
Suppression of small scale dynamo action by an imposed magnetic field

Nils Erland L. Haugen*
Department of Physics, The Norwegian University of Science and Technology, Høyskoleringen 5, N-7034 Trondheim, Norway

Axel Brandenburg†

NORDITA, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark
(Received 13 February 2004; published 27 September 2004)

Nonhelical hydromagnetic turbulence with an externally imposed magnetic field is investigated using direct
numerical simulations. It is shown that the imposed magnetic field lowers the spectral magnetic energy in the
inertial range. This is explained by a suppression of the small scale dynamo. At large scales, however, the
spectral magnetic energy increases with increasing imposed field strength for moderately strong fields, and
decreases only slightly for even stronger fields. The presence of Alfvén waves is explicitly confirmed by
monitoring the evolution of magnetic field and velocity at one point. The frequencyv agrees withvAk1, where
vA is the Alfvén speed andk1 is the smallest wave number in the box.

DOI: 10.1103/PhysRevE.70.036408 PACS number(s): 52.65.Kj, 47.11.1j, 47.27.Ak, 47.65.1a

I. INTRODUCTION

Turbulent magnetic fields are seen in many astrophysical
settings[1–3]. Such magnetic fields usually result from the
conversion of kinetic energy into magnetic energy, i.e., from
dynamo action. Numerical simulations show that a dynamo-
generated magnetic field can be of appreciable strength even
when there is no kinetic helicity[4,5]. Simulations have re-
cently also shown that at scales smaller than about five times
the energy carrying scale the magnetic energy spectrum
seems to enter an inertial subrange where the magnetic spec-
tral energy exceeds the kinetic spectral energy[6]. This
means that, over any subvolume whose scale is within the
inertial range, there is always a larger scale component of the
field with significant strength. This raises the question of
whether one can model the small scale properties of such
turbulence simply by imposing a magnetic field.

A lot of work has already been devoted to studying hy-
dromagnetic turbulence in the presence of an external field
[7–9]. Nevertheless, the superequipartition magnetic energy
seen in simulations without imposed field has never been
seen in simulations with imposed field. An exception is when
the magnetic Prandtl number is large[10]. However, the
superequipartition is then seen between the viscous and the
resistive cutoff—not in the inertial range. It is one of our
goals to elucidate this puzzle. Likewise, although dynamos
with helicity can produce substantial superequipartition on
the scale of the system, they too are not able to produce
superequipartition in the inertial range[11]. In that sense the
difference between dynamos with and without imposed field
is similar to the difference between helical and nonhelical
dynamos.

Views on the effects of external fields are divided. A com-
mon scenario that applies when the conditions for dynamo
action are not met(e.g., if the magnetic Reynolds number is

too small) is one where a local magnetic field can be en-
hanced simply by winding up an external magnetic field.
Possible candidates where this may be the case are Io and
Ganymede, in which convection interacts with the field of
Jupiter leading to local field enhancement[12–14]. A similar
possibility may also apply to the solar convection zone
where the large scale field of the 11-year solar cycle is pri-
marily located at the bottom of the convection zone[15], but
the overlying convection zone may shred the field to produce
a small scale field[16]. Another possibility that has been
discussed more recently is that the small scale field at the
solar surface could be generated locally by a small scale
dynamo operating near the surface[17].

In hydromagnetic turbulence theory, the magnetic and ki-
netic energy are assumed to cascade from large to small
scales, similar to the hydrodynamic case, although recent
work has established a strong intrinsic anisotropy[18],
which has no counterpart in the hydrodynamic case. How-
ever, this theory does not address the possibility of dynamo
action. It remains therefore an open question as to what is the
nature of the interaction resulting from imposed and
dynamo-generated magnetic fields. In particular, we shall
present evidence that the imposed magnetic field does not
enhance dynamo action. Instead, the external field does ac-
tually suppress dynamo action, albeit in a subtle way because
the rms turbulent velocity is generallynot decreased by a
modestly strong magnetic field. We show that the suppres-
sion can be associated with the work term resulting from the
Lorentz force due to the imposed field. It turns out that this
term changes sign above a certain field strength such that a
certain fraction of magnetic energy flows backward to en-
hance the kinetic energy instead.

II. EQUATIONS

We adopt an isothermal equation of state with constant
(isothermal) sound speedcs, so the pressurep is related to
the densityr by p=rcs

2. The equation of motion is written in
the form
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Du

Dt
= − cs

2 = ln r +
J 3 B

r
+ Fvisc + f , s1d

where D /Dt=] /]t+u ·= is the advective derivative,J= =
3B /m0 is the current density,m0 is the vacuum permeability,

Fvisc = nS¹2u +
1

3
= = ·u + 2S · = ln rD s2d

is the viscous force,n=const is the kinematic viscosity,

Si j =
1

2
S ] ui

] xj
+

] uj

] xi
−

2

3
di j = ·uD s3d

is the traceless rate of strain tensor, andf is a random forcing
function that consists of nonhelical plane waves; see Refs.
[6,19] for details. The continuity equation is written in terms
of the logarithmic density,

D ln r

Dt
= − = ·u, s4d

and the induction equation is solved in terms of the magnetic
vector potentialA,

] A

] t
= u 3 B + h¹2A, s5d

whereh=const is the magnetic diffusivity, andB=B0+b is
the magnetic field consisting of the imposed uniformsk=0d
field B0, and the deviations from the imposed fieldb= =
3A. This split is necessary because the vector potential cor-
responding toB0 cannot be periodic, while bothB andA can
well be assumed to be periodic.

In the simulations summarized in Table I we have used
the same method as described in Ref.[19]. The kinetic and
magnetic Reynolds numbers are defined as

Re =
urms

nkf
, ReM =

urms

hkf
, s6d

respectively. Here,kf is the average forcing wave number
and PrM =n /h;ReM /Re is the magnetic Prandtl number. In
all cases studied below we assume PrM =1. We study cases
wherekf is either 1.5 or 5.

ThePENCIL CODE[20] is used for all our simulations. The
resolution is varied between 1283 and 10243 mesh points.

Although we solve the compressible equations, the sound
speed is large compared with the turbulent velocities. We
find that the energies of solenoidal and potential components
of the flow have the ratioEpot/Esol<10−4−10−2 for most
scales; only toward the Nyquist frequency does the ratio in-
crease to about 0.1. Thus, our results should be close to the
incompressible limit.

We use nondimensional quantities by measuring length in
units of 1/k1 (wherek1=2p /L is the smallest wave number
in a box of sizeL; in the present caseL=2p), speed in units
of the isothermal sound speedcs, density in units of the
initial value r0, and magnetic field in units ofsm0r0cs

2d1/2.

III. ENERGY BALANCE

A sketch of the overall energy budget is given in Fig. 1
where we show the magnetic and kinetic energy reservoirs
together with arrows indicating the flow of energy. The ar-
row pointing into the kinetic energy reservoir is the energy
flux e entering the simulation through the external forcing,
while the arrows pointing to the right from the kinetic and

TABLE I. Summary of the different runs with forcing atkf =1.5. All runs have magnetic Prandtl number
unity. The field strengths 0.06, 0.3, and 3.0 correspond roughly to 0.5, 2.0, and 20 timesBeq=Îm0r0urms.

Run Resolution n=h ReM brms urms B0

B4 1283 4310−4 280 0.076 0.17 0.3

C1 2563 2310−4 400 0.062 0.12 0

C2 2563 2310−4 400 0.070 0.12 0.01

C3 2563 2310−4 370 0.094 0.12 0.06

C4 2563 2310−4 500 0.088 0.19 0.3

C5 2563 2310−4 500 0.075 0.15 3

D4 5123 1310−4 930 0.089 0.14 0.3

E1 10243 8310−5 1000 0.075 0.12 0

FIG. 1. Sketch of the energy budget showing the kinetic and
magnetic energy reservoirs together with the flow of energy for run
D4. The numbers in parentheses correspond to run E1 without an
imposed field. The total dissipation rate is denoted bye;eK +eM,
which is the sum of kinetic and magnetic energy dissipation rates.
The plus sign onWL0 and the direction of the corresponding arrow
emphasize that, at least for sufficiently strong imposed fields, en-
ergy flows from the magnetic to the kinetic energy reservoir.
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magnetic energy reservoirs denote viscous and Joule dissipa-
tion, i.e.,eK andeM, respectively. On the average and in the
statistically steady state we expecte=eK +eM.

The two arrows between the kinetic and magnetic energy
reservoirs correspond to the contributions to the work done
against the Lorentz force. In general this work term can be
written asku ·s j 3Bdl, where we have usedj =J to empha-
size that the current density has vanishing volume average.
However, sinceB=B0+b, whereb= = 3A is the departure
from the imposed field(also with vanishing volume aver-
age), we can divide the work term into a contribution from
the fluctuating fieldku ·s j 3bdl and one from the imposed
field ku ·s j 3B0dl. The latter can also be written asB0·ku
3 jl, which emphasizes the fact that this term is quadratic in
the fluctuations and can hence transfer energy only between
kinetic and magnetic energy reservoirs at the same wave
number. We can thus write

dEM

dt
= − WL − WL0 − eM, s7d

whereEM =kb2l /m0 is the magnetic energy(per unit volume)
of the induced field without the imposed field,WL =ku ·s j
3bdl is the work done by the fluctuating fields,WL0

=B0·ku3 jl is the work done against winding up the im-
posed mean field, andeM =hm0k j2l is the loss from Joule
heating. In a closed or periodic system such as the one con-
sidered here, there are no surface terms, which is why there
is no term associated with the Poynting flux in Eq.(7).

The numbers on the arrows give the energy fluxes for a
simulation with a moderately strong imposed field(run D4).
The numbers in parentheses are the corresponding values for
a simulation without imposed fields. By comparing the two
we see that with an imposed field the content of the magnetic
energy reservoir is slightly increased. Nevertheless, magnetic
dissipation has decreased and kinetic dissipation has in-
creased. This suggests that an imposed magnetic field
quenches the dynamo.

Naively, one might expect that the −WL0 term always
“helps” the dynamo and that it therefore always transfers
energy from kinetic to magnetic energy by winding up the
imposed field. This is not the case, however. In Fig. 2 we
showWL andWL0, normalized bye0=kfr0urms

3 , as functions

of imposed field strength.(In those units the total energy
input to the system ise<0.07e0.) The negative contribution
from −WL0 for large field strengths is actually the main rea-
son that simulations with strong imposed fields have less
magnetic energy; see Table I. Since theWL0 term is local in
k space it also explains the general increase in kinetic energy
at all scales.

To quantify the above statement, we discuss now the
spectral energy transfer functionWL0skd=B0·kuk3 jkl, where
uk andjk are the Fourier filtered velocity and current density.
In Fig. 3 we plot the ratio ofWL0skd to the magnetic energy
spectrum EMskd, divided by the eddy turnover timet
=skfurmsd−1, using data from runs C3 and C4. Here, the spec-
tra are normalized such thateWL0skddk=WL0 and
eEMskddk=EM. It turns out that, first,WL0skd has a positive
contribution to the magnetic energy at small wave numbers.
This explains the increase in magnetic energy at large scales
(small wave numbers). Second, at moderate and large wave
numbers,WL0skd is positive, which explains the suppression
of the magnetic energy.

IV. SPECTRAL ENERGY CHANGES

Next we investigate the effect of varying the strength of
the imposed field on the magnetic and kinetic energies at
different wave numbers; see Fig. 4. We see that aroundB0
<Beq the magnetic energy is somewhat enhanced at small
wave numbers(k=2, corresponding to modestly large
scales), but decreased at large wave numbers(k=32, corre-
sponding to small scales). At the same time the effect on the
velocity field is weak, but there is generally a tendency for
enhanced velocities, especially at large scales.

When the forcing is atkf =5, instead of atkf =1.5, the
trends are very similar to those in Fig. 4; see Fig. 5. In
particular, at large scales there is first an increase and then a

FIG. 2. Dependence of −WL (solid line) and −WL0 (dashed line)
on the imposed field strengthB0. HereBeq=Îm0r0urms is the equi-
partition field strength, ande0=kfr0urms

3 is a reference value for the
energy flux.kf =1.5.

FIG. 3. Contribution to the spectral energy transfer between
kinetic and magnetic energies due to the imposed field. Power spec-
trum of B0·kuk3 jkl normalized byEk

M for run C4 (solid line) and
run C3 (dashed line). We clearly see that at the box scale there is
transport of energy from the kinetic to the magnetic field, while at
all other scales the transport is in the opposite direction, i.e., there is
a suppression of the magnetic field. It is also clear that the suppres-
sion is much stronger at the smallest scales.
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decrease of the magnetic energy as the imposed field strength
is increased, while for small scales the magnetic energy de-
creases for all imposed field strengths. We therefore conclude
that the suppression of the magnetic field is, at least qualita-
tively, independent of the forcing scale.

The situation is different in the presence of helicity where
it has been argued that it is particularly the large scale mag-
netic field atk=k1 that is affected by the introduction of an
imposed magnetic field[21]. This can be interpreted as a

suppression of thea effect. Repeating the simulations of Ref.
[21], we were able to confirm their findings; see also Ref.
[22]. We also find that the kinetic and magnetic energy spec-
tra fall almost on top of each other whenB0=2Beq. This is
just the same as in the case without imposed field[11], ex-
cept atk=k1, where there is an additional field component
due to thea effect. Furthermore, increasing the field toB0
=20 Beq we do recover the same suppression of the dynamo
as without helicity, i.e., the spectra look similar to those of
run C5. Thus, the suppression of dynamo activity by the
imposed field is rather general and affects equally helical and
nonhelical dynamos.

It is generally believed that hydromagnetic turbulence can
be described as an ensemble of Alfvén waves. This is true
both for the Goldreich-Sridhar[18] and the Iroshnikov and
Kraichnan [23,24] theories. This would then suggest that
magnetic and kinetic energies should be comparable to one
another at each scale. From Figs. 6 and 7 we see that mag-
netic and kinetic energies are close to each other, but gener-
ally not equal. This is also seen in the simulations of Cho and
Vishniac [7]. Only when the imposed field is approximately
equal in strength to the rms field do we have approximate
equipartition between magnetic and kinetic energies at small
scales.

V. SHAPE OF THE ENERGY SPECTRA

As the resolution is increased, one begins to see indica-
tions of the buildup of a shortk−5/3 inertial range of kinetic
and magnetic energies at intermediate wave numbers; see
Fig. 8. The inertial range is as yet too short to be conclusive,
and we therefore need larger simulations in order to be sure
whether we have a realk−5/3 slope or not.

From Fig. 8 we also see that in the rangek1,k,10 the
magnetic energy spectrum seems to follow ak−1 slope. For
comparison, in the case without an imposed field the spectral
magnetic energy was actually increasing withk and followed
approximately ak1/3 slope[19] at smallk. Thek−1 spectrum
for imposed fields can be motivated by dimensional argu-
ments: assume that the magnetic energy spectrum is a func-
tion of the imposed field strengthB0 and the wave numberk,
and that the spectrum is given by the ansatzEMskd=CB0

akb,
then, from dimensional arguments, one findsa=2 and b
=−1, so

EMskd = CB0
2k−1 s8d

where C is a dimensionless constant. Such a spectrum is
expected if there is a mean field[25], but it may generally
also appear at the low wave number end of the inertial sub-
range[26], and indications of this spectrum have been seen
in convective dynamo simulations[27]. It turns out, how-
ever, that the value ofC (obtained from a fit) is different for
different values ofB0, casting doubt on the validity of the
assumptions behind Eq.(8). We therefore discard this simple
explanation of the large scale magnetic spectrum. Indeed, in
Fig. 7 we see that we get no longer ak−1 magnetic energy
spectrum for large scales when the forcing is atk=5; instead,
the infrared part of the spectrum has an increasing slope
close toEMskd,k for k,kf. Some intermediate behavior is

FIG. 4. Magnetic(top) and kinetic(bottom) spectral energy at
wave numbers 2 and 32 as a function ofB0. kf =1.5.

FIG. 5. Same as Fig. 4 but with forcing atkf =5.
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seen whenkf =2, . . . ,3; see Ref.[7] where nok−1 behavior
was found.

VI. DIRECT EVIDENCE FOR ALFVÉN WAVES

Finally, we look at the frequency power spectrum calcu-
lated from the time series of the magnetic field and velocity
at one point in the simulation box; see Figs. 9 and 10. As
expected, the larger the imposed magnetic field, the faster the
field oscillates. The peaks in the power spectra forB0=3.0
andB0=0.06 correspond to the frequency of the correspond-
ing Alfvén wave,

v = vAk1 where vA = B0/Îm0r0 s9d

is the Alfvén speed.(In our case we havem0=r0=1.) When
B0 is comparable to or less thanBeq, the peaks in the spectra
are no longer well pronounced.

For strong fields, however, the Alfvén peaks are seen
quite clearly. It is conceivable that these Alfvén waves are
stochastically excited by the turbulence. This might be simi-
lar to the stochastic driving of acoustic waves in the solar
convection zone[28].

FIG. 6. Magnetic and kinetic energy spectra for runs with dif-
ferent imposed field strengths(runs C1 and C3–C5). In all cases
Beq=0.12−0.15; see Table I.

FIG. 7. Magnetic and kinetic energy spectra for runs with dif-
ferent imposed field strengths and forcing atk=5.

FIG. 8. Magnetic and kinetic power spectra for runs withB0

=0.3 (runs B4, C4, and D4).
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VII. CONCLUSION

The present studies have shown that a uniformly imposed
magnetic field has two important effects on the magnetic
field that is induced at finite wave numbersskÞ0d. First, the
magnetic field is slightly enhanced at and around the forcing
wave number(corresponding to the energy carrying scale).
Second, the magnetic field is quenched with increasingB0 at
all larger wave numbers corresponding to the inertial and
diffusive subranges.

The enhancement and suppression at the two different
wave number ranges is associated with a corresponding wave
number dependence of the work termB0·ku3 jl. The sup-
pression of the magnetic field in the inertial range is quite
opposite to the behavior without imposed field, when there is
instead a significant enhancement of the magnetic energy
spectrum over the kinetic energy spectrum. We therefore re-
fer to this effect as a suppression of the dynamo by the im-
posed field.

The suppression of dynamo activity might be a conse-
quence of the tendency toward two-dimensionalization of the
turbulence by the large scale field[29]. Such an effect is well
known for low ReM hydromagnetic turbulence[30], and it is
a mathematical theorem that there can be no dynamo action
in two dimensions[31]. Of course, the turbulence does not
really become two dimensional, but instead the correlation
length along the field becomes large. This type of anisotropy
is a crucial ingredient of the Goldreich-Sridhar theory[18].

The Goldreich-Sridhar theory also predicts that Alfvén
waves should be present in the system. This has been con-
firmed by inspecting velocities and magnetic fields at a
single point in the middle of the simulation box. These
Alfvén waves have the expected frequencyvA=vAk1. Fur-
thermore, we do not find that there is equipartition between
magnetic and kinetic energy spectra in the inertial range for

large imposed field strengths. The absence of equipartition
may be a consequence of the inertial range being still too
short (or absent). In runs whereB0=Beq, on the other hand,
there is clear evidence that kinetic and magnetic energy spec-
tra fall on top of each other throughout the dissipation sub-
range. This is also in agreement with earlier results of Cho
and collaborators[9], who considered the case where the
imposed field had equipartition strength.

Whether or not models with imposed field can reproduce
the situation in small sub-domains of simulations with no
overall imposed field is still unclear. At first glance the an-
swer seems to be no, because none of the simulations with
imposed field have ever been able to produce superequipar-
tition in the inertial range, as is seen in the nonhelical simu-
lations without imposed field[6]. However, the reason for
this may well lie in the still insufficient resolution of the
simulations with no imposed field—even though they do al-
ready have a resolution of 10243 mesh points. It is indeed
possible that, even though the kinetic and magnetic energy
spectra are approximately parallel to each other over a cer-
tain range of wave numbers and offset by a factor of about
2.5, they may actually converge at still larger wave numbers.
Preliminary indications of this have now been seen in simu-
lations using hyperviscosity and hyper-resistivity with no im-
posed field. However, a general difficulty with hyperviscos-
ity and hyper-resistivity is that certain aspects of the physics
of such systems are significantly modified[32]. It is there-
fore equally important to assess the features that are likely
not to be altered by this manipulation. A detailed discussion
of this will be the subject of a forthcoming paper.
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FIG. 9. Fourier spectra of time evolution of the magnetic and
kinetic fields at one point in the box for simulation withB0=0.06.
The point of interest is chosen to be in the center of the box. The
arrows represent the frequency of an Alfvén wave with a wave-
length of the box size traveling along the imposed field. We clearly
see that Alfvén waves are strongly present in the simulation.

FIG. 10. Same as Fig. 9 but withB0=3.0.
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