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Effect of the radiative background flux in convection
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Abstract. Numerical simulations of turbulent stratified convection are used to study models with approximately the same
convective flux, but different radiative fluxes. As the radiative flux is decreased, for constant convective flux: the entropy jump
at the top of the convection zone becomes steeper, the temperature fluctuations increase and the velocity fluctuations decrease
in magnitude, and the distance that low entropy fluid from the surface can penetrate increases. Velocity and temperature
fluctuations follow mixing length scaling laws.
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1. Introduction

In modeling stellar convection it is important to make the
models resemble the stars as much as possible. A major dif-
ficulty in producing realistic simulations of deep stellar con-
vection is the large ratio between thermal and dynamical time
scales. This is because in dynamical units the solar thermal
flux (F� = 7 × 1010 erg cm−2 s−1) is very small,
F�
ρc3

s

∼ 4 × 10−11, (1)

at the bottom of the convection zone (where ρ = 0.2 g cm−3

and cs = 200 km/s). At the surface this ratio is of order 10−1,
but already two megameters below the surface the ratio is
10−3. This ratio is basically equal to the ratio of the dynami-
cal to thermal time scales.

For a common class of models studied by many workers
(we will refer to them as polytropic models), most of the en-
ergy is carried by radiation instead of convection. This cor-
responds to the polytropic index m of the associated hydro-
thermal equilibrium solution having the value m = 1. In this
case flow characteristics are different from those in the con-
vection dominated transport regime, even for large Rayleigh
numbers. In the range −1 < m � 1, however, most of the
flux is carried by convection.

In order for simulations of convection to be representa-
tive of late type stars the ratio of radiative to total flux must
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be small in the convection zone. This has prompted Chan &
Sofia (1986, 1989) to study models where the radiative flux
is removed entirely and is replaced by a subgrid scale flux.
Unlike the radiative flux, which is proportional to the tem-
perature gradient, the subgrid scale or small-scale eddy flux
is proportional to the entropy gradient (e.g. Rüdiger 1989).
Others have chosen to model the surface layers and the gra-
nulation (Nordlund 1982; Stein & Nordlund 1989, 1998; Kim
& Chan 1998; Robinson et al. 2003; Vögler et al. 2005). In
those models radiation is only important near the surface lay-
ers and practically absent beneath the surface, although dif-
fusive energy flux is still necessary for numerical simulations
to be stable.

The aim of this paper is to explore the effect of varying
the diffusive radiative flux while keeping the convective flux
in the convection zone approximately constant. From mixing
length arguments one would expect that for negligible radia-
tive flux the turbulent velocities, temperature fluctuations and
other dynamical aspects of the convection only depend on the
magnitude of the convective flux. However, this approxima-
tion breaks down once the radiative flux is no longer very
small compared to the convective flux.

We consider models using piecewise polytropic layers.
Such models have been widely studied and they possess the
advantage that the properties of stable and unstable layers are
easier to manipulate than in models with the more realistic
Kramers’ opacities, for example, where the radiative diffu-
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sivity depends on density and temperature rather than just on
depth. However, we also include a comparison of realistic so-
lar models with the same convective flux but varying diffusive
subgrid scale energy flux in the interior and hence varying
(turbulent) Prandtl number.

There are two main results of our investigation. First, the
properties of the convection depend on the ratio of radiative
to convective flux when the radiative flux is not negligible.
Increasing radiative energy diffusion reduces the tempera-
ture fluctuations which requires larger velocities to carry the
same convective flux. Increasing radiative energy diffusion
also raises the entropy of the downdrafts and inhibits their
descent. Second, as the resolution increases the dependence
of convective properties on the Prandtl number decreases.
However, at low resolutions the dependence is different when
the viscosity is altered than when the radiative conductiv-
ity is altered. Increasing the radiative conductivity to lower
the Prandtl number has the effects described above. Decreas-
ing the viscosity to lower the Prandtl number (increasing the
Reynolds number) enhances small scale structures and in-
creases the turbulence.

We first discuss the setup of our model, the equations that
are solved and how we change the fractional radiative flux in
the convection zone while leaving everything else unchanged
(Sect. 2). The polytropic model results are given in Sects. 3
and 4, the realistic solar simulation results are presented in
Sect. 5, and our conclusions are given in Sect. 6.

2. The model

2.1. Equations

In our polytropic models we solve the continuity, momentum,
and energy equations in non-conservative form,

D ln ρ

Dt
= −∇ · u, (2)

Du

Dt
= −(γ − 1) (e∇ ln ρ + ∇e) + g +

1
ρ
∇ · (2νρS), (3)

De

Dt
= −(γ − 1) e∇ ·u +

1
ρ
∇ ·K∇T + 2νS2 − e − e0

τe(z)
,(4)

where Sij = 1
2 (∂jui + ∂iuj − 2

3δij∂kuk) is the (traceless)
strain tensor, ν = const is the kinematic viscosity. We assume
a perfect gas, so the pressure is given by

p = (γ − 1)ρe, (5)

where ρ is density, e = cvT is the internal energy, T is tem-
perature, and cv is the specific heat at constant volume.

Below the photosphere the radiative diffusion approxima-
tion is valid so the vertical component of the radiative flux is

Frad = KdT/dz, (6)

where K is the radiative conductivity, T is temperature,
and z is depth (increasing downward). We impose a cool-
ing layer at the surface where τe(z) is a cooling time, and
e0 is the reference value of the internal energy e at the top
of the layer. The value of e0 is quantified by a parameter
ξ0 = (γ − 1)e0/(gd) ≡ H

(top)
p /d, which is the pressure

scale height at the top of the box divided by the depth of
the unstable layer, d. The pressure scale height is, Hp =
(d ln p/dz)−1 = RT/(µg), where R is the universal gas
constant and µ the mean molecular weight.

We adopt the basic setup of the model of Brandenburg et
al. (1996, hereafter BJNRST; see also Hurlburt et al. 1986)
where the vertical profile of K(z) ≡ K/cv is assumed such
that K is piecewise constant in three different layers, K = K1

in z1 ≤ z ≤ z2, K = K2 in z2 ≤ z ≤ z3, and K = K3 in
z3 ≤ z ≤ z4. In our case z1 = −0.15, z2 = 0, z3 = 1, and
z4 = 2.8.

2.2. Radiative conductivity

In this paper we want to study the effects of varying the ra-
diative flux in the convection zone, z2 ≤ z ≤ z3, so we have
to vary the value of K2. In the following we discuss the rela-
tion between K2 and the anticipated radiative flux Frad in the
convection zone, which will be a good approximation to the
actual radiative flux obtained by solving Eqs. (2)–(4).

In astrophysics the radiative flux is often written in the
form

Frad = KT

(
d ln p

dz

) (
d lnT

d ln p

)
=

KT

Hp
∇ =

Kg

R/µ
∇. (7)

Here

∇ = d lnT/d ln p (8)

characterizes the temperature stratification. We can define a
radiative gradient, ∇rad, that would be necessary to transport
all the flux radiatively,

Ftot =
Kg

R/µ
∇rad. (9)

In the deep radiative interior of the Sun we have Frad = Ftot,
and therefore ∇ = ∇rad. In most of the convection zone the
actual stratification is close to adiabatic, so ∇ ≈ ∇ad ≡ 1 −
γ−1 < ∇rad, since Frad < Ftot.

To set up a polytropic model it is customary to specify K
in terms of the polytropic index m (e.g., Hurlburt & Toomre
1984), instead of ∇rad. If all the flux were carried by radia-
tion we would have p(z) ∼ T m+1, and so ∇rad = (m+1)−1.
The value of the radiative conductivity is expressed in terms
of the polytropic index from Eq. (9) as

Ki =
Ki

cv
=

Ftot

g
(γ − 1)(mi + 1). (10)

The three values of Ki (i = 1, 2, 3) are given in terms of poly-
tropic indices mi via the above equation. In all cases reported
below we use m3 = 3 and vary the value of m2. Near the top
there is cooling (τe �= 0 in z1 < z < z2, and τe → 0 for
z > z2). Therefore, almost all the flux in this layer is trans-
ported by the corresponding cooling flux and the diffusive
radiative flux in the uppermost layer is insignificant. Hence,
the value of m1 does not affect the stratification. In most of
the cases we put m1 = −0.9.

The fractional radiative flux in the convection zone is

Frad

Ftot
≈ ∇ad

∇rad
=
(

1 − 1
γ

)
(m + 1), for m <

1
γ − 1

, (11)
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Table 1. Fractional radiative and convective fluxes for a few values
of m, as obtained from Eq. (11)

m Frad/Ftot Fconv/Ftot

1 80% 20%
0 40% 60%

−0.5 20% 80%
−0.8 8% 92%
−0.9 4% 96%

where we have assumed ∇ ≈ ∇ad. In all those models where
m = 1 (e.g. Hurlburt & Toomre 1984, 1986; Cattaneo et
al. 1990, 1991; Brandenburg et al. 1990, 1996; Brummell et
al. 1996; Ossendrijver et al. 2002; Ziegler & Rüdiger 2003;
Käpylä et al. 2004) and γ = 5/3, the fractional radiative
flux is as large as 80%. In order to study polytropic models
with Frad � Ftot we must approach the limit m → −1. In
this paper we calculate a series of such models starting with
m = 1 (the standard case considered in many papers) down
to m = −0.9. As the value of m is lowered, smaller fractional
radiative fluxes are obtained. In the upper layers of the solar
convection zone this ratio is close to the ratio of the mean free
path of the photons to the pressure scale height and can be as
small as 10−5. In deeper layers of the solar convection zone
the radiative flux becomes progressively more important and
reaches 50% of the total flux at 0.75 solar radii.

It may seem unphysical to talk about negative values of
m, because the density would increase with height, but such
a ‘top-heavy’ arrangement only means that the stratification
is then very unstable. Of course, the pressure still decreases
with height, because m + 1 is positive. Negative values of m
(but with m > −1) result from a very poor radiative conduc-
tivity, which is indeed quite common in the outer layers of all
late-type stars.

It should be emphasized that m only characterizes the as-
sociated thermal equilibrium hydrostatic solution, which is
of course unstable for m < mad ≡ (γ − 1)−1 = 3/2. In
that case convection develops, making the stratification close
to adiabatic. Thus, the effective value of m will then always
be close to the marginal value mad. The significance of the
m used here (as opposed to the effective m) is that it gives a
nondimensional measure of the fractional radiative flux.

We carry out a parameter survey by varying the values of
m2 and hence K∈, which corresponds to varying ∇rad in the
convection zone and the total flux Ftot. In practice we fix the
value of Fconv and calculate the total flux F from Fconv for
a given value of m2. In Table 1 we give the fractional fluxes
for some values of m, using Eq. (11). Here we have assumed
Ftot = Frad + Fconv, i.e. we have neglected kinetic and vis-
cous fluxes which are of course included in the simulations.

2.3. Nondimensional quantities

Nondimensional quantities are adopted by measuring length
in units of d, time in units of

√
d/g and ρ in units of its initial

value, ρ0, at z = z3, i.e. at the bottom of the convection zone.

In all cases we use a box size of Lx = Ly = 4 with z4 = 2.8.
The flux is then expressed in terms of the non-dimensional
quantity

F =
Ftot

ρ0 (gd)3/2
, (12)

In the same units we define

Fconv =
[
1 −

(
1 − 1

γ

)
(m + 1)

]
F , (13)

which is a measure of the convective flux. (The actual con-
vective flux, Fconv, is of course not a constant, but varies with
height, and reaches a maximum of around Fconv.)

The value of ν is taken to be as small as possible for a
given mesh resolution. For 503 we can typically use ν = 5 ×
10−3 (in units of

√
gd3). For a resolution of 2003 we were

able to lower the viscosity to ν = 2.4 × 10−4.
The quantityF determines the ‘mean’ thermal diffusivity,

χ3 = K3/(γρ0), via

χi =
√

gd3 F ∇ad/∇(i)
rad, (14)

where ∇(i)
rad is the radiative gradient in layer i. (Note that in

this approach the actual thermal diffusivity decreases with
depth in each of the three layers.) The nondimensional flux
can also be related to the Rayleigh number,

Ra =
gd4

νχ2cp

(
ds

dz

)
0

, (15)

which characterizes the degree of instability of the hydro-
static solution in the middle of the unstable layer, i = 2. Here,

d
cp

(
ds

dz

)
0

=
1 −∇ad/∇(2)

rad

1
2 + ξ0/∇(2)

rad

(16)

is the normalized entropy gradient of the associated hydro-
static solution for the same K(z) profile (see BJNRST). We
can then express Ra in terms of F as

Ra =
1

PrF2

(
∇(2)

rad

∇ad

)2
1 −∇ad/∇(2)

rad

1
2 + ξ0/∇(2)

rad

, (17)

where Pr = ν/χ2 is the Prandtl number. In the astrophysi-
cally interesting limit, ∇(2)

rad → ∞, we have

Ra → Ra∗ = 2Pr−1 F−2 (∇(2)
rad/∇ad)2, (18)

so large Rayleigh numbers correspond to small normalized
fluxes and hence small velocities. This is at first glance some-
what surprising, because large Rayleigh numbers are nor-
mally associated with more vigorous convection and there-
fore large velocities. However, while the velocity decreases
in absolute units, it does increase relative to viscosity and ra-
diative diffusivity, i.e. the Reynolds and Peclet numbers do
indeed increase.

2.4. The initial condition

The ratio of radiative to convective flux can easily be de-
creased within the framework of standard polytropic models,
provided the polytropic index m is close to −1. In that case,
however, it is a bad idea to use the corresponding polytropic
solution as the initial condition, because it is extremely far
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away from the final solution and would take a very long time
to relax to the final state. Instead, we use a simplified mixing
length model with an empirically determined free parameter
such that the entropy at the bottom of the convection zone and
the radiative interior beneath is close to that finally obtained
in the actual simulation.1

An initial condition that yields a solution on almost the
right adiabat is obtained by assuming that the entropy is not
constant, but that the negative entropy gradient is a function
of the convective heat flux. According to mixing length the-
ory the superadiabatic gradient in the convection zone is

∇−∇ad = k (Fconv/ρc3
s)

2/3, (19)

where k is a nondimensional coefficient (related to the mix-
ing length alpha parameter), which we determined empiri-
cally for our models to be k = 1.5.

In terms of e and ln ρ, our initial condition can then be
written as

de/dz = madg∇, (20)

d ln ρ/dz = madg (1 −∇)/e, (21)

where

∇ =

⎧⎨
⎩

0 if z1 ≤ z ≤ z2

∇ad + k (Fconv/ρc3
s )

2/3 if z2 < z < z3

∇(3)
rad = (m3 + 1)−1 if z3 ≤ z ≤ z4

(22)

and varies smoothly between the three layers. The initial
stratification is obtained by integrating Eqs. (20) and (21)
from z = z1 downwards to z4. The starting value of ρ at
z = z1 is adjusted iteratively such that ρ(z3) = ρ0 = 1,
i.e. the density at the bottom of the convection zone is unity.
This is especially useful if the extent of the box is changed,
because this would otherwise affect the density in all layers.

In Fig. 1 we compare the entropy obtained from the initial
condition as derived above with that obtained from the ac-
tual simulations. We also compare with the entropy derived
from the associated polytropic hydrostatic thermal equilib-
rium solution to show just how far away from the final state
that solution would be. Finally, we also compare with a solu-
tion where the entropy was assumed constant within the con-
vection zone, which is better than the associated hydrostatic
thermal equilibrium, but still with the wrong entropy at the
bottom of the convection zone.

As in previous work the initial velocity is random. This
is realized by a superposition of randomly located spherical
blobs of radius 0.1, where the velocity points in random di-
rections.

1 The reason why we chose to specify our simulations in terms of
polytropic indices is mainly that it makes good contact with previ-
ous approaches using polytropic solutions. It is important to realize,
however, that specifying the value of m in the convection zone is
really just a way of specifying the nondimensional radiative con-
ductivity.

Fig. 1. Entropy in the final and initial states, compared with the cor-
responding polytropic model, as well as a polytropic model with
constant entropy within the convection zone (CZ). Fconv = 0.01.

2.5. Boundary conditions

In the horizontal directions we adopt periodic boundary con-
ditions and at the top and bottom we adopt impenetrable,
stress-free boundary conditions, i.e.

∂ux

∂z
=

∂uy

∂z
= uz = 0 at z = z1, z4. (23)

The boundaries are sufficiently far away so the boundary con-
ditions do not significantly affect the flow properties in the
convection zone proper, which is the layer z2 ≤ z ≤ z3.
Because of the cooling term in Eq. (4) the value of e at the
top is always close to the reference value e0 which, in turn,
is proportional to ξ0 and to the pressure scale height at the
top. Thus, decreasing the value of ξ0 leads to stronger driving
of convection and to stronger stratification in the top layer.
However, ξ0 cannot be decreased too much for a given nu-
merical resolution, and so we chose ξ0 = 0.2 in all cases. In
the top layer z1 < z < z2 the inverse cooling time τ−1

e is 10
and goes smoothly to zero for z > z2.

3. Results

3.1. Models

We have carried out a series of calculations all with the same
value of Fconv and varying values of m2 (hereafter referred
to as m). In a first series of models we used ν = 6 × 10−3.
The corresponding values of Prandtl and Rayleigh numbers
are given in Table 2.

Note that the Prandtl number is no longer small, except
in the case m = 1. However, for m = 1 and Fconv = 0.01
the Rayleigh number is already so small that the instability
to convection is suppressed. Therefore we have also studied
another series of models where the convective flux is reduced
by a factor of 5; see Table 3. Here however we have only
calculated the cases m = 0 and 1, because otherwise the ra-
diative diffusivity would become so small that the resolution
would be insufficient.
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Table 2. Parameters for a model with Fconv = 0.01, ξ0 = 0.2,
ν = 6 × 10−3 and different values of m

m Ftot Frad Pr Ra
1 0.0500 0.0400 0.15 9.3 × 102

0 0.0167 0.0067 0.9 2.1 × 104

−0.5 0.0125 0.0025 2.4 8.9 × 104

−0.8 0.0109 0.0009 6.9 3.3 × 105

−0.9 0.0104 0.0004 14 7.4 × 105

Table 3. Parameters for a model with Fconv = 0.002 and ν =
5 × 10−3 and different values of m

m Ftot Frad Pr Ra
1.0 0.01000 0.00800 0.6 5.6 × 103

0.0 0.00333 0.00133 3.8 1.3 × 105

Table 4. Parameters for a model with Fconv = 0.01 and different
values of m. ν and χ2 are given in units of 10−4, i.e. ν−4 = ν/10−4

and χ−4 = χ2/10
−4. The mesh resolution is also given. The aster-

isk in the last column indicates that the duration of the run was short
and not yet fully relaxed, so the data may not be reliable

m ν−4 χ−4 Pr Ra resol. ku kT

−0.5 60 25 2.4 9 × 104 503 0.34 1.13
−0.5 12 25 0.5 4 × 105 1003 0.46 1.07
−0.9 60 4 14 7 × 105 1003 0.29 1.25
−0.9 12 4 2.9 4 × 106 1003 0.41 1.14
−0.9 2.4 4 0.6 2 × 107 2003 0.48 1.14 *
−.98 12 0.8 15 2 × 107 1003 0.38 1.22
−.98 2.4 0.8 3.0 1 × 108 2003 0.43 1.16

Finally, we consider a series of models with varying
Prandtl number and constant convective flux. Lowering the
radiative flux automatically increases the Prandtl number. In
the Sun the Prandtl number is less than one, which was no
longer the case in models with low radiative flux. We there-
fore also studied the effects of lowering the Prandtl number
by lowering the viscosity. In Table 4 we give the parameters
for a series of models where Pr is varied by changing both ν
and χ2. The question is whether or not certain properties of
convection continue to depend on Prandtl number as the tur-
bulence becomes more vigorous (small viscosity and radia-
tive diffusivity). For instance, we expect that for sufficiently
large Reynolds number the large scale flow properties will
no longer depend on the microscopic values of viscosity and
radiative diffusivity.

3.2. Entropy stratification

As the radiative flux is lowered, the mean entropy in the con-
vection zone becomes more nearly constant and the supera-
diabatic gradient at the top becomes steeper; see Fig. 2. The
mean entropy beneath the convection zone is only slightly af-
fected.

Fig. 2. Comparison of the horizontally averaged entropy stratifica-
tion for different values of m and Fconv = 0.01.

Fig. 3. Entropy histograms for different values of m and Fconv =
0.01 at three different values of z.

As the radiative flux decreases the minimum entropy in
the interior of the convection zone decreases (Fig. 3 and
Fig. 4) and approaches the minimum value that occurs at the
top of the convection zone. These low entropy elements are
only produced at the top where cooling is important. As the
diffusive energy exchange decreases at least some fluid ele-
ments make it all the way from the top to the bottom with
very little mixing or heating. This is clearly a consequence of
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Fig. 4. Entropy histograms for different values of m and Fconv =
0.01.

the reduced radiative diffusivity in the cases with low radia-
tive flux. In the case m = 1 the deviations from the median of
the entropy are rather small; see Fig. 5, where Fconv = 0.002
instead of Fconv = 0.01, so the entropy drop at the surface is
obviously smaller.

As the radiative flux is lowered, the drop of entropy and
temperature at the surface becomes more sudden. This is be-
cause with less radiative diffusivity (i.e. with less radiative
energy transfer) the thermal boundary layer at the top be-
comes thinner. At the same time the pressure must fall off
smoothly, because the pressure is primarily determined by
approximate hydrostatic balance. This can cause a rather pro-
nounced density inversion near the top, as is seen in Fig. 6,

Fig. 5. Entropy histograms for different values of m and Fconv =
0.002. Note that the range on the ordinate is reduced compared to
the previous figure.

Fig. 6. Horizontally averaged density stratification for m = −0.9
and Fconv = 0.01.

which is occasionally also seen in the more realistic solar
simulations.

3.3. Convective and kinetic flux profiles

The mean convective flux profiles (Fig. 7) begin to converge
to one and the same profile as the radiative flux is lowered.
The differences between m = −0.8 and −0.9 are small, sug-
gesting that with m = −0.8 or −0.9 the convective prop-
erties of the simulations (convective velocities and tempera-
ture fluctuations) begin to converge. However, the convective
flux is not constant in the convection zone. This is because of
some contribution of the kinetic energy flux, which is plotted
separately in Fig. 8. As we lower the convective flux (from
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Fig. 7. Comparison of the convective flux for different values of m
and Fconv = 0.01 or 0.002 (marked by additional + symbols).

Fig. 8. Comparison of the kinetic energy flux for different values of
m and Fconv = 0.01 or 0.002 (marked by additional + symbols).

Fconv = 0.01 to Fconv = 0.002), the convective velocities
decrease and therefore also the kinetic flux.

The depth of the overshoot layer is clearly reduced as we
decrease the convective flux (Figs 7 and 8). This is in quali-
tative agreement with theories linking the depth of the over-
shoot layer to the magnitude of the convective velocities and
hence to the convective flux (e.g. Hurlburt et al. 1994; Singh
et al. 1998).

3.4. Velocity and temperature fluctuations

According to mixing length theory, the vertical velocity vari-
ance is proportional to the relative temperature fluctuation,
so 〈u2

z〉 ∼ (∆T/T ) g	, where 	 is the mixing length, and
g	 ∼ c2

s . The magnitude of velocity and temperature fluctu-
ations (denoted below by primes) is determined by the con-
vective flux via

Fconv = 〈(ρuz)′(cpT )′〉 ∼ 〈ρ〉〈u2
z〉1/2cp∆T. (24)

This estimate implies that, apart from factors of order unity
(to be determined below),

∆T

T
∼ 〈u2

z〉
c2
s

∼
(

Fconv

ρc3
s

)2/3

. (25)

In Figs. 9 and 10 we show the normalized velocity and tem-
perature fluctuations for different runs: the profiles are ba-
sically similar. Except for the cases m = 1 and m = 0, the

Fig. 9. Comparison of the normalized vertical velocity fluctuations
for different values of m and Fconv = 0.01 or 0.002 (marked by
additional + symbols). The normalization factor is F−2/3

conv .

Fig. 10. Comparison of the normalized temperature fluctuations for
different values of m and Fconv = 0.01 or 0.002 (marked by addi-
tional + symbols). The normalization factor is F−2/3

conv .

magnitude of the velocity fluctuations decreases and the mag-
nitude of the temperature fluctuations increases as the radia-
tive flux and/or the value of Fconv is lowered. Also, the ratios
in Eq. (25) are indeed of order unity. It turns out that this is
not only valid globally, but also locally; see Fig. 11. Here we
have defined the coefficients

ku =
〈〈u2

z〉/c2
s〉CZ

〈Fconv/(ρc3
s )〉2/3

, kT =
〈∆T/T 〉

〈Fconv/(ρc3
s )〉2/3

, (26)

where the averages are taken over the convection zone proper,
i.e. in z2 < z < z3.

The dependence of these scaling relations (25) and (26)
on Prandtl number is shown as a plot of ku and kT on Pr in
Fig. 12. The dependence of kT on Pr is more or less unique,
independent of whether the change in Pr is accomplished by
changing ν or χ2. By contrast, the dependence of ku on Pr
is not unique. For constant values of ν, ku is nearly constant,
while it increases with decreasing values of χ2. We explain
this result as follows.

As χ2 increases (Pr decreases), temperature fluctuations
are smoothed out, thus decreasing ∆T/T . This would de-
crease the convective flux (which is proportional to the prod-
uct of temperature and vertical velocity fluctuations), but
since the convective flux is kept constant this can only be
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Fig. 11. Vertical profiles of the normalized mean squared vertical
velocity fluctuations and temperature fluctuations, compared with
the normalized convective flux raised to the power 2/3. Note the
good agreement between the three curves within the convection zone
proper.

Fig. 12. Dependence of ku and kT on Pr. Note that ν is constant
along solid lines and χ2 and hence m are constant along dotted lines.
ν and χ2 are given in units of 10−4, i.e. ν−4 = ν/10−4 and ν−4 =
ν/10−4.

achieved by increasing the vertical velocity fluctuations and
hence ku.

The fact that ku and kT remain Pr-dependent even at rea-
sonably large Reynolds numbers is somewhat surprising. Our
largest Reynolds number, based on the rms velocity in the
convection zone proper and the depth of the unstable layer,
is around 1000. It is possible that one needs to go to much
larger values before ku and kT become independent of Pr.

Fig. 13. Horizontal slices of temperature at 4 different levels for four
different values of m. Fconv = 0.01.

Fig. 14. Horizontal slices of temperature at 4 different levels for two
different values of m. Fconv = 0.002.

3.5. Morphology

Figure FMMc2 shows temperature (or e) in horizontal planes
at various depths. At the top of the unstable layer the temper-
ature displays a familiar granular pattern with cool downdraft
lanes. As m approaches −0.9 the pattern becomes generally
sharper and more complex and of smaller scale. At the bottom
of the convection zone (z = 1) there are isolated cool down-
drafts. For m = −0.9 the granular surface pattern still pre-
vails, but this is connected with weak density stratification.
As the downdrafts enter the lower overshoot layer (z = 1.5)
they become warmer. This is now due to the exterior entropy
being lower than that of the downdrafts, which carry entropy
from the upper convection zone.

When the convective flux is decreased (Fconv = 0.002;
see Fig. 14), the temperature pattern becomes sharper again,
but the structure and the typical number of cells remains
about the same. On the other hand, if ν is lowered the tem-
perature becomes much more intermittent and of significantly
smaller scale; see Fig. 15.
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Fig. 15. Horizontal slices of temperature at 4 different levels for
m = −0.9 and three different values of ν. Fconv = 0.01. A resolu-
tion of 2003 meshpoints was used for Pr = 0.6, and 1003 for Pr = 3
and 14.

4. Subgrid scale models

Our next step is to compare our findings with the case where
the radiative flux is replaced by a Smagorinsky subgrid scale
(SGS) energy diffusion inside the convection zone (see Chan
& Sofia 1986, 1989), corresponding to the limiting situation
m = −1. For this purpose, we use the original code of Chan
and Sofia. Since the formulation (solving the conservative
form of the Navier-Stokes equations) and the scheme of this
code (second order only) are different from that used in the
previous section, we make a comparison of the results of the
two codes using the previous m = −0.9, ν = 0.006 case
(with a 503 mesh). In Fig. 16, the dashed and dot-dashed
curves represent results from the Nordlund & Stein (1990)
code (I) and the Chan & Sofia code (II), respectively. The
agreement is good.

In the SGS case, the radiative conduction and cooling out-
side the convective region are fixed in the same way as dis-
cussed in Sect. 2. Inside the convection zone, the numerical
stability of the energy equation is maintained by a subgrid
scale diffusive flux of the form = −χtρT∇s, where χt is
the SGS diffusivity. The numerical stability of the momen-
tum equation is maintained by a SGS kinematic viscosity

νt = 0.32�x�z (2S2)1/2. (27)

where �x and �z are the horizontal and vertical grid widths
respectively. The ratio between νt and χt is fixed throughout
the convection zone.

In the original code of Chan & Sofia (1986) the effective
Prandtl number, Prt ≡ νt/χt, was chosen to be 1/3. How-
ever, in order to facilitate comparison with the models dis-
cussed previously, where we varied the thermal diffusivity,
we now consider three models with Prt = 1/3, 1, and 3. All
three models have the same total flux Ftot = 0.01 and use a
503 mesh. In the SGS case the flow still shows the usual gran-
ular pattern at the surface; see Fig. 17. Smaller diffusivity χt

produces thinner intergranular lanes and decreases the size
of the smallest granular structures; it is consistent with the

Fig. 16. Comparison of SGS models (solid and dotted lines, m =
−1) with direct calculations (m = −0.9). The dashed and dash-
dotted lines refer to Code I used in Sect. 3 (Nordlund & Stein 1990)
and Code II used in the present section (Chan & Sofia 1986). While
the m = −1 and m = −0.9 models are very similar in the mean
density stratification and the scaled temperature fluctuations, there
are significant differences in the mean entropy profile and the scaled
vertical velocity fluctuations.

trend shown in the previous section. Compared to the con-
stant ν case with the same mesh size (Fig. 13), the SGS pat-
terns show more vortical features and indicate more vigorous
turbulence. In the case with the largest Pr, however, the tem-
perature field is getting a little noisy; the thermal diffusivity
is already too small to give reliable results. In Fig. 16 we plot
the mean entropy, density, as well as velocity and temperature
fluctuations for Prt = 1/3 and 1.

Since νt depends on the local strength of the turbulence,
it is not uniform anymore. Its horizontal mean varies with
depth and reaches a maximum near the top of the convection
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Fig. 17. Horizontal slice of temperature for m = −0.9 and SGS
model using three different values of the Prandtl number Pr =
νt/χt. Fconv = 0.01. All calculations here use a 503 mesh.

zone. The range of the mean values (0.0015− 0.0030), how-
ever, is quite limited and they are less than half of that used
in the previous comparable case (m = −0.9, ν = 0.006 and
same mesh size). Relative to this case, the effective Reynolds
numbers of the SGS models are thus considerably larger.
The SGS diffusivity χt, on the other hand, (∝ Pr−1

t ap-
proximately) varies by almost an order of magnitude across
the different models and are larger than the χ of the low-
resolution m = −0.9 case (ratio ≈ 1.1−10). The temperature
fluctuations of the SGS models are thus smaller (difference
≈ 20− 30%). To deliver a comparable amount of convective
energy flux, the value of the vertical rms velocity for the SGS
models is considerably higher than that of the m = −0.9
model. This is accomplished by a somewhat steeper entropy
gradient in the convection zone. The density stratification is
similar. Given that the turbulence has become more vigorous,
the kinetic energy flux is now increased by almost a factor
of 2 to about 35% of the total flux. Part of that (∼ 9%Ftot)
is compensated by the subgrid scale convective flux, and the
rest is balanced by the enhanced enthalpy flux.

5. Solar simulations

We have also made two simulations of near surface solar con-
vection with Prandtl numbers Prt = νt/χt = 0.33 and 3.3,
using realistic physics, with a low resolution of 633 (for de-
tails see Nordlund & Stein 1990; Stein & Nordlund 1998).
Here the radiative flux vanishes below the surface but there is
numerical energy diffusion with the above ratios to the mo-
mentum diffusion. The vertical energy diffusion is propor-
tional to the gradient of the energy minus the horizontally
averaged mean energy, so it is similar to the entropy diffu-
sion used in the SGS case. The diffusion coefficients are not
constant, but have terms proportional to the sound speed, the

Fig. 18. Total, enthalpy, radiative and kinetic energy fluxes for the
solar simulations. Crosses are case Prt = 0.3 and lines are case
Prt = 3. When the diffusive energy flux is larger, the kinetic energy
flux increases and the enthalpy flux decreases slightly.

magnitude of the velocity, and the compression. They are en-
hanced where there are small scale velocity fluctuations and
quenched in laminar regions by the ratio of the magnitudes
of the third to the first derivatives of the velocity. These sim-
ulations only extend to 2.5 Mm below the surface and the
convective flux is controlled by specifying the entropy of the
inflowing fluid at the bottom. The simulations were run for 2
solar hours.

Larger energy diffusion (i.e. smaller Prandtl number) pro-
duces a slightly larger kinetic energy flux and a slightly
smaller enthalpy flux, resulting in a 5% reduction in the net
flux (Fig. 18). The energy transport switchover between ra-
diative and convective occurs slightly deeper in the large en-
ergy diffusion case.

There are some other small alterations in the mean struc-
ture: larger energy diffusion produces a less steep mean en-
tropy gradient at the surface (Fig. 19) and a less extended
atmosphere (Fig. 20).

The low entropy fluid (which gives rise to the buoyancy
work that drives the convection) is fluid that reaches the sur-
face and radiates away its energy and entropy. Larger en-
ergy diffusion destroys the lowest entropy fluid as it descends
back into the interior, by heating it up. This leads to slightly
steeper exponential decline in the entropy probability distri-
bution function and a less extended low entropy tail to the
distribution (Fig. 21).

Increasing the energy diffusion has a clear direct influ-
ence on the temperature structures in these simulations, just
as found when varying the diffusive radiative flux – larger
energy diffusion produces larger more diffuse temperature
structures, smaller energy diffusion allows smaller, sharper
temperature structures (Fig. 22).
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Fig. 19. Average entropy vs. depth. (Here the Prandtl number is writ-
ten as σ.) Larger energy diffusion produces a slightly smaller en-
tropy gradient just below the surface.

Fig. 20. Average density vs. depth. Larger energy diffusion leads to
a less extended atmosphere.

The velocity and turbulence, on the other hand, are little
affected by this factor of ten variation in the energy diffusion
(Fig. 24). Changing the resolution and hence the viscous mo-
mentum diffusion, however, has a profound affect on the tur-
bulence (vorticity) and the velocity (Stein & Nordlund 1998).
Less viscosity leads to greater turbulence, larger vorticity, as
well as a velocity distribution extending to larger magnitudes
in all directions but only in a small fraction of the volume.

6. Summary

There are a number of clear changes in convective proper-
ties as the diffusive radiative flux is decreased while keeping
the convective flux constant in a convection simulation. First,
the entropy jump near the top becomes larger and steeper and
the low entropy fluid produced by cooling at the surface pen-
etrates farther through the convection zone leading to a fi-
nite probability to find small regions with very low entropy
near the bottom of the unstable layer. Second, the temper-

Fig. 21. Histogram of the entropy distribution at a depth of 1.5 Mm.
For larger diffusive energy transfer, smaller Prandtl number, the low-
est entropy fluid is destroyed and the exponential distribution be-
comes steeper.

Fig. 22. Horizontal slices showing the temperature at depths of 0.1,
0.5 and 2.0 Mm for two values of the Prandtl number. Dark is low
temperature and light is high temperature. Each panel is scaled inde-
pendently. Smaller energy diffusion, larger Prandtl number, allows
smaller scale temperature structures to exist.

ature fluctuations increase and the velocity fluctuations de-
crease in such a way that their product, which is proportional
to the convective flux, remains approximately constant. Also,
the kinetic energy flux decreases. Third, the dynamics in the
overshoot layer becomes somewhat more intermittent due to
a few strong downdraft plumes. Finally, in all cases the veloc-
ity and temperature fluctuations follow mixing length scaling
laws; see Fig. 11.

The radiative flux really serves two different purposes:
it transports heat vertically, and it keeps the model numeri-
cally stable by diffusing energy fluctuations both horizontally
and vertically. Since those two properties appear to be rea-
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Fig. 23. Horizontal slices showing the vertical velocity fluctuations
at depths of 0.1, 0.5 and 2.0 Mm for two values of the Prandtl num-
ber. Dark is upward velocity and light is downward velocity. There is
little difference in the scale of the velocity structures between these
high and low energy diffusion cases.

Fig. 24. Histogram of the vorticity distribution at a depth of 1.5 Mm.
Varying the energy diffusion by a factor of ten has only a very slight
effect on the velocity and vorticity.

sonably well decoupled from each other, one might separate
them by having a small vertical radiative flux plus a subgrid
scale diffusive flux that keeps the model stable. It is in prac-
tice difficult to decouple the need for energy diffusion from
the vertical diffusive heat transport, which one would like to
keep small if one diffuses on the temperature. However, as
discussed in the introduction, such a separation is possible if
the diffusive flux is based on entropy or temperature fluctua-
tions. Convective simulations with small radiative fluxes, as
is appropriate for cool stars, would then be feasible. This was
recently demonstrated by Miesch et al. (2000) and Brun et al.
(2004) using simulations of fully spherical shells.
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