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Abstract. A new simulation set-up is proposed for studying mean field dynamo action. The model combines the computational
advantages of local Cartesian geometry with the ability to include a shear profile that resembles the sun’s differential rotation
at low latitudes. It is shown that in a two-dimensional mean field model this geometry produces cyclic solutions with dynamo
waves traveling away from the equator – as expected for a positive alpha effect in the northern hemisphere. In three dimensions
with turbulence driven by a helical forcing function, an alpha effect is self-consistently generated in the presence of a finite
imposed toroidal magnetic field. The results suggest that, due to a finite flux of current helicity out of the domain, alpha
quenching appears to be non-catastrophic – at least for intermediate values of the magnetic Reynolds number. For larger values
of the magnetic Reynolds number, however, there is evidence for a reversal of the trend and that αmay decrease with increasing
magnetic Reynolds number. Control experiments with closed boundaries confirm that in the absence of a current helicity flux,
but with shear as before, alpha quenching is always catastrophic and alpha decreases inversely proportional to the magnetic
Reynolds number. For solar parameters, our results suggest a current helicity flux of about 0.001 G2/s. This corresponds to a
magnetic helicity flux, integrated over the northern hemisphere and over the 11 year solar cycle, of about 1046 Mx2.
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1. Introduction

The large scale magnetic field of stars and galaxies is often
interpreted in terms of mean field dynamo theory, which takes
into account that the turbulence is at least partially helical. The
helicity, in turn, leads to the so-called α effect, i.e. an averaged
field-aligned current that induces new field loops perpendicular
to the original field (Moffatt 1978; Krause & Rädler 1980). In
the presence of shear, poloidal loops get sheared out, thereby
reinforcing the toroidal field from which more poloidal loops
can be created. This is the basic αΩ dynamo mechanism which
is at least in principle able to explain the cyclic variation of the
solar magnetic field (Parker 1979).

The investigation of mean field dynamos has been the sub-
ject of numerous papers since the 1970s (see also Zeldovich
et al. 1983). With the advent of high resolution turbulence sim-
ulations it has become exceedingly clear that there is a serious
problem in the nonlinear case at large magnetic Reynolds num-
bers. Similar problems are completely unknown in the context
of nonmagnetic, purely hydrodynamic turbulence or in non-
helical hydromagnetic turbulence where the associated dissi-
pative fluxes always remain finite. This is not the case with the
magnetic helicity flux which goes to zero in the large magnetic
Reynolds number limit (Berger 1984). The magnetic helicity

is thus almost perfectly conserved in practically all astrophysi-
cally interesting cases.

An important consequence of magnetic helicity conserva-
tion is the fact that the α effect cannot produce any net mag-
netic helicity. This means that if the α effect produces large
scale magnetic fields, it must at the same time also give rise
to a certain amount of small scale fields with opposite sign of
magnetic helicity (Seehafer 1996; Ji 1999). Hence the strength
of the large scale field that can be generated on dynamical
time scales is limited, as the associated small scale field can-
not grow significantly above the equipartition field strength
(Brandenburg 2001, hereafter B01; Field & Blackman 2002;
Blackman & Brandenburg 2002; Subramanian 2002). Recent
work has shown that this leads to a rather restrictive nonlin-
earity of the α effect. It has been recognized for some time
(Blackman & Field 2000a,b; Kleeorin et al. 2000) that the con-
servation of magnetic helicity may be particularly restrictive
in the presence of closed or periodic boundary conditions used
in many investigations. While it is clear that magnetic helicity
fluxes through boundaries can help in principle (Brandenburg
et al. 2002), one must still ensure that it also is of the right prop-
erties. If the magnetic helicity flux carries away most of the de-
sired large scale field, nothing will be gained and the dynamo
will be even less efficient. This is indeed what early simulations
have shown (Brandenburg & Dobler 2001).
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Fig. 1. A sketch of the solar angular velocity at low latitudes with
spoke-like contours in the bulk of the convection zone merging grad-
ually into uniform rotation in the radiative interior. The low latitude
region, modeled in this paper, is indicated by thick lines.

The purpose of the present paper is to show that the sit-
uation changes considerably when helicity flux is mediated
by shear, the only mechanism known that can separate and
hence also transport magnetic helicity in space (the α effect,
by comparison, separates and transports magnetic helicity in
wavenumber space).

We adopt the simplest possible model that is able to cap-
ture the effects of helicity transport from one hemisphere to the
other. To motivate our model we first look at an idealized rep-
resentation of the solar angular velocity which is spoke-like in
the bulk of the convection zone and nearly rigid in the radiative
interior; see Fig. 1.

We model the region below 30◦ latitude by adopting a
Cartesian geometry where the x direction corresponds to ra-
dius, the y direction to longitude, and the z direction to latitude.
We ignore the fact that in the sun the radial transition to uniform
rotation is much steeper and model the mean toroidal velocity
simply in terms of trigonometric functions using

U = U0 cos k1x cos k1z, (1)

where k1 is the lowest wavenumber in the (x, z) plane with
−π/2 ≤ k1x ≤ 0 and 0 ≤ k1z ≤ π/2. In the following we
adopt units where k1 = 1. The equator is assumed to be at z = 0
and the outer surface at x = 0. The bottom of the convection
zone is at x = −π/2 and the latitude where the surface angular

Fig. 2. Differential rotation in our Cartesian model, with the equator
being at the bottom, the surface to the right, the bottom of the con-
vection zone to the left and mid-latitudes at the top. The boundary
conditions for the three components of the magnetic field and the vec-
tor potential (indicated near the boundaries of the box) are discussed
in Sect. 2.

velocity equals the value in the radiative interior is at z = π/2;
see Fig. 2.

In order to clarify some basic properties of this rather unex-
plored geometry we begin by studying αΩ dynamos in this ge-
ometry in Sect. 3, after introducing our numerical approach in
Sect. 2. The problem is at first reduced to two dimensions. Here
we assume that there is an α effect so that a mean magnetic field
can readily be generated by this term. Next we drive helical tur-
bulence by a corresponding forcing term in three dimensions
and measure the resulting α effect by imposing a toroidal mag-
netic field in Sect. 4. In particular, we study the dependence of
α quenching on the magnetic Reynolds number and show that
the α effect is only catastrophically quenched when the bound-
aries are closed or when the large scale shear has been turned
off.

2. Our numerical approach

The evolution of the magnetic field, B, is governed by the in-
duction equation, ∂B/∂t = −∇ × E, where E is the electric
field. The induction equation is solved in terms of the magnetic
vector potential, A, where B = ∇ × A. The evolution of A is
therefore given by ∂A/∂t = −E − ∇φ, where φ is the scalar
potential. By using the gauge in which φ = 0 we simply have

∂A/∂t = −E, (2)

which is the equation that will be considered throughout. The
(negative) electric field is given by

−E = U × B − ηµ0 J , (3)

where U is the velocity, J = ∇ × B/µ0 the current density, and
µ0 the vacuum permeability.

At the bottom of the convection zone and at mid-latitudes
we assume the same boundary conditions for the magnetic field
as for the velocity field, i.e. the field is tangent to the bound-
aries, which corresponds to perfect conductor boundary con-
ditions. This means that the tangential electric field vanishes,
and, because of the gauge φ = 0, we have

Ax = Ay = 0 on z = π/2, and (4)
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Ay = Az = 0 on x = −π/2. (5)

On the equator and at the outer surface we assume that the mag-
netic field is normal to the boundaries, i.e.

Bx = By = 0 on z = 0, and (6)

By = Bz = 0 on x = 0. (7)

At the equator this boundary condition is consistent with dipo-
lar parity of the field. The full set of boundary conditions for
all three components of both A and B are given on the four
“meridional” boundaries of the box in Fig. 2. In the y direc-
tion we adopt periodic boundary conditions over the interval
0 < y < 2π.

Occasionally we refer to the boundary conditions (6)
and (7) as open, because they permit flux of magnetic and cur-
rent helicities through the z = 0 and x = 0 boundaries. For
comparison we also perform calculations with closed bound-
aries where Ax = Ay = 0 on z = 0 and Ay = Az = 0 on x = 0.
With these conditions the magnetic and current helicity fluxes
vanish through these boundaries. At the bottom of the convec-
tion zone and at mid-latitudes the fluxes of magnetic and cur-
rent helicities are always vanishing. This is probably a reason-
able assumption, because at these locations there is no shear to
mediate large scale helicity transport and the small scale helic-
ity transport was already previously found to fluctuate around
zero if there is no shear (Brandenburg & Dobler 2001).

For both the mean field calculations and the turbulence sim-
ulations we step the equations forward in time by using the
Pencil Code1. For the mean field calculations a typical reso-
lution of 322 meshpoints proved to be sufficient, while for the
turbulence simulations the required resolution depends on the
magnetic Reynolds number, Rm. Here, Rm is based on the mag-
nitude of the turbulent velocity and not on the larger shear flow
velocity. (The precise definition is given below in Sect. 4.2.)
For Rm ≈ 100, a resolution of 5123 meshpoints is required,
while for Rm ≈ 15, a resolution of 1283 meshpoints proved to
be sufficient. We note, however, that the aspect ratio of the box
is 1:4:1 and, although there is shear smearing out structures in
the y direction, a uniform mesh aspect ratio seems often to be
preferred. For example, a run with 128× 512× 128 meshpoints
allowed us to use higher Reynolds numbers than 1283 mesh-
points.

3. Mean field calculations

An important aspect of our studies is to show that the shear
flow depicted in Fig. 2 is a reasonable approximation to the
differential rotation present in the sun (which is more like that
depicted in Fig. 1).

In the context of mean field theory it is known that in spher-
ical shells both dipolar and quadrupolar solutions are approxi-
mately equally easily excited (Roberts 1972) and that both so-
lutions can be oscillatory with field migration away from the
midplane (when α > 0). We want to know whether in the
present geometry the magnetic field evolution is similar to that
in spherical shells.

1 http://www.nordita.dk/software/pencil-code
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Fig. 3. Critical value of Cα for dynamo action as a function of shear
parameter, CS. Note the typical decrease of the critical value of Cα
with increasing CS.

The mean field induction equation is given by ∂B/∂t =
−∇ × E, which again is solved in terms of the mean magnetic
vector potential, i.e. ∂A/∂t = −E, where

−E = U × B + E − ηµ0 J . (8)

Here, overbars denote azimuthal averages, and velocity and
magnetic field are split into mean and fluctuating components
via B = B + b and U = U + u. The electromotive force
from the fluctuating components of velocity and magnetic field,
E = u × b, is in its simplest form (e.g. Moffatt 1978; Krause &
Rädler 1980)

E = αB − ηtµ0 J, (9)

where α (related to the mean helicity) and ηt (turbulent diffusiv-
ity) could still be functions of x, z, and t, as well as a function
of B itself, but for simplicity we assume them to be constant
here.

The solutions are characterized by two non-dimensional pa-
rameters,

Cα = α/(ηTk1), and CS = U0/(ηTk1), (10)

where ηT = η + ηt is the sum of microscopic and turbulent
magnetic diffusivities.

In Fig. 3 we plot the stability diagram in the (Cα,CS) plane.
For Cα < Cα,crit the solutions are decaying and for Cα > Cα,crit

they are growing exponentially and are oscillatory (Hopf bifur-
cation), except for a narrow interval around CS = 0. Such a be-
havior is quite typical of αΩ dynamos (see, e.g., Roberts & Stix
1972). For CS = 1000 we have also considered the quadrupolar
solution and find that it is slightly easier to excite (see Fig. 3).
As stated earlier, the approximately equal excitation conditions
for dipolar and quadrupolar solutions, seen in Fig. 3, is typ-
ical of αΩ dynamos in spherical shells. Indeed, the fact that
quadrupolar solutions can be preferred has been found in other
solar dynamo models (Dikpati & Gilman 2001).

In Fig. 4 we show contours of By for the marginally ex-
cited case with CS = 1000 for different times covering a little
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Fig. 4. Contours of By for times separated by ∆t = 300 in the temporal
sequence t1-t6. Note the field migration from the lower left corner to
the upper right; in this figure CS = 1000 (see Eq. (10)).

more than half a cycle. One clearly sees magnetic field migra-
tion away from the equator. We note that in the sun the field
migration is toward the equator. The reason for this is not en-
tirely clear, but it could be caused by a negative α effect (but the
reason for this is not clear either) or by meridional circulation
(Choudhuri et al. 1995; Durney 1995). However, before these
questions can seriously be addressed, it is mandatory to have
a reliable mean field theory. This has so far been hampered by
not being able to model the nonlinear feedback correctly.

Based on the similarity of the stability diagram and the mi-
gration pattern in calculations using Cartesian geometry and
spherical shells (e.g. Roberts & Stix 1972), we may conclude
that our local model provides a reasonable approximation to the
more realistic case of a spherical shell. Since azimuthal aver-
ages are used, the mean field equations would be axisymmetric
and could easily be solved using meshpoint methods. The case
of three-dimensional turbulence in spherical shells is consid-
erably more difficult because the coordinate singularity at the
poles leads to serious timestep restrictions in the azimuthal di-
rection.

4. Turbulence simulations

In this section we consider three-dimensional turbulence in the
same Cartesian geometry that we used in the previous section.
We now consider the full (non-averaged) velocity and magnetic
fields, U and B, respectively.

4.1. Basic equations

The fluctuating velocity together with the shear flow must
be obtained by simultaneously solving the induction equation
(Eq. (2)) together with the momentum equation, which we
write here for an isothermal gas of constant sound speed cs,

DU
Dt
= −c2

s∇ ln ρ +
J × B
ρ
+ f + Fvisc, (11)

where f is the forcing function driving both the turbulence
(around a narrow band of wavenumbers around kf = 5) and
the shear flow (cf. Brandenburg et al. 2001). Moreover,

Fvisc = ν
(
∇2U + 1

3∇∇ · U + 2S · ∇ ln ρ
)

(12)

is the viscous force where ν = const is the kinematic viscosity,
Si j =

1
2 (Ui, j +U j,i)− 1

3δi jUk,k the traceless rate of strain tensor,
and ρ the density which obeys the continuity equation which
we solve in the form

D ln ρ
Dt

= −∇ · U, (13)

where D/Dt = ∂/∂t + U · ∇ is the advective derivative. We
adopt a random forcing function with finite helicity; see B01
for details.

4.2. Results for α quenching

We have carried out a range of simulations for different values
of the magnetic Reynolds number,

Rm = urms/(ηkf), (14)

for both open and closed boundary conditions. (Here, urms does
not include the mean shear flow.) In order to measure α, a uni-
form magnetic field, B0 = const., is imposed, and the magnetic
field is now written as B = B0 + ∇ × A. In Fig. 5 we show a
graphical presentation of a typical snapshot of a solution.

We have determined α by measuring the turbulent electro-
motive force, i.e. α = 〈E〉 · B0/B2

0. Similar investigations have
been done before both for forced turbulence (e.g., Cattaneo &
Hughes 1996, see also B01) and for convective turbulence (e.g.,
Brandenburg et al. 1990; Ossendrijver et al. 2001). The contri-
bution from ηT J has been ignored in this approach; this is jus-
tified because for strong shear the poloidal field, giving rise to
a toroidal mean current, is weak.

It is well known that the α effect is an extremely noisy
quantity – especially in the case of large magnetic Reynolds
numbers (Cattaneo & Hughes 1996). The strong fluctuations
are also clear from Fig. 6, where we plot α(t) both for open and
closed boundaries. Note that α/urms fluctuates in time in the
range ±0.2 about a much smaller average value of, e.g., −0.03
in the top panel.
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Fig. 5. Vectors of U and B in an xy plane through z = π/4, superim-
posed on a grey/color representation of their normal components, for a
run with Rm = 14, open boundaries, shear, and negative helicity. Note
that the velocity field is dominated by the toroidal shear flow.

As expected, α is negative when the helicity of the forcing
is positive, and α changes sign when the helicity of the forc-
ing changes sign. For Rm >∼ 14 the magnitudes of α begin to
be different in the two cases: |α| is larger when the helicity of
the forcing is negative. In the sun, this corresponds to the sign
of helicity in the northern hemisphere in the upper parts of the
convection zone. This is here the relevant case, because the dif-
ferential rotation pattern of our model also corresponds to the
northern hemisphere.

There is a striking difference between the cases with open
and closed boundaries which becomes particularly clear when
comparing the averaged values of α for different magnetic
Reynolds numbers; see Fig. 7. With closed boundaries α tends
to zero like R−1

m , while with open boundaries α shows no such
immediate decline; only for larger values of Rm there is possi-
bly an asymptotic α ∝ R−1

m dependence. There is also a clear
difference between the cases with and without shear. In the ab-
sence of shear (dotted line in Fig. 7) α declines with increasing
Rm, even though for small values of Rm it is larger than with
shear. This suggests that the presence of shear combined with
open boundaries might be a crucial prerequisite of dynamos
that saturate on a dynamical time scale.

Fig. 6. Time traces of α(t) for runs with open boundaries (for both pos-
itive and negative kinetic helicity) and closed boundaries (for positive
kinetic helicity). Rm = 30 in all cases.

The difference between open and closed boundaries will
now be discussed in terms of a current helicity flux through the
two open open boundaries of the domain.

4.3. Current helicity flux

It is suggestive to interpret the above results in terms of the
dynamical α quenching model, where α is proportional to the
difference between kinetic and current helicities (Pouquet et al.
1976), i.e.

α = − 1
3τ
(
ω · u − ρ−1

0 j · b
)
≡ αK + αM. (15)

Here, ω = ∇ × u is the small scale vorticity, j = ∇ × b/µ0 is
the small scale current density, αK is the kinematic contribu-
tion to the α effect, and αM the magnetic contribution primarily
responsible for the quenching of the α effect.

In order to obtain an expression for αM we begin with
the evolution equation for j · b. In the absence of bound-
ary conditions it has been advantageous to start with the
evolution equation for magnetic helicity (because it is con-
served) instead of current helicity (which is not conserved); see
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aries. The case with open boundaries and negative helicity is shown
as a dashed line. Note that for Rm ≈ 30 the α effect is about 30 times
smaller when the boundaries are closed. The dotted line gives the re-
sult with open boundaries but no shear. The vertical lines indicate the
range obtained by calculating α using only the first and second half of
the time interval.

Kleeorin & Ruzmaikin (1982), Kleeorin et al. (1995),
Blackman & Brandenburg (2002). In the case of open boundary
conditions, this approach becomes cumbersome, because one
has to consider the gauge-invariant relative magnetic helicity
(Berger & Field 1984). Furthermore, the concept of a density of
magnetic helicity is not meaningful, because it would depend
on the gauge. In order to avoid these problems it is advanta-
geous consider the current helicity equation (Subramanian &
Brandenburg 2004, Brandenburg & Subramanian 2004). Apart
from this technicality, the following derivation is similar to that
of Blackman & Brandenburg (2002) for the case without cur-
rent helicity flux.

Using the evolution equation, ∂b/∂t = −∇ × e, for the fluc-
tuating magnetic field, where e = E − E is the small scale
electric field and E = ηJ − E the mean electric field, we can
derive the equation

∂

∂t
j · b = −2 e · c − ∇ · F SS

C , (16)

where

F SS
C = 2e × j + (∇ × e) × b (17)

is the current helicity flux from the small scale field, and c =
∇ × j the curl of the small scale current density, j = J − J.
In the isotropic case, e · c ≈ k2

f e · b, where kf is the typical
wavenumber of the fluctuations, here assumed to be the forcing
wavenumber. Ignoring the effect of the mean flow on E (as is
usually done; but see Krause & Rädler 1980), we obtain

e · b ≈ −(u × B0) · b + η j · b = E · B + η j · b, (18)

where we have used u × b = E and B0 = B. Using standard
expressions for the turbulent magnetic diffusivity, ηt =

1
3τu

2
rms,

and the equipartition field strength, Beq =
√
µ0ρ urms, we elim-

inate τ via

1
3τρ

−1
0 = ηt/B

2
eq. (19)

This leads to an explicitly time dependent formula for α,

∂α

∂t
= −2ηtk

2
f


E · B + 1

2 k−2
f ∇ · F SS

C

B2
eq

+
α − αK

Rm

 · (20)

This equation is similar to that of Kleeorin et al. (2000–2003)
who considered the flux of magnetic helicity instead of current
helicity.

Making the adiabatic approximation, i.e. putting the rhs
of Eq. (20) to zero, one arrives at the algebraic steady state
quenching formula (∂α/∂t = 0)

α =
αK + Rm

(
ηtµ0 J · B − 1

2 k−2
f ∇ · F SS

C

)
/B2

eq

1 + RmB
2
/B2

eq

· (21)

Furthermore, if the mean field is defined as an average over the
whole box, then B ≡ B0 = const, so J = 0 and Eq. (21) reduces
to

α =
αK − 1

2 k−2
f Rm∇ · F SS

C /B
2
eq

1 + RmB2
0/B

2
eq

· (22)

This expression applies to the present case, because we con-
sider only the statistically steady state and we also define the
mean field as a volume average.

For closed boundaries,∇ ·F SS
C = 0, and so Eq. (22) clearly

reduces to a catastrophic quenching formula, i.e. α vanishes in
the limit of large magnetic Reynolds numbers as

α(closed) =
αK

1 + RmB2
0/B

2
eq

→ R−1
m (for Rm → ∞)· (23)

The R−1
m dependence suggested by Eq. (23) is confirmed by the

simulations (compare with the dash-dotted line in Fig. 7). On
the other hand, for open boundaries the limit Rm → ∞ gives

α(open) → −(∇ · F SS
C )/(2k2

f B2
0) (for Rm → ∞), (24)

which shows that losses of negative helicity, as observed in the
northern hemisphere of the sun, would enhance a positive α
effect (Kleeorin et al. 2000). In the simulations, the current he-
licity flux is found to be independent of the magnetic Reynolds
number. This explains why the α effect no longer shows the
catastrophic R−1

m dependence (see Fig. 7).

4.4. Estimates for the Vishniac-Cho flux

Theoretical estimates for magnetic helicity fluxes have been
proposed by Kleeorin et al. (2000) and Vishniac & Cho (2001).
The two fluxes are rather different. The expression of Vishniac
& Cho (2001) has been confirmed independently and can be
written in the form (Subramanian & Brandenburg 2004; see
also the review by Brandenburg & Subramanian 2004)

FVC
k = −4τωi∇ juk BiBj. (25)
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Fig. 8. The Vishniac-Cho flux on the outer surface (F VC

x ) and at the

equator (F VC

z ), averaged over the y direction, for the run with α >
0 and Rm = 14. In the upper panel the flux is also averaged over t
and shown as a function of z and x, respectively. In the lower panel,
the x and z components of the fluxes are averaged over the z and x
directions, respectively, and shown as functions of t. The fat solid and
dashed lines denote the running means for the two functions.

In Fig. 8 we plot the profiles of this flux, averaged in the y direc-
tion, on the two open boundaries. We also show the time evolu-
tion of the averaged fluxes on the two open boundaries. It turns
out that the magnitude of the two fluxes is large compared with
F 0 ≡ urmskf B2

0, but the fluxes also fluctuate strongly in time, so
it is important to average over long times. Furthermore, there
is a clear tendency for the difference between incoming flux at
the equator (FVC

z , dashed line) and outgoing fluxes at outer sur-

face (FVC
x , solid line) to cancel partially, giving a smaller net

flux. Nevertheless, since |FVC
x | > |FVC

z |, the net outgoing flux
is negative, as expected for the northern hemisphere.

4.5. Large scale current helicity flux

In earlier work (Brandenburg & Dobler 2001) it was reported
that the contribution to the magnetic helicity flux was out-
weighed by a much larger flux from the large scale field. In

Fig. 9. Normal components of the current helicity flux on the outer
surface (F x) and at the equator (F z), averaged over the corresponding
surfaces, for the same run as in Fig. 8. The fat lines denote the fluxes
from the small scale field, F SS

C , while the thin lines denote the fluxes

form the large scale field, F LS
C . The dotted lines near the two F LS

C

curves show the result of the approximation (27).

the present paper we work instead with the current helicity, and
the current helicity flux from the large scale field is

F LS
C = 2E × J + (∇ × E) × B. (26)

For the vertical field condition, see Eqs. (6) and (7), the second
term in Eq. (26) vanishes. Assuming isotropy, the contribution
from the first term involves E = αB − ηt J , but this does not
contribute either, because αB× J does not have a normal com-
ponent on the boundaries, and ηt J × J = 0. In the first term
only the mean flow term contributes, so we get

F LS
C ≈ −2(U × B) × J = −2(JyUy)B. (27)

Inspection of the data suggests that this is indeed a good ap-
proximation and that therefore even in the simulation the nor-
mal component of E × J is nearly vanishing on the boundary;
see Fig. 9. Both on the outer surface and on the equator F LS

C is
such that it corresponds to a loss of negative current helicity.

In Fig. 9 we also show the small scale current helicity fluxes
on the two boundaries (fat lines). There is a tendency for the
difference between incoming flux at the equator (dotted line)
and outgoing fluxes at outer surface (solid line) to cancel, but
the net outgoing flux is again negative. The flux for the total
field is approximately four times larger than what is accounted
for by the Vishniac-Cho flux. This might indicate that there is
either another contribution to the current helicity flux, or that
the τ in the Vishniac-Cho flux is underestimated.

4.6. Application to the sun

The purpose of this section is to put some real numbers into the
expression for the current helicity flux. Our simulations have
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Fig. 10. Sketch illustrating the directions of large scale (LS) and small
scale (SS) negative current helicity fluxes and their approximate mag-
nitudes (in units of F 0). Note that at the outer surface negative current
helicity is ejected both via small and large scale fields, while at the
equator the contributions from small and large scale fields have oppo-
site sign. The small scale losses at surface and equator partially cancel,
giving a net loss of negative current helicity of only about 4F 0.

shown that a reasonable estimate for the current helicity flux at
the outer surface is

F SS
C ≈ 30 urmskf B

2
0. (28)

Applying this to the sun using urms ≈ 50 m/s for the rms veloc-
ity in the deeper parts of the convection zone, kf ≈ 10−9 cm−1

based on the inverse mixing length, and B0 ≈ 3 G for the mean
field at the solar surface, we have F SS

C ≈ 10−3 G2/s. The cur-
rent helicity flux integrated over the northern hemisphere of the
sun is then 4 × 1019 G2 cm2 s−1. Integrated over the 11 yr solar
cycle we have 1028 G2 cm2.

For the sun only magnetic helicity fluxes have been deter-
mined. As a rough estimate we may use F SS

H ≈ k−2
f F SS

C for the
magnetic helicity flux. Using the same estimate for kf as above
we obtain about 1046 Mx2 over the 11 yr solar cycle. This is
indeed comparable to the magnetic helicity fluxes estimated by
Berger & Ruzmaikin (2000) and DeVore (2000).

We emphasize that, in the present context, “small scale”
means 2π/kf ≈ 60 Mm, i.e. about one pressure scale height at
the bottom of the convection zone. By contrast, “large scale”
refers to length scales of the order of several hundred Mm,
which is typically beyond the scale captured in the usual vector
magnetograms.

5. Conclusions

The present simulations give a clear indication that the pro-
posed set-up with open boundaries and shear can alleviate the
catastrophic quenching problem in mean field dynamo theory.
Already in the absence of shear the resulting α effect can be
larger when open boundary conditions are used, but there α still
decreases with increasing magnetic Reynolds number. In the

presence of shear, alleviated catastrophic quenching is associ-
ated with a net loss of small scale current helicity. At the equa-
tor, negative small scale current helicity flows into the northern
hemisphere, but there is an even larger negative small scale cur-
rent helicity flows ejected at the outer surface. This results in
a net loss of negative current helicity from the northern hemi-
sphere, and corresponds to an integrated magnetic helicity flux
of about 1046 Mx2 over the 11 yr solar cycle.

Although our results are certainly encouraging, they must
still be considered preliminary. First of all, we have still only
considered a relatively limited range of magnetic Reynolds
numbers; larger values are necessary before one can tell
whether or not an asymptotic Rm dependence still develops for
larger values of Rm. Secondly, turbulence simulations of a dy-
namo are necessary to show that the electromotive force that
here is interpreted in terms of an α effect is indeed capable
of generating large scale magnetic field of the type shown in
Sect. 3. Of particular importance is the question whether the
dynamo is oscillatory (as expected from our mean field calcu-
lations) and whether the cycle frequency is independent of Rm.
Especially at large values of Rm the direct approach tends to
be advantageous compared to calculating α in the presence of
an imposed field, because the resulting α is always much more
noisy than the actual mean field obtained in a simulation (B01).

Another aspect to keep in mind is the fact that the correct
boundary conditions for the solar dynamo are certainly more
complicated than the vertical field condition adopted here.
There are good reasons to believe that the sun loses signifi-
cant amounts of magnetic and current helicity via coronal mass
ejections (DeVore 2000; Démoulin et al. 2002a,b; Gibson et al.
2002; see also Blackman & Brandenburg 2003). The losses
via coronal mass ejections are not easy to model within the
present approach. An obvious possibility is to include an outer
layer that resembles some important aspects of the solar corona
(low density and hence low plasma beta). It is as yet unclear to
which extent a spherical geometry is important. The solar wind,
for example, cannot be modeled in Cartesian geometry, and in
some sense coronal mass ejections are just a particularly bursty
and localized manifestation of the solar wind. It may therefore
be worthwhile to consider the effects of boundaries in global
simulations.
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