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In helical hydromagnetic turbulence with an imposed magnetic field(which is constant in space and time)
the magnetic helicity of the field within a periodic domain is no longer an invariant of the ideal equations.
Alternatively, there is a generalized magnetic helicity that is an invariant of the ideal equations. It is shown that
this quantity is not gauge invariant and that it can therefore not be used in practice. Instead, the evolution
equation of the magnetic helicity of the field describing the deviation from the imposed field is shown to be a
useful tool. It is demonstrated that this tool can determine steady state quenching of the alpha-effect. A simple
three-scale model is derived to describe the evolution of the magnetic helicity and to predict its sign as a
function of the imposed field strength. The results of the model agree favorably with simulations.
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I. INTRODUCTION

Magnetic helicity has traditionally been used as a diag-
nostic tool to characterize magnetic field topology. Only in
recent years has magnetic helicity also become a useful tool
in understanding large scale dynamo action. Magnetic helic-
ity is important because it is conserved in the limit of van-
ishing resistivity. This isnot the case with the kinetic helic-
ity, which is also conserved in the inviscid case, but the
kinetic helicity dissipation rate diverges in the inviscid limit
[1]. In this sense kinetic helicity is not even approximately
conserved at large Reynolds numbers, while magnetic helic-
ity is very nearly conserved at large magnetic Reynolds num-
bers[2].

A key result that has emerged from the concept of mag-
netic helicity conservation is that, in a periodic domain, a
large scale magnetic field generated by thea-effect [3,4]
saturates on aresistivetime scale[5]. This time scale can be
very long. The helicity concept has also provided us with a
simple explanation for the final saturation field strength of
helical dynamos in periodic domains; see Ref.[5] for details.
In this light, the case with an imposed magnetic field has also
been considered[6,7], where it was found that above a cer-
tain field strength the dynamo is suppressed.

In the present paper we use similar ideas to obtain a more
detailed understanding of the case with an imposed field. We
begin with the equation governing the evolution of the mag-
netic helicity in a periodic domain in the presence of an
imposed field. It is well known that in that case the magnetic
helicity of the fluctuating magnetic field is no longer con-
served in the nonresistive limit[8], but we also point out that
a certain generalized(or total) magnetic helicity that has
sometimes been used instead is gauge dependent and there-
fore cannot be used in the present case. We then discuss
applications of the magnetic helicity equation to the alpha-

effect in mean-field electrodynamics and derive a model
equation in order to understand the evolution of the magnetic
helicity for different imposed field strengths.

II. MAGNETIC HELICITY EQUATION

The evolution of the magnetic fieldB is governed by

] B

] t
= − = 3 E, = ·B = 0, s1d

where the electric field is obtained from Ohm’s law

E = − u 3 B + hJ, s2d

where u is the velocity,J the current density, andh the
resistivity. Throughout this paper we adopt SI units, but we
set the permeability to unity. We consider all quantities to be
triply periodic over a cartesian domain. We consider the case
with a finite mean field

kBl ; B0 = constÞ 0, s3d

where angular brackets denote full volume averages. Such
averages have no spatial dependence, but they can still de-
pend on time. However, because of periodicity, the volume
average of the curl in Eq.(1) vanishes, and hence dkBl /dt
=0. In other words,B0 is not only constant in space, but it is
also constant in time.

Next, we split the field into a mean and a fluctuating
componentB=B0+b and introduce the magnetic vector po-
tential for the fluctuating component viab==3a, wherea is
periodic. The uncurled induction equation reads

] a

] t
= − sE + =fd, s4d

wheref is the scalar potential.
We now consider the magnetic helicity. The imposed field
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magnetic helicity. We therefore consider only the magnetic
helicity of the fluctuating fieldH=ka·bl. This quantity is
gauge invariant because adding a gradient term toa does not
changeH

ksa + =wd ·bl = H + k= · swbdl − kw= ·bl = H. s5d

Here we have used the solenoidality ofb, and the fact that
the volume average over a divergence term vanishes for a
periodic domain. The equation for the(gauge-dependent) he-
licity density of the fluctuating field can be obtained in the
form

]

] t
sa ·bd = − 2E ·b − = · fsE − =fd 3 ag. s6d

The divergence term vanishes after volume averaging, so

d

dt
ka ·bl = − 2kE ·bl, s7d

where all terms are gauge-independent. Making use of Eq.
(2), we have

d

dt
ka ·bl = 2ksu 3 B0d ·bl − 2hkj ·bl, s8d

where we have usedkJ ·bl=kj ·bl. Equation(8) can also be
written as

d

dt
ka ·bl = − 2E0 ·B0 − 2hkj ·bl, s9d

where the electromotive force,E0=E0std=ku3bl, has been
introduced. If the flow is isotropic and helical, there will be
an a-effect [3–5] with E0=aB0, so

d

dt
ka ·bl = − 2aB0

2 − 2hkj ·bl. s10d

(In the Appendix, we clarify the implications of a finitea
effect when the Faraday displacement current is restored in
the Maxwell equations and when it is ignored.) Sinceka·bl
is gauge invariant, it is a physically meaningful quantity. If
there is a steady state, thenka·bl must also be steady. In that
case we have

a = − hkj ·bl/B0
2, s11d

which is a relation due to Keinigs[9] for the a-effect in the
saturated(steady) state; see also Ref.[10]. If the field is
weak, thea-effect will remain finite in the high conductivity
limit [4].

The presence of afinite a-effect means that the structure
of Eq. (11) is very different when there is an imposed field.
Unlike the case without imposed fieldsB0=0d, the quantity
H=ka·bl is no longer conserved in the limith→0. This
prompted Matthaeus and Goldstein[8] to consider the quan-
tity

Ĥ = H + 2A0 ·B0, s12d

where

A0std =E
0

t

E0st8ddt8. s13d

Note thatĤ is constructed such that it satisfies the equation

dĤ

dt
= − 2hkj ·bl. s14d

Indeed, this equation reduces to Eq.(9) after inserting Eqs.
(12) and (13) into Eq. (14).

The symbolA0 is chosen to make the extra term in Eq.
(12) look like a magnetic helicity, even though=3A0=0
ÞB0. The reason for=3A0ÞB0 is thatA0 corresponds to a
slowly varying variable, whose curl givesB0 at a higher
order, and not the order we are working in; see Eq.(A9) of
Ref. [11]. Conversely,B0 corresponds to the curl ofA0 at a
lower order. A rigorous scale expansion is given in the Ap-
pendix of Ref.[11].

In the nonresistive limit, the right-hand side of Eq.(14)
vanishes, and soĤ is conserved. One may be tempted to
conclude that in the steady state,kj ·bl=0. This is not gener-
ally true, however, and it would be in conflict with Eqs.(10)
and (11). Certainly for sufficiently weak fieldsa is finite
[12], so hkj ·bl will also remain finite, see Eq.(11). There-

fore, Ĥ cannot be constant in the steady state. The reason for

this puzzle is thatĤ is not gauge invariant[13], because the

definition of Ĥ involves the quantityA0. At first glance,A0
appears to be gauge invariant, becauseE0 is gauge invariant
andA0 involves only a time integral overE0; see Eq.(13).
However, the beginning of the time integration is ill-defined,
so in general one can replace

A0std → Ã0std = A00 +E
0

t

E0st8ddt8, s15d

which would lead to adifferentconserved magnetic helicity,

Ĥ+DĤ, whereDĤ=2A00·B0=const is undetermined. There-

fore, Ĥ is not a physically meaningful quantity, so it is not

surprising thatĤ can have a component that grows linearly
in time. We emphasize however thatH=ka·bl is still gauge
invariant and therefore physically meaningful, even though it
is no longer a conserved quantity in the ideal limit.

III. NONPERIODIC GAUGE POTENTIALS

In this section we want to comment on the related issue
that adding a spatially constant vectorE0std to the right-hand
side of Eq. (4) would not affect the evolution ofb. The
constant vectorE0std can readily be absorbed in the defini-
tion of the scalar potentialf, because it is specified only up
to an additional gauge potential. However, this gauge poten-
tial has in general a nonperiodic contribution, even when all
other quantities are periodic. More specifically,f in Eq. (4)
must have an additional component that varieslinearly in
space, i.e.,
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f = f̃ − E0 ·x, s16d

where f̃ is periodic andx is the position vector. We stress
thatf in Eq. (16) is therefore in general not periodic, even if
a andb are periodic.

A comment on the helicity flux associated with the gauge
field is here in order. This flux is often written asfb which
would then not be periodic and hence it is not obvious that
its surface integral vanishes; see Eqs.(6) and (7). (The im-
portance of this term for magnetic helicity injection has been
discussed in Ref.[14].) However, using the identity

=f 3 a = = 3 sfad − fb, s17d

the magnetic helicity fluxfb can also be written as=f3a,
which is periodic. Therefore, there is no contribution from
thefb term in our case.(We note that similar manipulations
can be used to turn a nonperiodic vector potential into a
periodic one if the velocity is a linear function of coordinates
[15].) The term=3 sfad has recently been discussed in a
formulation of a magnetic helicity conserving dynamo effect
[16]. Obviously, such a term does not give a contribution
under the divergence and hence cannot be physically mean-
ingful [17].

IV. APPLICATION TO a-QUENCHING

There have been a number of simulations of helically
forced periodic flows with an imposed magnetic field. The
general objective is to obtain thea-effect and its suppression
as a function of field strength[5,18,19].

In the steady state, Eq.(11) can be used to determinea by
measuringkj ·bl in a simulation with an applied magnetic
field B0. For helical turbulence,kj ·bl can be approximated
by

kj ·bl < efkfkb2l, s18d

whereef = ±1 for a fully helical field with positive or nega-
tive helicity, and uefu,1 for fractional helicity. A strongly
helical small scale magnetic field is generally expected when
the turbulent velocity field is also strongly helical[20]. The
steady statea is therefore given by

a = − efkfhkb2l/B0
2 ssteady state valued. s19d

On the other hand, the kinematic value ofa can be estimated
in terms of the kinetic helicity,

aK = −
1

3
tkv ·ul skinematic valued, s20d

where t is the correlation time which, in turn, can be ex-
pressed in terms of the turbulent magnetic diffusivity for
which we have a similar expression,ht=

1
3tku2l. In analogy

to Eq. (18), we write kv ·ul<efkfku2l, so

a

aK
<

h

ht

kb2l
B0

2 ssteady state valued. s21d

If we assume that the small scale field is in equipartition, i.e.,
kb2l<km0ru2l;Beq

2 , and if we define[21] the magnetic Rey-

nolds number asRm;ht /h, then Eq.(21) can be turned into
the interpolation formula

a =
aK

1 + RmB0
2/Beq

2 , s22d

that recovers Eq.(21) for strong fields anda=aK in the weak
field limit, B0→0. This equation is known as the cata-
strophic quenching formula of Vainshtein and Cattaneo[12].

In order to confirm that the onset of steady state quench-
ing depends on the magnetic Reynolds number based on the
forcing scale[22], Rm,f ;urms/ shkfd, and not on the magnetic
Reynolds number based on the scale of the box[5], Rm,1
;urms/ shk1d, we show two series of simulations obtained for
different values of the forcing wave numberkf, for different
values ofB0. The forcing of the flow was fully helical; for
details on the numerical method see Ref.[5]. The result is
shown in Fig. 1.

Next, we consider simulations where we use hyperdiffu-
sivity, i.e., the ordinary magnetic diffusion operatorh¹2B is
replaced bys−1dn−1hn¹

2nB, wheren=1 corresponds to the
standard case. This is a common tool in order to extend the
inertial range of the turbulence[23], but it is also clear that
this leads to wrong saturation field strengths[24]. In the
presence of hyperdiffusivity, the magnetic Reynolds number

FIG. 1. Normalizeda-effect versus normalized magnetic en-
ergy, scaled with the small scale magnetic Reynolds number(upper
panel) and the large scale magnetic Reynolds number(lower panel).
Note that the onset of quenching is governed by the small scale
magnetic Reynolds number, not the large scale magnetic Reynolds
number.
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is defined asRm,f;urms/ shnkf
2n−1d. In the following we show,

however, that the quenching data are better described by a
single quenching curve whenkf is rescaled

Rm,fs ; urms/shnkfs
2n−1d, wherekfs = 1.6kf . s23d

The result is shown in Fig. 2. The factor of 1.6 is not ex-
pected to be universal but is probably a slowly varying func-
tion of magnetic Reynolds number[21,24].

We conclude that Eq.(22) describes the simulations quite
well provided the magnetic Reynolds number is defined in a
suitable manner. We emphasize however that this equation
only applies to the steady state and if there is no mean cur-
rent. This is generally not the case and therefore the quench-

ing is in practice not automatically catastrophic[21], i.e., the
onset of quenching does not depend onRm.

V. EVOLUTION OF LARGE SCALE
MAGNETIC HELICITY

Recently, the effect of an imposed field on the inverse
cascade has been studied[6,7]. If the imposed magnetic field
is weak or absent, there is a strong nonlocal transfer of mag-
netic helicity and magnetic energy from the forcing scale to
larger scales. This leads eventually to the accumulation of
magnetic energy at the scale of the box[5,23,25]. As the
strength of the imposed field(wave numberk=0) is in-
creased, the accumulation of magnetic energy at the scale of
the boxsk=1d becomes more and more suppressed[6].

Qualitatively, this can be understood as the result of two
competing effects:(i) the inverse cascade that produces mag-
netic helicity of opposite sign atk=1 compared to that at the
forcing wave numberkf, and (ii ) the a-effect operating on
the imposed field producing magnetic helicity of the same
sign at k=1 than atk=kf. This is because the sign of the
a-effect is opposite to the sign of the magnetic helicity at
k=kf, and a enters with a minus sign in the evolution Eq.
(10) of magnetic helicity. Under the assumption that the tur-
bulence is fully helical, the critical valueB* of the imposed
field can be estimated by balancing the two terms on the
right-hand side of Eq.(10) and by approximating, as in Sec.
IV, a<htefkf and kj ·bl<e fkfBeq

2 . This yields

B*
2/Beq

2 < h/ht = Rm
−1, s24d

where the last equality is again to be understood as a defini-
tion of the magnetic Reynolds number, see also Ref.[21].
For B0.B* the sign of the magnetic helicity is the same both
at k=1 and atk=kf, while for B0,B* the signs are opposite.

A related phenomenological model for saturation of the
dynamo effect under influence ofB0 has been given[7] that
is based upon a Fourier scale separation approach. That ap-
proach leads to the conclusion that the critical valueB*
~Rm

−1 rather thanRm
−1/2 as above. Further analysis may be

needed to fully reconcile the differences in these approaches,
both of which appear to have some support from simulations.

FIG. 2. Normalizeda-effect versus magnetic field strength. The
full dots denote runs where hyperdiffusion has been used. In the
second panel,B0

2/Beq
2 is scaled with the magnetic Reynolds number

based on the forcing scaleRm,f. The last panel is similar to the
second, but theeffectiveforcing wave number has been used which
is kf scaled by a factor of 1.6. This brings especially the hyperdif-
fusive runs(full dots) closer to the rest of the data points.

FIG. 3. Evolution of the total magnetic helicityH=H1+Hf as a
function of t for different values ofB0, as obtained from the three-
dimensional simulation.
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A more quantitative description of the evolution of the
magnetic helicity can be obtained by using a modified two-
scale model[21,22], where the term 2E0·B0 from Eq.(9) has
been included, so

Ḣ1 = − 2hk1
2H1 + 2kE1 ·B1l − 2E0 ·B0, s25d

Ḣf = − 2hkf
2Hf − 2kE1 ·B1l. s26d

Here, H1 and Hf are the magnetic helicities at the wave-
numbers 1 andkf, respectively, andkE1·B1l is the helicity
production froma-effect and turbulent diffusion operating
on the field atk=1. We note that the sum of Eqs.(25) and
(26) yields Eq. (7). The electromotive forceE1 at wave-
numberk1 is given by

E1 = af B1 − ht J1. s27d

To calculatekE1·B1l in Eqs. (25) and (26) we dot Eq.(27)
with B1, volume average, and note thatkJ1·B1l=k1

2H1 and
kB1

2l=k1uH1u. The latter relation assumes that the field at
wave-numberk1 is fully helical, but that it can have either
sign. Thus, we have

kE1 ·B1l = af k1uH1u − ht k1
2H1. s28d

The large scale magnetic helicity production from the
a-effect operating on the imposed field isE03B0=a1B0

2.
Thea-effect is proportional to the residual magnetic helicity
of Pouquet, Frisch, and Léorat[20], with

a = −
1

3
tskv ·ul − kj ·bl/r0d, s29d

wheret is the correlation time andr0 the average density. In
terms ofH1 andHf we write

a1 = aK +
1

3
t k1

2H1, s30d

for the a-effect with feedback fromH1 andHf, respectively.
Here, aK is the contribution to thea-effect from the kine-
matic helicity, as defined in Eq.(20).

The above set of equations for the case of an imposed
magnetic field is similar to a recently proposed four-scale
model[26], where two smaller scales were added relative to
the two-scale model. In the present case, on the other hand,
instead of including scales smaller than the forcing scale, the
imposed field at the infinite scale is included, albeit fixed in
time.

For finite values ofB0, the final value ofH1 is particularly
sensitive to the value ofaK and turns out to be too large
compared with the simulations. This disagreement with
simulations is readily removed by taking into account that
aK = 1

3t kv ·ul should itself be quenched whenB0 becomes
comparable toBeq. Thus, we write

aK = aK0/s1 + B0
2/Beq

2 d, s32d

which is a good approximation to more elaborate expressions
[27]. We emphasize that this equation only applies toaK and
is therefore distinct from Eq.(22).

In Fig. 4 we show the result of a numerical integration of
Eqs. (25) and (26). Both the three-dimensional simulation
and the two-scale model show a similar value ofB0
<0.06, . . . ,0.07, above whichH1 changes sign. This con-
firms the validity of our estimate of the critical valueB*
obtained from Eq.(24). Second, the time evolution is slow
when B0,B* and faster whenB0.B* . In the simulation,
however, the field attains its final level forB0.B* almost
instantaneously, which is not the case in the model. It is
possible[7] that the almost instantaneous adjustment in the
simulations is a consequence of the Alfvén effect, which is
not included in the present model. This, and other shortcom-
ings of the present model may also be responsible for the
mismatch between the magnetic helicity amplitudes seen in
the simulations and the model. Most characteristic in the
simulations is the fact thatH1→0 whileHf Þ0 in the limit of
strong imposed field strength.

VI. CONCLUSIONS

We have shown that(i) in the presence of an imposed
field and (ii ) using triple-periodic boundary conditions, the
generalized magnetic helicity[8] in Eq. (12) is not gauge-
invariant and therefore cannot be used for practical purposes.
This quantity has frequently been used in the solar wind
community as an alternative to the ordinary magnetic helic-
ity which is known not to be conserved in the limit of van-
ishing resistivity. We have argued, however, that even though
the ordinary magnetic helicity is not conserved in the pres-
ence of an imposed field and in the limit of low resistivity, it
remains an extremely useful quantity that has predictive
power–similar to the case without imposed field[5].

Based on analytic considerations and confirmed by the
simulations, we have shown that thesign of the magnetic
helicity depends on the strength of the imposed magnetic
field. If the field is weak enough, the situation is similar to
the case without the imposed magnetic field and the sign of
the magnetic helicity is opposite to the sign of the helicity of

FIG. 4. Evolution of magnetic helicity as a function oft for
different values ofB0, as obtained from the two-scale model.
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the turbulence. If the field exceeds a certain threshold, which
is Rm

−1/2 times the equipartition field strength, whereRm is the
magnetic Reynolds number based on the forcing wave num-
ber, the sign of magnetic helicity changes and becomes equal
to the sign of the helicity of the turbulence. This can be
understood as a consequence of thea-effect operating on the
imposed field. In finite systems, thisa-effect would cause the
large scale field to have opposite helicity compared to the
small scale field. In an infinite(or periodic) system, this is
not possible, and the entire field in the computational domain
plays the role of a small scale field which must then have the
same sign of helicity as the turbulence.

The two-scale model used to describe the nonlinear evo-
lution of helical dynamos[21,22] can be generalized to take
account of the large scale field. The formalism is similar to a
recently proposed four-scale model[26]. The nonlinear two-
scale and multiscale models play important roles in modern
mean-field dynamo theory. Given that we are still lacking a
proper understanding of solar and stellar dynamos in the
nonlinear regime, an independent confirmation of the nonlin-
ear multiscale model must therefore be regarded as a crucial
step toward understanding the origin and maintenance of
magnetic fields in turbulent astrophysical bodies.
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APPENDIX A: THE ROLE OF THE DISPLACEMENT
CURRENT IN TRIPLY PERIODIC SYSTEMS

WITH IMPOSED FIELD

In this appendix we discuss a paradoxical situation[28]
that arises when comparing volume averages of the present
equations(where periodic boundary conditions are used and
a uniform field is imposed) with the full Maxwell equations
(where the displacement current is included). The displace-
ment current is given by the fourth Maxwell equation

1

c2

] E

] t
= = 3 B − J, sA1d

wherec is the speed of light. We recall that the permeability
has been put to unity. Applying volume averages, and noting
that the volume average of the curl vanishes, we have

1

c2

] kEl
] t

= − kJl. sA2d

On the other hand, the volume average of Ohm’s law(2)
yields

kEl = − ku 3 Bl + hkJl. sA3d

We assume that there is no net flow, i.e.kul=0. Therefore,
ku3Bl=ku3bl.

In helical hydromagnetic turbulence there is ana-effect
[3–5], so E0;ku3bl=aB0Þ0, and thereforekElÞ0 and,
because of Eq.(A2), kJlÞ0. The latter condition is, of
course, inconsistent with our assumption thatkJl=k=3Bl
=0. This discrepancy could be particularly important when
considering the contribution of the volume averaged field to
the Lorentz forcekJl3 kBl, which vanishes in the pre-
Maxwellian magnetohydrodynamics(MHD) approximation,
but not when the displacement current is retained[28].

Eliminating kEl from Eqs.(A2) and (A3) we have

Sc2 + h
d

dt
DkJl = Ė0, sA4d

where the dot onE0 denotes time differentiation. Equation
(A4) could be solved forkJl either in terms of the Green’s
function expf−st− t8dc2/hg or via series expansion[28], con-
firming that kJlÞ0. However, here we are interested in the
Lorentz force, so we write

Sc2 + h
d

dt
DskJl 3 kBld = Ė0 3 B0 = 0. sA5d

The right-hand side of Eq.(A5) vanishes, becausekBl=B0 is

independent of time andĖ0=ȧB0 is parallel toB0. The use
of the equationE0=aB0 ignores random fluctuations in time
about zero. In that sense, Eq.(A5) is strictly valid only when
the averages are also taken over time.

The solution to Eq.(A5) shows that, if the Lorentz force
from the mean field was vanishing initially, it must vanish at
all times. Table I summarizes which of the different volume
averages discussed in this section vanish in the pre-
Maxwellian MHD approximation and which quantities re-
main finite when the full Maxwell equations are used.

The apparent inconsistency is removed by noting that Eq.
(A1) does not simply exist in the pre-Maxwellian MHD for-
mulation and hence cannot be invoked in the discussion.
[The situation is similar to the incompressibility assumption
= ·u=0, or the anelastic approximation= ·srud=0, both of
which do not imply]r /]t=0. Indeed, the original continuity
equation is no longer used and has instead beenreplacedby
= ·u=0 or = ·srud=0, respectively.] Nevertheless, as far as

TABLE I. Comparison of various volume averages in the pre-
Maxwellian approximation and the full Maxwell equations. The as-
terisk denotes that this result is strictly valid only when also a time
average is considered.

pre-Maxwell Maxwell

ku3bl Þ0 Þ0

kEl Þ0 Þ0

kJl =0 Þ0

kJl3 kBl =0 =0*
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the Lorentz force is concerned, the neglect of the displace-
ment current is inconsequential, because it vanishes in either
of the two cases; see Table I.

The mismatch betweenkJl=0 in the pre-Maxwellian ap-
proximation and the exact result,kJlÞ0, is negligible, but
can be quantified using a rigorous expansion in terms of
slowly and rapidly varying variables[11]. Such an approach
also demonstrates quite nicely that the difficulties introduced
into the periodic model by the presence of a nonzero uniform
mean field are due to imposing periodic boundary conditions
on the entire(infinite volume) system. If instead(see the
Appendix of Ref.[11]) the turbulence is assumed to be mod-
eled aslocally homogeneous, in the statistical sense, and

periodicity is employed in a two scale expansion as a local
leading order model, no such problems emerge.

Paradoxical situations arising from the assumption of
triple periodicity are commonly resolved using scale expan-
sion. Another such example is the famous Jeans swindle
[29], where the assumed zero order equilibrium state does
not obey triple periodicity; see Refs.[30,31] for a stability
analysis using a proper equilibrium solution. We emphasize,
however, that the problem with the Jeans swindle isdistinct
from the problem with the displacement current discussed
here. The latter is completely resolved by staying fully
within the pre-Maxwellian formulation, while the former is a
true mathematical swindle.
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