) ) and (11). Certainly for sufficiently weak fieldsy is finite
where we have use( -b)=(j-b). Equation(8) can also be [12], so #(j-b) will also remain finite, see Eql1). There-

written as fore, H cannot be constant in the steady state. The reason for

this puzzle is that! is not gauge invariantl 3], because the

definition of H involves the guantityA,. At first glance,Aq

. _ _ appears to be gauge invariant, becafigés gauge invariant
where the electromotive forc&,=Eo(t)=(u X b), has been  anq A involves only a time integral oveg,: see Eq(13).

introduced. If the flow is isotropic and helical, there will be owever, the beginning of the time integration is ill-defined,
an a-effect [3-5] with £y=aB,, so so in general one can replace

d
gl b ==2€0-Bo= 2 -b), (9)

t

Aolt) = Ag(t) = Agg+ fo Eo(t')dt’, (15

%(a -b) = - 2aB2 - 27(j - b). (10)

(In the Appendix, we clarify the implications of a finite ' ' ' o
effect when the Faraday displacement current is restored iwhich would lead to alifferentconserved magnetic helicity,

the Maxwell equations and when it is ignoreince(a-b)  H+AH, whereAH=2A,,-By=const is undetermined. There-
is gauge invariant, it is a physically meaningful quantity. If fore H is not a physically meaningful quantity, so it is not
there is a steady state, therb) must also be steady. In that surprising thatH can have a component that grows linearly

case we have in time. We emphasize however thdt(a-b) is still gauge
a=- 17 -b)IBZ, (11)  invariant and therefore physically meaningful, even though it

is no longer a conserved quantity in the ideal limit.
which is a relation due to Keinigi®] for the a-effect in the

saturated(steady state; see also Refl0Q]. If the field is

weak, thea-effect will remain finite in the high conductivity Ill. NONPERIODIC GAUGE POTENTIALS

limit [4]. . _ .
The presence of finite a-effect means that the structure h In E;]('js section \.N(ﬁ want to comment on tr?e _reLatﬁd |Zsue

of Eq. (11) is very different when there is an imposed field. that adding a spatially constant vectg(t) to the right-han

Unlike the case without imposed fiel@,=0), the quantity ~Side of Eq.(4) would not affect the evolution ob. The
H=(a-b) is no longer conserved in the limiy— 0. This constant vectoEg(t) can readily be absorbed in the defini-

prompted Matthaeus and Goldsté8j to consider the quan- tion of thg _scalar potentia, bgcause Itis speqﬂed only up
to an additional gauge potential. However, this gauge poten-

it . . o oo
y tial has in general a nonperiodic contribution, even when all
H=H+ 2A, - By, (12) other quantities are perlodlc. More spemﬁcaﬁy_m Eq.(4)
must have an additional component that vatiesarly in
where space, i.e.,
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¢=¢—-Eq-X, (16)

where ¢ is periodic andx is the position vector. We stress 0.1000
that ¢ in Eq. (16) is therefore in general not periodic, even if
a andb are periodic.

A comment on the helicity flux associated with the gauge 3
field is here in order. This flux is often written @ which
would then not be periodic and hence it is not obvious that 0.0010
its surface integral vanishes; see E@®.and (7). (The im-
portance of this term for magnetic helicity injection has been 0.0001
discussed in Ref14].) However, using the identity

Vo X a=V X (¢a) - ¢b, (17)

the magnetic helicity fluxpb can also be written a8 ¢ X a,

which is periodic. Therefore, there is no contribution from

the ¢b term in our case(We note that similar manipulations 0.1000
can be used to turn a nonperiodic vector potential into a
periodic one if the velocity is a linear function of coordinates
[15].) The termV X (¢a) has recently been discussed in a 3 0.0100
formulation of a magnetic helicity conserving dynamo effect }

rms

0.0100

a/

rms

[16]. Obviously, such a term does not give a contribution 0.0010 .
under the divergence and hence cannot be physically mean-
ingful [17]. 0.0001 s . .
1 10 100 1000
IV. APPLICATION TO a-QUENCHING R, Bg/qu

There have been a number of simulations of helically . . .
forced periodic flows with an imposed magnetic field. The FIG. 1. No_rmallzeda-effect versus n.ormallzed magnetic en-
general objective is to obtain theeffect and its suppression ©€rgy. scaled with the small scale magnetic Reynolds nurupger
as a function of field strengtf5,18,19. pane) and the large scale magnetic Reynolds nungloever panel.

In the steady state, E{LL) can be used to determineby VOt ”;.at Ftehe Or:get of qbuenChitng] isl govemeld by the t;msll SC{T'(?
measuring(j-b) in a simulation with an applied magnetic magnetic Reynolds number, not the farge scale magnetic Reynolds

field By. For helical turbulence(j-b) can be approximated number.

by nolds number aR,,= #,/ 5, then Eq.(21) can be turned into

(- b) = eki(b?, (18)  the interpolation formula

wheree=+1 for a fully helical field with positive or nega-
tive helicity, and|e|<1 for fractional helicity. A strongly = 1 +R.BYB
helical small scale magnetic field is generally expected when RinBo/Beq

the turbulent velocity field is also strongly helid@0]. The  hat recovers Eq21) for strong fields andv=a in the weak
steady stater is therefore given by field limit, Bo—0. This equation is known as the cata-

a=-ekn(b?)/B2 (steady state vale (19) strophic quenching formula of Vainshtein and Cattaffesj.
In order to confirm that the onset of steady state quench-

On the other hand, the kinematic valuecotan be estimated ing depends on the magnetic Reynolds number based on the

aK

(22)

in terms of the kinetic helicity, forcing scalg22], R, ;= um¢/ (77k;), and not on the magnetic
1 Reynolds number based on the scale of the [8ix Ry,
o = - éq(w -u) (kinematic valug, (200  =uUmd (7k;), we show two series of simulations obtained for

different values of the forcing wave numblgr for different
where 7 is the correlation time which, in tumn, can be ex- values ofB. The forcing of the flow was fully helical; for
pressed in terms of the turbulent magnetic diffusivity for details on the numerical method see R&f. The result is

which we have a similar expression,=2u?). In analo shown in Fig. 1.
to Eq.(18), we Write<w-u>xpefkf<u2>m5037< ) 9 Next, we consider simulations where we use hyperdiffu-

sivity, i.e., the ordinary magnetic diffusion operatg¥2B is

a replaced by(-1)""15,V2"B, wheren=1 corresponds to the
o ~ B (steady state valye (21)  standard case. This is a common tool in order to extend the
0

inertial range of the turbulend@3], but it is also clear that
If we assume that the small scale field is in equipartition, i.e.this leads to wrong saturation field strengtt2zl]. In the
(b?) = {ugpu?) = ng, and if we defing21] the magnetic Rey- presence of hyperdiffusivity, the magnetic Reynolds number
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100 " FIG. 3. Evolution of the total magnetic helicity=H;+H; as a
10~ 1 , © SOOQDOO ° ] function oft for different values oB,, as obtained from the three-
5 o dimensional simulation.
L 107°F @, .
E E
{‘" 10‘35 OC% o 1 ing is in practice not automatically catastrophid], i.e., the
S j0~ 4L ] onset of quenching does not dependRyp
°
1075} 1
10-6F ‘ ‘ ‘ . V. EVOLUTION OF LARGE SCALE
01 1.0 100 100.0 1000.0 MAGNETIC HELICITY
Rus B3/ B2 : : ;
- 4 Recently, the effect of an imposed field on the inverse
cascade has been studi&d7]. If the imposed magnetic field
109¢ ' is weak or absent, there is a strong nonlocal transfer of mag-
101k © Qoom o 1 netic helicity and magnetic energy from the forcing scale to
_2 © o larger scales. This leads eventually to the accumulation of
2 10 3 o) 3 magnetic energy at the scale of the bid23,23. As the
i“ 10—3;- 0(3) 3 strength of the imposed fieldwave numberk=0) is in-
S o4 3 @] creased, the accumulation of magnetic energy at the scale of
] ®] the box(k=1) becomes more and more suppresggid
10‘55— 1 Qualitatively, this can be understood as the result of two
1076t . . . competing effects(i) the inverse cascade that produces mag-
0.1 1.0 10.0 100.0 1000.0 netic helicity of opposite sign &=1 compared to that at the

Rm,rs Bg/ Biq

forcing wave numbek;, and (i) the a-effect operating on
the imposed field producing magnetic helicity of the same

FIG. 2. Normalizedx-effect versus magnetic field strength. The sign atk=1 than atk=k;. This is because the sign of the

full dots denote runs where hyperdiffusion has been used. In the-effect is opposite to the sign of the magnetic helicity at
second paneB§/BZ, is scaled with the magnetic Reynolds number k=k;, and « enters with a minus sign in the evolution Eq.
based on the forcing scale, . The last panel is similar to the (10) of magnetic helicity. Under the assumption that the tur-
second, but theffectiveforcing wave number has been used which pjlence is fully helical, the critical valuB. of the imposed

is ks scaled by a factor of 1.6. This brings especially the hyperdif-fia|d can be estimated by balancing the two terms on the
fusive runs(full dots) closer to the rest of the data points. right-hand side of Eq(10) and by approximating, as in Sec.
IV, a= ks and (j -b) = erkBZ; This yields

is defined aR, 1= Unms/ (7,K2" ). In the following we show,
however, that the quenching data are better described by a
single quenching curve wheaq is rescaled

BI/BZ,~ nlm =Ry, (24)
where the last equality is again to be understood as a defini-
tion of the magnetic Reynolds number, see also R&f].
For By> B- the sign of the magnetic helicity is the same both
The result is shown in Fig. 2. The factor of 1.6 is not ex-atk=1 and atk=Kk;, while for By<B- the signs are opposite.
pected to be universal but is probably a slowly varying func- A related phenomenological model for saturation of the
tion of magnetic Reynolds numb§21,24. dynamo effect under influence & has been givefi7] that

We conclude that Eq22) describes the simulations quite is based upon a Fourier scale separation approach. That ap-
well provided the magnetic Reynolds number is defined in groach leads to the conclusion that the critical vaBie
suitable manner. We emphasize however that this equation R;} rather thanR,;l’2 as above. Further analysis may be
only applies to the steady state and if there is no mean cureeded to fully reconcile the differences in these approaches,
rent. This is generally not the case and therefore the quenclpoth of which appear to have some support from simulations.

Rm,fs = urms/( ﬂnkfzsn_l)v Wherekfs = 1-a(f- (23)
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A more quantitative description of the evolution of the E}o=0.1 ' ]

: - ! . o 0.02|
magnetic helicity can be obtained by using a modified two- ‘ ]
scale modef21,22, where the term &y-B, from Eq.(9) has 0.00 Bg=0.07 ]
been included, so aé%” oo  Be=0.06 ]
. 3 N T
Hy==29iGH, + A€, -B) - 260 By, (25) o 00 e
T —0.06F By=0.05 3
Hy == 27H; ~ (€1 By). (26) ~0.08¢ Bo=003
-0.10t .
Here, H; and H; are the magnetic helicities at the wave- 0 20 40 60 80
numbers 1 and;, respectively, and€;-B,) is the helicity Urmskr ¢

production froma-effect and turbulent diffusion operating i, 4. Evolution of magnetic helicity as a function bffor

on the field atk=1. We note that the sum of Eq&5) and  gifferent values oB,, as obtained from the two-scale model.

(26) yields Eg. (7). The electromotive force; at wave-

numberk; is given by = ol (1 + BSIng), (32)
E1=a By~ Js. (27)  which is a good approximation to more elaborate expressions

[27]. We emphasize that this equation only appliestoand

To calculate{€;-B;) in Egs.(25) and(26) we dot Eq.(27) s therefore distinct from Eq22).

with B4, volume average, and note th(a]tl-Bl>:k§H1 and In Fig. 4 we show the result of a numerical integration of

<B§>=k1|H1|- The latter relation assumes that the field atEgs. (25) and (26). Both the three-dimensional simulation

wave-numberk; is fully helical, but that it can have either and the two-scale model show a similar value Bf

sign. Thus, we have ~0.06,...,0.07, above whichl; changes sign. This con-
firms the validity of our estimate of the critical valu®
(E1-By) = ag ky|Hq| — 7 K3H,. (2g)  obtained from Eq(24). Second, the time evolution is slow

when By<B. and faster wherBy>B.. In the simulation,

The large scale magnetic helicity production from the_however, the field qttains its final level f_cB0> B. almost _
a-effect operating on the imposed field & X Bo= a;B2. instantaneously, which is not the case in the model. It is

The a-effect is proportional to the residual magnetic helicity POSSible[7] that the almost instantaneous adjustment in the
of Pouquet, Frisch, and Lé&orf20], with simulations is a consequence of the Alfvén effect, which is

not included in the present model. This, and other shortcom-

1 ings of the present model may also be responsible for the
a=——1{ew-u) = -b)lpy), (290  mismatch between the magnetic helicity amplitudes seen in
3 the simulations and the model. Most characteristic in the

i o ) simulations is the fact thad; — 0 while H; # 0 in the limit of
wherer is the correlation time ang, the average density. In strong imposed field strength.

terms ofH,; andH; we write

a1 = ay + %TkiHl: (30) VI. CONCLUSIONS

We have shown thati) in the presence of an imposed
field and (ii) using triple-periodic boundary conditions, the
for the a-effect with feedback fronH, andH;, respectively.  generalized magnetic helicity8] in Eq. (12) is not gauge-
Here, ay is the contribution to thex-effect from the kine-  invariant and therefore cannot be used for practical purposes.
matic helicity, as defined in Eq20). This quantity has frequently been used in the solar wind

The above set of equations for the case of an imposedommunity as an alternative to the ordinary magnetic helic-
magnetic field is similar to a recently proposed four-scaleity which is known not to be conserved in the limit of van-
model[26], where two smaller scales were added relative tdshing resistivity. We have argued, however, that even though
the two-scale model. In the present case, on the other hanthe ordinary magnetic helicity is not conserved in the pres-
instead of including scales smaller than the forcing scale, thence of an imposed field and in the limit of low resistivity, it
imposed field at the infinite scale is included, albeit fixed inremains an extremely useful quantity that has predictive
time. power—similar to the case without imposed fi§H].

For finite values 0By, the final value oH, is particularly Based on analytic considerations and confirmed by the
sensitive to the value ofy and turns out to be too large simulations, we have shown that tisegn of the magnetic
compared with the simulations. This disagreement withhelicity depends on the strength of the imposed magnetic
SImUJatlons is readily removed by taking into account thatfield. If the field is weak enough, the situation is similar to
ax=37(w-u) should itself be quenched whay becomes the case without the imposed magnetic field and the sign of
comparable td., Thus, we write the magnetic helicity is opposite to the sign of the helicity of
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the turbulence. If the field exceeds a certain threshold, which TABLE I. Comparison of various volume averages in the pre-
is -2 times the equipartition field strength, wheRg is the ~ Maxwellian approximation and the full Maxwell equations. The as-
magnetic Reynolds number based on the forcing wave nunierisk denotes that this result is strictly valid only when also a time
ber, the sign of magnetic helicity changes and becomes equayerage is considered.

to the sign of the helicity of the turbulence. This can be
understood as a consequence of dheffect operating on the pre-Maxwell Maxwell
imposed field. In finite systems, thiseffect would cause the (

. . e u X b) #0 #0

large scale field to have opposite helicity compared to th?E>

small scale field. In an infinit¢or periodig system, this is #0 #0
not possible, and the entire field in the computational domair?) =0 q&?
plays the role of a small scale field which must then have théJ) < (B) =0 =0

same sign of helicity as the turbulence.
The two-scale model used to describe the nonlinear evo-
lution of helical dynamo$21,22 can be generalized to take (E) =—(u X B) + 7£J). (A3)
account of the large scale field. The formalism is similar to
recently proposed four-scale mod2g]. The nonlinear two-
scale and multiscale models play important roles in moderfU < B>:_<U X b). ) .
mean-field dynamo theory. Given that we are still lacking a !N helical hydromagnetic turbulence there is areffect
proper understanding of solar and stellar dynamos in thé3-5], S0 £y=(uXb)=aB,#0, and therefordE) # 0 and,
nonlinear regime, an independent confirmation of the nonlinbecause of Eq(A2), (J)#0. The latter condition is, of
ear multiscale model must therefore be regarded as a cruciapurse, inconsistent with our assumption that=(V X B)
step toward understanding the origin and maintenance of0. This discrepancy could be particularly important when
magnetic fields in turbulent astrophysical bodies. considering the contribution of the volume averaged field to
the Lorentz force(J)x(B), which vanishes in the pre-
Maxwellian magnetohydrodynami¢dMHD) approximation,
but not when the displacement current is retaifi2fj.

The authors thank the referee for inspiring us to comment Eliminating (E) from Eqgs.(A2) and (A3) we have
on the role of the displacement current in triply periodic d
systems, Eric Blackman for comments on the manuscript, 24 p— =€ (A4)
. 2 ) '+t 0s
and George Field for organizing the workshop at Virgin dt
Gorda, where we started working on this paper. The Danish

e, LT here the dot or€, denotes time differentiation. Equation
Center for Scientific Computing is acknowledged for grant-W 0 . . .
ing supercomputing time on the Horseshoe machine ir§A4) could be solved foKJ) either in terms of the Green’s

Odense. function exp—(t—t')c?/ ] or via series expansidi28], con-
firming that(J) # 0. However, here we are interested in the
Lorentz force, so we write

E\Ne assume that there is no net flow, Ka)=0. Therefore,
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APPENDIX A: THE ROLE OF THE DISPLACEMENT

CURRENT IN TRIPLY PERIODIC SYSTEMS ,.  d . ~
WITH IMPOSED FIELD (C * ”7dt>(<‘]> X (B)) =&y X Bo=0. (AS)

In this appendix we discuss a paradoxical situafid8]  The right-hand side of EqA5) vanishes, becaug8)=B is
that arises when comparing volume averages of the preserﬁ[dependent of time ané.=aB. is parallel toB,. The use
equationgwhere periodic boundary conditions are used ano|Of the equatiorEy= aB iggoresorandom quctua?i'ons i time
a uniform field is imposexwith the full Maxwell equations '~ =~ ' - th%t SEI’?SG H&S) is strictly valid only when
(where the displacement current is incluglethe displace- ’ '

ment current is given by the fourth Maxwell equation the averages are also taken over time.
9 y q The solution to Eq(A5) shows that, if the Lorentz force

19E from the mean field was vanishing initially, it must vanish at
S—=VxB-J, (A1) all times. Table | summarizes which of the different volume
¢ dt averages discussed in this section vanish in the pre-
Maxwellian MHD approximation and which quantities re-
wherec is the speed of light. We recall that the permeability main finite when the full Maxwell equations are used.
has been put to unity. Applying volume averages, and noting The apparent inconsistency is removed by noting that Eq.
that the volume average of the curl vanishes, we have (A1) does not simply exist in the pre-Maxwellian MHD for-
mulation and hence cannot be invoked in the discussion.
i@ =—(J) (A2) [The situation is similar to the incompressibility assumption
2 ot ' V-u=0, or the anelastic approximatidv-(pu)=0, both of
which do not implydp/dt=0. Indeed, the original continuity
On the other hand, the volume average of Ohm's [@v equation is no longer used and has instead beplacedby
yields V-u=0 or V-(pu)=0, respectively. Nevertheless, as far as

056407-6



MAGNETIC HELICITY EVOLUTION IN A PERIODIC... PHYSICAL REVIEW E 69, 056407(2004)

the Lorentz force is concerned, the neglect of the displaceperiodicity is employed in a two scale expansion as a local
ment current is inconsequential, because it vanishes in eithégading order model, no such problems emerge.
of the two cases; see Table I. Paradoxical situations arising from the assumption of
The mismatch betwee@)=0 in the pre-Maxwellian ap- triple periodicity are commonly resolved using scale expan-
proximation and the exact result)) # 0, is negligible, but sion. Another such example is the famous Jeans swindle
can be quantified using a rigorous expansion in terms of29], where the assumed zero order equilibrium state does
slowly and rapidly varying variablegd1]. Such an approach not obey triple periodicity; see Reff30,3] for a stability
also demonstrates quite nicely that the difficulties introducednalysis using a proper equilibrium solution. We emphasize,
into the periodic model by the presence of a nonzero uniforninowever, that the problem with the Jeans swindldigginct
mean field are due to imposing periodic boundary conditiongrom the problem with the displacement current discussed
on the entire(infinite volume system. If insteadsee the here. The latter is completely resolved by staying fully
Appendix of Ref[11]) the turbulence is assumed to be mod-within the pre-Maxwellian formulation, while the former is a
eled aslocally homogeneous, in the statistical sense, andrue mathematical swindle.
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