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Mach number dependence of the onset of dynamo action
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ABSTRACT
The effect of compressibility on the onset of non-helical turbulent dynamo action is investigated
using both direct simulations as well as simulations with shock-capturing viscosities, keeping,
however, the regular magnetic diffusivity. It is found that the critical magnetic Reynolds number
increases from about 35 in the subsonic regime to about 70 in the supersonic regime. Although
the shock structures are sharper in the high-resolution direct simulations compared with the
low-resolution shock-capturing simulations, the magnetic field looks roughly similar in both
cases and does not show any shock structures. Similarly, the onset of dynamo action is not
significantly affected by the shock-capturing viscosity.
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1 I N T RO D U C T I O N

Transonic and supersonic turbulence is widespread in many astro-
physical settings where magnetic fields are believed to be generated
and maintained by dynamo action. Examples include supernova-
driven turbulence in the interstellar medium (Korpi et al. 1999; de
Avillez & Mac Low 2002; Balsara et al. 2004) and turbulence in
galaxy clusters (Roettiger, Stone & Burns 1999) where the driving
comes mainly from cluster mergers. In these cases the rms Mach
number is of the order of unity, but in the cooler parts of the inter-
stellar medium the sound speed is low and the flows can therefore
easily become highly supersonic and may reach rms Mach numbers
of around 20 (Padoan, Nordlund & Jones 1997; Padoan & Nordlund
2002).

Simulations do not give a clear picture of how the excitation con-
ditions for dynamo action change in the highly supersonic regime.
While there are clear examples of dynamo action in supersonic tur-
bulence (Balsara et al. 2004), the dynamo seems to be less efficient
in the more strongly supersonic regime (Padoan et al. 2004). It is
plausible that the newly generated magnetic field is too quickly en-
trained by the shocks where the field is then dissipated (Padoan &
Nordlund 1999).

Supersonic turbulence has a significant irrotational compo-
nent. Purely irrotational turbulence is also referred to as acous-
tic turbulence and can be described using weak turbulence theory
(Zakharov & Sagdeev 1970; Bykov 1988). As supersonic turbu-
lence contains shocks, such flows can also be described as shock
turbulence (Kadomtsev & Petviashvili 1973). If these flows were
described as predominantly irrotational, the growth rate would in-
crease with the Mach number to the fourth power (Kazantsev,
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Ruzmaikin & Sokoloff 1985; Moss & Shukurov 1996). However,
this tendency has never been seen in simulations.

There are, however, caveats to both the analytical and the nu-
merical approaches. First, it is clear that even highly supersonic
turbulence is not fully irrotational and that still 70–80 per cent of
the kinetic energy comes from the solenoidal component (Porter,
Woodward & Pouquet 1998; Padoan & Nordlund 1999). Therefore
purely acoustic turbulence cannot be used as an approximation to
supersonic turbulence. The other problem that we shall be concerned
with here is the question to what extent does the numerical shock
viscosity used in many simulations affect the conclusion regarding
dynamo action.

To address the latter question we perform direct simulations at
sufficiently high resolution so that no numerical shock viscosity is
needed. Here, the term ‘direct’ means that one uses the microscopic
viscosity, i.e. one ignores the fact that in many astrophysical appli-
cations one will never be able to reach realistic Reynolds numbers.
We also compare with calculations where a shock-capturing viscos-
ity is included. Here the viscosity is locally enhanced in a shock,
allowing less diffusion between the shocks. It turns out that both
direct and shock-capturing viscosity simulations predict an approx-
imately similar increase in the critical magnetic Reynolds number
for dynamo action. In these cases the magnetic diffusivity is the
same as in the direct simulations.

2 M E T H O D

We consider an isothermal gas with constant sound speed cs. The
continuity equation is written in terms of the logarithmic density

D ln ρ

Dt
= −∇ · u, (1)
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and the induction equation is solved in terms of the magnetic vector
potential A, where B = ∇ × A, and

∂A
∂t

= u × B + η∇2 A, (2)

with η being the magnetic diffusivity. The momentum equation is
solved in the form
Du
Dt

= −c2
s ∇ ln ρ + ρ−1 (J × B + Fvisc + f ) , (3)

where D/Dt = ∂/∂t + u · ∇ is the advective derivative, J = ∇ ×
B/µ0 the current density, B the magnetic field, µ0 the vacuum
permeability, Fvisc is the viscous force (see below) and f is a random
forcing function with

f (x, t) = Re{N f k(t) exp[ik(t) · x + iφ(t)]}, (4)

where x is the position vector. The wavevector k(t) and the random
phase −π < φ(t) � π change at every time-step, so f (x, t) is, up to
discretization errors, δ correlated in time. We force the system with
non-helical transversal waves,

f k = (k × ê) /
√

k2 − (k · ê)2, (5)

where ê is an arbitrary unit vector not aligned with k; note that
| f k|2 = 1. On dimensional grounds the normalization factor N is
chosen to be N = f 0 cs(| k|cs/δ t)1/2, where f 0 is a non-dimensional
forcing amplitude. We use the PENCIL CODE,1 which is a high-order
finite-difference code (sixth order in space and third order in time)
for solving the compressible hydromagnetic equations.

In the direct simulations with constant viscosity, ν, the viscous
force per unit mass is given by

F(ν)
visc = ρν

(∇2u + 1
3 ∇∇ · u + 2S · ∇ ln ρ

)
, (6)

where ρ is the density and

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 1

3
δi j∇ · u (7)

is the traceless rate of strain matrix. In runs with shock-capturing
viscosity we simply add to this a spatially dependent diffusion term
such that the effective viscosity is enhanced only in the neighbour-
hood of a shock (Richtmyer & Morton 1967). This technique ar-
tificially broadens the shocks such that they can be resolved nu-
merically, and hence all the conservation laws are obeyed, which
is important for satisfying the right jump conditions. It is sufficient
to broaden the shocks using only a bulk viscosity, ζ , rather than a
locally enhanced shear viscosity. Thus we write

F(shock)
visc = F(ν)

visc + ρζ∇∇ · u + (∇ · u)∇(ρζ ), (8)

so the full stress tensor is given by

τ i j = 2ρνSi j + ρζδi j∇ · u. (9)

Here ζ is the shock viscosity. Following Nordlund & Galsgaard
(1995), we assume ζ to be proportional to the smoothed (over three
zones) maximum (over five zones) of the positive part of the negative
divergence of the velocity, i.e.

ζ = cshock〈max
5

[(−∇ · u)+]〉, (10)

where cshock is a constant defining the strength of the shock viscosity.
This is also the technique used by Padoan & Nordlund (2002).

The simulations are governed by three important parameters,
the Mach number Ma = u rms/cs, the Reynolds number Re =

1 http://www.nordita.dk/data/brandenb/pencil-code

u rms/(νk f), and the magnetic Prandtl number PrM = ν/η. The mag-
netic Reynolds number is defined as ReM = Re PrM, and the critical
magnetic Reynolds number is the value above which a weak seed
magnetic field grows exponentially.

The Mach number can be increased either by increasing the
strength of the forcing or by lowering the sound speed. We choose
the former and keep the sound speed constant. Moreover, we use cs

as our velocity unit. The lowest wavenumber in the box, k 1 = 2π/L ,
is used as our inverse length unit. This implies that time is measured
in units of (csk 1)−1. Density is measured in units of the mean density,
which is also equal to the initial density ρ 0. The extent of the box
is in each direction L = 2π, so the smallest possible wavenumber
in the box is therefore k = 1. The maximum possible wavenumber
depends on the resolution and is k = 256 for our largest run with
5123 meshpoints. Larger resolution is already technically possible
(Haugen, Brandenburg & Dobler 2003), but is still too demanding in
terms of computing time if one wants to cover many turnover times.
In all our simulations the flow is forced in a band of wavenumbers
between 1 and 2. As initial conditions we have used zero velocity
and a weak random magnetic field with 〈B2〉/(µ0ρ 0 c2

s ) ≈ 10−8. We
use periodic boundaries in all three directions.

3 R E S U LT S

In Table 1 we give the Mach and Reynolds numbers as well as the
growth rate for runs with three different combinations of f 0 and ν,
each with and without added shock viscosity. The run parameters
are generally chosen such that the growth rates are close to zero
so that the critical magnetic Reynolds number for dynamo action
can accurately be determined via interpolation. It turns out that the
addition of shock viscosity reduces the normalized growth rate of
the dynamo, λ/λ0, only by about 0.003–0.016 (see Table 1), which is
about 3–16 per cent of the typical normalized growth rates of about
0.1 in the more strongly supercritical cases (see fig. 3 of Haugen,
Brandenburg & Dobler 2004). Here, λ0 ≡ u rmsk f) is the typical
stretching rate. The reduction of the growth rates can, at least partly,
be explained by a reduction in ReM due to reduced rms velocity
when shock viscosity is added.

We make a more detailed comparison of two equivalent simula-
tions, one with and one without shock viscosity. In each of the two
cases the Mach number is the same, e.g. Ma ≈ 1.1, f 0 = 0.5. Cor-
responding cross-sections of ∇ · u are shown in Fig. 1. In the direct
simulations the regions with ∇ · u < 0 are quite sharp, compared
with the shock-capturing simulations where they are smoother. This
is seen more clearly in Fig. 2 where we plot ∇ · u along a cross-
section (shown as a dashed line in Fig. 1). As the runs are turbulent,
however, direct comparison between individual structures is mean-
ingless and one can only make qualitative comparisons.

The number of strong convergence regions and shocks is roughly
similar in both cases, but this is only because we have used the
same grey/colour scale in both plots. In the direct simulation, the
dynamical range is −62 � ∇ · u � 4.2, which exceeds the range
of the grey-scale, whereas in the shock-capturing simulation the
dynamical range is only −17 � ∇ · u � 4.2. If one were to compare
the two cases such that in each the grey-scale is exactly within the
dynamical range of that simulation, one would see more structures
in the shock-capturing simulation.

The dynamo-generated magnetic fields are generally rather
smooth in both cases and in that respect rather similar to each other;
see Fig. 3. Indeed, the filling factors where the field exceeds its rms
value are similar in the two cases (0.09 in the left-hand panel for
the direct simulation simulation and 0.13 in the right-hand panel
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Figure 1. Grey-scale (colour scale in electronic version) representation of
∇ · u in an xy cross-section through z = 0 for Ma = 1.1 using constant
viscosity (upper panel: Run 3a, 5123 meshpoints) and shock-capturing vis-
cosity (lower panel: Run 3b, 1283 meshpoints). Both simulations have been
run from an initial state with zero velocity, to a state where the kinetic energy
has saturated, but the magnetic energy is still in the linear regime (i.e. there
is no back reaction on the velocity). Note the drastic difference between
the two regarding the sharpness of regions of strong convergence. In both
panels, the dotted line indicates the position of the scan shown in Fig. 2.

Figure 2. Value of ∇ · u along a line through the box whose position is
indicated in Fig. 1. Here Ma = 1.1 and we are comparing constant viscosity
(solid line) and shock-capturing viscosity (dashed line).

for the shock-capturing simulation). The probability density func-
tions of the three components of the magnetic field are in both cases
stretched exponentials (Fig. 4), which is in agreement with earlier
results (Brandenburg et al. 1996).

To elucidate the reason for the almost complete absence of any
shock-like structures in the dynamo-generated magnetic field, we

Figure 3. Same as Fig. 1, but for Bz . The left-hand figure is from a run
with 5123 meshpoints and normal viscosity while the right-hand side figure
is from a run with 1283 meshpoints and shock viscosity. As this is in the
linear regime we have normalized by the rms value. There is surprisingly
little difference between the two.

Figure 4. Probability distribution function of Bx, By and Bz, normalized by
Brms, for Run 3a (upper panel) and Run 3b (lower panel).

show in Fig. 5 the different contributions to the right-hand side of
∂Bz/∂t for Run 3a with normal viscosity. The grey-scale is the
same in all panels. It is evident that the dominant term in the in-
duction equation is the advection term, − u · ∇ Bz. The stretching
term, B · ∇uz, gives the weakest contribution. The compression
term, −Bz∇ · u, gives an intermediate contribution, but, more im-
portantly, there are only a few barely noticeable contributions from
shocks. This is mainly because in the locations of the shocks (for
example at x ≈ −1.5, y ≈ 2; see upper panel of Fig. 1) the nor-
mal component of the magnetic field is weak (Fig. 3), making the
shocks less pronounced in the product of the two (i.e. in Bz∇ · u).
The end result is a relatively weak contribution to the right-hand
side of ∂Bz/∂t .

In the cross-sections of the current density we see very similar
structures in the simulations with normal and shock-capturing vis-
cosities; see Fig. 6. This is supported by the filling factors which are
≈0.1 for both the left- and the right-hand sides of the figure.

In Fig. 7 we plot the critical magnetic Reynolds number ReM,crit

as a function of Mach number. It turns out that the critical
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Figure 5. The different terms in the induction equation for Run 3a (with
5123 meshpoints and constant viscosity). We clearly see that the dominant
term is the advection term.

Figure 6. Same as Fig. 3, but for J z . As this is in the linear regime we have
normalized by the rms value. The current sheets are similar in thickness, but
there are more of them in the shock-capturing simulation.

Figure 7. Critical magnetic Reynolds number ReM,crit as a function of Ma
for simulations with PrM = 1. Note that ReM,crit depends strongly on Mach
number for Ma ≈ 1. The simulations with shock-capturing viscosity give
approximately the correct growth rates. The simulations that provide these
data points have resolutions ranging from 643 to 5123 meshpoints. (Some
of them are listed in Table 1.)

Figure 8. Same as Fig. 7 but for simulations with PrM = 5.

magnetic Reynolds number increases from about 35 in the subsonic
regime to about 70 in the supersonic regime. Whether or not the
critical magnetic Reynolds number increases even further for larger
Mach numbers is unclear, because larger resolution is required to
settle this question for PrM = 1. However, in the direct simulations
with PrM = 5 (Fig. 8), and in the shock-capturing simulations with
PrM = 1 the critical magnetic Reynolds number is roughly un-
changed when Ma is increased beyond Ma ≈ 1. We refer to this
possibility of having two distinct values of the critical magnetic
Reynolds number for subsonic and supersonic turbulence, with a
reasonably sharp transition at Ma ≈ 1, as ‘bimodal’ behaviour.

Comparing direct and shock-capturing simulations we find the
general appearance of the cross-sections of B remarkably simi-
lar. The simulations with shock-capturing viscosity have, however,
slightly larger critical magnetic Reynolds numbers. This is proba-
bly explained by the smaller velocity gradients and hence smaller
stretching rates in the simulations with additional shock-capturing
viscosity. Nevertheless, both direct and shock-capturing simulations
show a roughly similar functional dependence of the critical mag-
netic Reynolds number on the Mach number. This suggests that
shock-capturing simulations provide a reasonable approximation to
the much more expensive direct simulations – at least as far as the
onset of turbulent dynamo action is concerned.

Once the Mach number becomes comparable to unity, one needs
very high resolution to resolve the rather thin shock structures. How-
ever, as seen already, the magnetic field structures are not as thin as
the hydrodynamic shocks. This implies that one can decrease η to
values far below ν before the magnetic field and current structures
would become unresolved. In other words, with given resolution,
one can reach a magnetic Reynolds number that is much larger than
the kinematic Reynolds number. Alternatively, if one only wants to
reach just weakly supercritical values of ReM for dynamo action
(which turn out to be roughly below 100), Re can be much smaller
and just a few tens. This regime corresponds to large values of PrM.
For PrM = 5, for example, we are able to reach Mach numbers of up
to 2.1. The resulting plot of ReM,crit versus Ma is shown in Fig. 8.
This plot confirms again the approximately ‘bimodal’ behaviour of
the critical magnetic Reynolds number, but now ReM,crit ≈ 25 in the
subsonic regime and ReM,crit ≈ 50 in the supersonic regime.

The kinetic and magnetic energy spectra show close agreement
between the constant and shock-capturing viscosity solutions at low
wavenumbers; see Fig. 9. The truncation at higher wavenumbers is
presumably a direct consequence of the locally enhanced shock vis-
cosity which attempts to increase the width of the shocks. Further-
more, as shocks hardly manifest themselves in the magnetic field,
the agreement between the magnetic energy spectra in the direct and
shock-capturing simulations extends to even larger wavenumbers.
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Figure 9. Energy spectra for Runs 1a and 1c. The dotted lines give the
result using shock-capturing viscosity (numbers in parentheses in the table).

As discussed at the beginning of Section 3, the direct simulations
require vastly more resolution, but once the resolution is sufficient,
either of the two spectra agrees well when doubling the resolution;
see also the middle panel of fig. 13 in Haugen et al. (2004).

4 D I S C U S S I O N

The present results have shown that in both direct and shock-
capturing simulations the onset of dynamo action requires a some-
what larger magnetic Reynolds number when the Mach number ex-
ceeds a critical value around unity. In the subsonic regime the critical
magnetic Reynolds number for non-helical dynamo action is around
35, but it increases to about 70 in the supersonic regime. Once the
Mach number exceeds unity, the critical magnetic Reynolds number
no longer seems to depend on the Mach number. This confirms the
notion that in the supersonic regime dynamos experience an addi-
tional sink. This additional sink is plausibly related to the sweeping
up of magnetic field by shocks, but this effect does not gain in its
importance with increasing Mach number once we are in the super-
sonic regime.

The relative importance of the adverse effects of shocks can be
associated with a Reynolds number-like quantity

Rdiv u = 〈(∇ · u)2〉1/2
/(

νk2
f

)
, (11)

whose dependence on the actual Reynolds number is shown in
Fig. 10. Here we also compare with a similar number quantifying
the relative importance of vortical motions

Rω = 〈ω2〉1/2
/(

νk2
f

)
. (12)

Both numbers seem to approach a limiting behaviour proportional
to Re1.2. On theoretical grounds, one would have expected a slope
of 3/2, because the ratio of rms velocity to rms vorticity is propor-
tional to the Taylor microscale which, in turn, is known to diminish
proportional to Re−1/2. The departure from this expectation might
indicate that we are not yet in the asymptotic regime with a well-
developed inertial range. This is also plausible from Fig. 9 showing
that most of the spectrum is dominated by a rather extended dissipa-
tive subrange with only a rather short inertial range. Thus, it might
not be surprising that the Taylor microscale does not yet show a
clear asymptotic Re−1/2 scaling.

Fig. 10 suggests that Rdiv u remains smaller than Rω by a constant
factor of around 1.5. Thus, 〈(∇ · u)2〉/〈ω2〉 ≈ 0.44. This ratio would
be exactly 1/2 if the mean square values of longitudinal and transver-
sal velocity derivatives were equal, i.e. 〈u2

x,x 〉 = 〈u2
x,y〉. Here we

Figure 10. Dependence of Rdiv u and Rω on Re. Note that both quantities
remain well separated as they tend to approach a slope of 1.2.

Table 1. The Mach and Reynolds numbers, as well as the growth rate (in
units of λ0 ≡ u rmsk f) for runs with different forcing strength (f 0), viscosity
(ν) and cshock, and number of meshpoints N. All runs have PrM = 1. The
runs with only direct viscosity are Runs 1a–3a.

Run N f 0 ν Ma Re λ/λ0 cshock

1a 512 0.2 0.006 0.72 78 +0.030 –
1b 128 0.2 0.006 0.70 78 +0.010 0.8
1c 128 0.2 0.006 0.68 74 +0.014 3

2a 256 0.2 0.01 0.65 43 +0.006 –
2b 64 0.2 0.01 0.62 41 −0.004 0.8
2c 64 0.2 0.01 0.65 43 −0.005 3

3a 512 0.5 0.01 1.11 75 +0.005 –
3b 128 0.5 0.01 1.14 76 +0.010 0.8
3c 64 0.5 0.01 1.10 74 +0.002 3

have assumed isotropy and that mixed terms cancel, which implies
〈(∇ · u)2〉 ≈ 3〈u2

x,x 〉 and 〈ω2〉 ≈ 6〈u2
x,y〉, giving a ratio of 1/2.

Obviously, it will be important to confirm the asymptotic be-
haviour of R2

ω/R2
div u at larger Reynolds and Mach numbers and to

relate this to the value of the critical magnetic Reynolds number
for dynamo action. At the moment our simulations are simply lim-
ited by the resolution (5123 meshpoints) which in turn is limited
by the computing power available on modestly big supercomput-
ers. Even though somewhat larger resolutions are already possible
(10243 meshpoints), those runs remain prohibitively expensive if
one needs to run for many turnover times.

Although we have here focused on the critical value of the mag-
netic Reynolds number for dynamo action, rather than the growth
rate, we can see that there is currently no evidence for an increasing
growth rate with increasing Mach number. From Runs 1a and 3a in
Table 1, one sees that, as Ma increases from 0.72 to 1.1, the growth
rate actually decreases, even though the magnetic Reynolds num-
ber is the same. By comparison, early work on small-scale dynamo
action in irrotational turbulence (Kazantsev et al. 1985) has shown
that the growth rate should increase with the Mach number to the
fourth power. Although we cannot confirm this, it is important to
bear in mind that irrotational turbulence is not likely to correspond
to the limit of large Mach numbers. Instead, as discussed already,
the irrotational contribution to the flow velocity may converge to a
finite fraction of the total flow velocity in the limit of large Mach
numbers.

5 C O N C L U S I O N S

The present simulations suggest that the critical magnetic Reynolds
number for the onset of dynamo action switches from about 35 in the
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subsonic regime to about 70 in the supersonic regime, and stays then
approximately constant (at least in the range 1.0 � Ma � 2.6 that we
were able to simulate). It turns out that the simulations with shock-
capturing viscosity yield almost the same critical magnetic Reynolds
number as the direct simulations. This is partly explained by the fact
that the shock structures are approximately equally smooth for both
direct and shock-capturing viscosities. Finally, we note that there is
as yet no support for the expectation that the growth rate is propor-
tional to the Mach number to the fourth power, as was suggested
previously by analytic theory assuming that the flow is irrotational
(Kazantsev et al. 1985; Moss & Shukurov 1996). It is suggested that
this is because supersonic turbulence cannot accurately be described
as being fully irrotational. Indeed, we find that the Reynolds number
based on the vortical component of the flow is always larger than
the Reynolds number based on the irrotational component.

To verify the proposed asymptotic independence of the critical
magnetic Reynolds number on the Mach number, it would be use-
ful to extend both the direct and the shock-capturing simulations
to larger values of the Mach number. An obvious reason why this
may not have been done yet is that when shock-capturing viscosities
are used, one normally also uses simultaneously a similarly defined
shock-capturing magnetic diffusivity. Consequently, a definition of
the usual magnetic Reynolds number is no longer possible, and the
connection between effective magnetic Reynolds number (based on
the shock-capturing magnetic diffusivity) and the actual one is un-
clear. This is why in the present work we kept the magnetic diffusiv-
ity and the kinematic viscosity equal to the microscopic one. Even
when we compared with shock-capturing simulations, the magnetic
diffusivity was still kept constant. In conclusion, we feel that the use
of shock-capturing viscosities in dynamo simulations with constant
magnetic diffusivities provides a reasonable tool for investigating
supersonic hydromagnetic turbulence.
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