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Abstract

The current understanding of astrophysical magnetic fields is reviewed, focusing on their generation and main-
tenance by turbulence. In the astrophysical context this generation is usually explained by a self-excited dynamo,
which involves flows that can amplify a weak ‘seed’magnetic field exponentially fast. Particular emphasis is placed
on the nonlinear saturation of the dynamo. Analytic and numerical results are discussed both for small scale dy-
namos, which are completely isotropic, and for large scale dynamos, where some form of parity breaking is crucial.
Central to the discussion of large scale dynamos is the so-called alpha effect which explains the generation of a
mean field if the turbulence lacks mirror symmetry, i.e. if the flow has kinetic helicity. Large scale dynamos produce
small scale helical fields as a waste product that quench the large scale dynamo and hence the alpha effect. With
this in mind, the microscopic theory of the alpha effect is revisited in full detail and recent results for the loss of
helical magnetic fields are reviewed.
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1. Introduction

Magnetic fields are ubiquitous in the universe. Our most immediate encounter with magnetic fields
is the Earth’s field. This field is not only useful for navigation, but it also protects us from hazardous
cosmic ray particles. Magnetic fields play an important role in various branches of astrophysics. They are
particularly important for angular momentum transport, without which the sun and similar stars would
not spin as slowly as they do today[1]. Magnetic fields are responsible for the loops and arcades seen
in X-ray images of the sun and in heating the coronae of stars with outer convection zones[2]. They
play a crucial role in driving turbulence in accretion discs providing the stresses needed for accretion.
Large scale fields in these discs are also thought to be involved in driving jets. A field permeating a
rotating black hole probably provides one of the most efficient ways of extracting energy to power the
jets from active galactic nuclei. Magnetic fields with micro-gauss strength and coherence scales of order
several kilo parsecs are also observed in nearby galaxies and perhaps even in galaxies which have just
formed. The magnetic field strength in galactic spiral arms can be up to 30 microgauss (e.g. in M51).
Fields of order several micro-gauss and larger, with even larger coherence scales, are seen in clusters of
galaxies. To understand the origin of magnetic fields in all these astrophysical systems is a problem of
great importance.

The universe may not have begun magnetized. There are various processes such as battery effects,
which can lead to a weak magnetic field, from zero initial fields. Most of these batteries lead to field
strengths much weaker than the observed field, as will be discussed further in Section 3.9. So some way
of amplifying the field is required. This is probably accomplished by the conversion of kinetic energy
into magnetic energy, a process generally referred to as a dynamo; see Ref.[3] for a historic account.
Some basic principles of dynamos are well understood from linear theory, but virtually all astrophysical
dynamos are in a regime where the field is dynamically important, and kinematic theory is invalid. In
recent years our understanding of nonlinear properties of dynamos has advanced rapidly. This is partly
due to new high resolution numerical simulations which have also triggered further developments in
analytic approaches. An example is the resistively slow saturation phase of dynamos with helicity that
was first seen in numerical simulations[4], which then led to the development of a dynamical quenching
model[5–8]; see Section 9.3. The dynamical quenching model was actually developed much earlier[9],
but it was mostly applied in order to explain chaotic behavior of the solar cycle[10–12]. Another example
is the so-called small scale dynamo whose theory goes back to the early work of Kazantsev[13]; see
Section 5.2.Again, only in recent years, with the advent of fast computers allowing high Reynolds number
simulations of hydromagnetic turbulence, the community became convinced of the reality of the small
scale dynamos. This in turn has triggered further advances in the theoretical understanding this problem,
especially the nonlinear stages. Also quite recent is the realization that the small scale dynamo is much
harder to excite when, for fixed resistivity, the viscosity is decreased (i.e. the magnetic Prandtl number is
less than unity) so that the magnetic field is driven by a rough velocity field (Section 5.5).

Although there have been a number of excellent reviews about dynamo theory and comparisons with
observations of astrophysical magnetic fields[14–22], there have been many crucial developments just
over the past few years involving primarily magnetic helicity. It has now become clear that nonlinearity
in large scale dynamos is crucially determined by the magnetic helicity evolution equation. At the same
time, magnetic helicity has also become highly topical in observational solar physics, as is evidenced by a
number of recent specialized meetings on exactly this topic[23]. Magnetic helicity emerges therefore as
a new tool in both observational as well as in theoretical studies of astrophysical magnetohydrodynamics



6 A. Brandenburg, K. Subramanian / Physics Reports 417 (2005) 1–209

(MHD). This review discusses the details of why this is so, and how magnetic helicity can be used
to constrain dynamo theory and to explain the behavior seen in recent simulations of dynamos in the
nonlinear, high magnetic Reynolds number regime.

We also review some basic properties and techniques pertinent to mean field (large scale) dynamos
(Section 10), so that newcomers to the field can gain deeper insight and are able to put new developments
into perspective. In particular, we discuss a simplistic form of the so-called tau approximation that allows
the calculation of mean field turbulent transport coefficients in situations where the magnetic fluctuations
strongly exceed the magnitude of the mean field. This is when the quasi-linear theory (also known as first
order smoothing or second order correlation approximation) breaks down. We then lead to the currently
intriguing question of what saturates the dynamo and why so much can be learned by rather simple
considerations in terms of magnetic helicity.

In turbulent fluids, the generation of large scale magnetic fields is generically accompanied by the more
rapid growth of small scale fields. The growing Lorentz force due to these fields can back-react on the
turbulence to modify the mean field dynamo coefficients. A related topic of great current interest is the
nonhelical small scale dynamo, and especially its nonlinear saturation. This could also be relevant for
explaining the origin of cluster magnetic fields. These topics are therefore reviewed in the light of recent
advances using both analytic tools as well as high resolution simulations (Section 5).

There are obviously many topics that have been left out, because they touch upon nonlinear dynamo
theory only remotely. Both hydrodynamic and magnetohydrodynamic turbulence are only discussed in
their applications, but there are many fundamental aspects that are interesting in their own right; see the
text books by Frisch[24] and Biskamp[25] and the work by Goldreich and Sridhar[26]; for a recent review
see Ref.[27]. Another broad research area that has been left out completely is magnetic reconnection and
low beta plasmas. Again, we can here only refer to the text book by Priest and Forbes[28]. More close
connections exist with hydrodynamic mean field theory relevant for explaining differential rotation in
stars[29]. Even many of the applications of dynamo theory are outlined only rather broadly, but again, we
can refer to a recent text book by Rüdiger and Hollerbach[30] where many of these aspects are addressed.

We begin in the next section with some observational facts that may have a chance in finding an
explanation in terms of dynamo theory within the not too distant future. We then summarize some useful
facts of basic MHD, and also discuss briefly battery effects to produce seed magnetic fields. Some general
properties of dynamos are discussed in Section 4. These two sections are relatively general and can be
consulted independently of the remainder. We then turn to small scale dynamos in Section 5. Again, this
section may well be read separately and does not contain material that is essential for the remaining
sections. The main theme of large scale dynamos is extensively covered in Sections 6–10. Finally, in
Section 11 we discuss some applications of these ideas to various astrophysical systems. Some final
reflections on outstanding issues are given in Section 12.

2. Magnetic field observations

In this section we discuss properties of magnetic fields observed in various astrophysical settings.
We focus specifically on aspects that are believed to be important for nonlinear dynamo theory and its
connection with magnetic helicity. We begin with a discussion of the solar magnetic field, which consists
of small scale and large scale components. The typical length scale associated with the large scale field is
the width of the toroidal flux belts with the same polarity which is around 30◦ in latitude, corresponding
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Fig. 2.1. Longitudinally averaged radial component of the observed solar magnetic field as a function of cos(colatitude) and
time. Dark (blue) shades denote negative values and light (yellow) shades denote positive values. Note the sign changes both in
time and across the equator (courtesy of R. Knaack).

to about 300 Mm (1 Mm= 1000 km). The pressure scale height at the bottom of the convection zone is
about 50 Mm, and all scales shorter than that may be associated with the small scale field.

The theory of the large scale component has been most puzzling, while the small scale field could
always be explained by turbulence and convection shredding and concentrating the field into isolated flux
bundles. The simultaneous involvement of a so-called small scale dynamo may provide another source
for the small scale field, which needs to be addressed. We begin by outlining the observational evidence
for large scale fields in the sun and in stars, and discuss then the evidence for magnetic fields in accretion
discs and galaxies, as well as galaxy clusters.

2.1. Solar magnetic fields

The sun has a magnetic field that manifests itself in sunspots through Zeeman splitting of spectral lines
[31]. It has long been known that the sunspot number varies cyclically with a period between 7 and 17
years. The longitudinally averaged component of the radial magnetic field of the sun[32,33] shows a
markedly regular spatio-temporal pattern where the radial magnetic field alternates in time over the 11 year
cycle and also changes sign across the equator (Fig.2.1). One can also see indications of a migration of
the field from mid latitudes toward the equator and the poles. This migration is also well seen in a sunspot
diagram, which is also called a butterfly diagram, because the pattern formed by the positions of sunspots
in time and latitude looks like a sequence of butterflies lined up along the equator (Fig.2.2).

At the solar surface the azimuthally averaged radial field is only a few gauss (1 G= 10−4 T). This
is rather weak compared with the peak magnetic field in sunspots of about 2 kG. In the bulk of the
convection zone, because of differential rotation, the magnetic field is believed to point mostly in the
azimuthal direction, and it is probably much larger near the bottom of the convection zone due to an
effect known as downward pumping (Section 6.4).

2.1.1. Estimates of the field strength in the deeper convection zone
In the bulk of the solar convection zone the thermal energy transport is reasonably well described by

mixing length theory[34]. This theory yields a rough estimate for the turbulent rms velocity which is
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Fig. 2.2. Solar butterfly diagram showing the sunspot number in a space-time diagram. Note the migration of sunspot activity
from mid-latitudes toward the equator (courtesy of D.N. Hathaway).

aroundurms=20 m s−1 near the bottom of the solar convection zone.With a density of about�=0.2 g cm−3

this corresponds to an equipartition field strength of about 3 kG. (The equipartition field strength is here
defined asBeq = √

�0�urms, where�0 is the magnetic permeability.)
A similar estimate is obtained by considering the total (unsigned) magnetic flux that emerges at the

surface during one cycle. This argument is dubious, because one has to make an assumption about how
many times the flux tubes in the sun have emerged at the solar surface. Nevertheless, the notion of
magnetic flux (and especially unsigned flux) is rather popular in solar physics, because this quantity is
readily accessible from solar magnetograms. The total unsigned magnetic flux is roughly estimated to
be 1024Mx. Distributed over a meridional cross-section of about 500 Mm in the latitudinal direction and
about 50 Mm in radius (i.e. the lower quarter of the convection zone) yields a mean field of about 4 kG,
which is in fair agreement with the equipartition estimate above. This type of argumentation has first been
proposed in an early paper by Galloway and Weiss[35].

Another type of estimate concernsnot the mean field but rather the peak magnetic field in the strong
flux tubes. Such tubes are believed to be ‘stored’either just below or at the bottom of the convection zone.
By storage one means that the field survives reasonably undisturbed for a good fraction of the solar cycle
and evolves mostly under the amplifying action of differential rotation. Once such a flux tube becomes
buoyant in one section of the tube it rises, expands and becomes tilted relative to the azimuthal direction
owing to the Coriolis force. Calculations based on the thin flux tube approximation[36] predict field
strengths of about 100 kG that are needed in order to produce the observed tilt angle of bipolar sunspots
near the surface[37].

The systematic variation of the global field of the sun is important to understand both for practical
reasons, e.g. for space weather forecasts, and for theoretical reasons because the solar field is a prime
example of what we call large scale dynamo action. The 11 year cycle of the sun is commonly explained
in terms of�� dynamo theory (Sections 6.5 and 11.2), but this theory faces a number of problems that
will be discussed later. Much of the resolution of these problems focuses around magnetic helicity. This
has become a very active research field in its own right. Here we discuss the observational evidence.

2.1.2. Magnetic helicity of the solar field
Magnetic helicity studies have become an important observational tool to quantify the complexity of

the sun’s magnetic field. Examples of complex magnetic structures being ejected from the solar surface
are shown inFig. 2.3. For a series of reviews covering the period until 1999 see Ref.[38]. The significance
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Fig. 2.3. The famous “Grand daddy” prominence of 4 June 1946 (left) and a big coronal mass eruption of 2 June 1998 from the
LASCO coronograph on board the SOHO satellite (right). Note the complexity of the ejected structures, being suggestive of
helical nature. Courtesy of the High Altitude Observatory (a) and the SOHO consortium (b). SOHO is a project of international
cooperation between ESA and NASA.

of magnetic helicity for understanding the nonlinear dynamo has only recently been appreciated. Here
we briefly review some of the relevant observational findings.

The only information about the magnetic helicity of the sun available to date is from surface magnetic
fields, and these data are necessarily incomplete. Nevertheless, some systematic trends can be identified.

Vector magnetograms of active regions show negative (positive) current helicity in the northern (south-
ern) hemisphere[39–42]. From local measurements one can only obtain the current helicity density, so
nothing can be concluded about magnetic helicity, which is a volume integral. As we shall show later
(Section 3.7), under the assumption of isotropy, the spectra of magnetic and current helicity are however
simply related by a wavenumber squared factor. This implies that the signs of current and magnetic he-
licities agree if they are determined in a sufficiently narrow range of length scales. We return to this issue
in Section 9.4.

Berger and Ruzmaikin[43] have estimated the flux of magnetic helicity from the solar surface using
magnetograms. They discussed the� effect and differential rotation as the main agents facilitating the loss
of magnetic helicity. Their results indicate that the flux of magnetic helicity due to differential rotation and
the observed radial magnetic field component is negative (positive) in the northern (southern) hemisphere,
and of the order of about 1046Mx2 integrated over the 11 year cycle; seeFig. 2.4.

Chae[44] estimated the magnetic helicity flux based on counting the crossings of pairs of flux tubes.
Combined with the assumption that two nearly aligned flux tubes are nearly parallel, rather than anti-
parallel, his results again suggest that the magnetic helicity is negative (positive) in the northern (southern)
hemisphere. The same sign distribution was also found by DeVore[45] who considered magnetic helicity
generation by differential rotation. He finds that the magnetic helicity flux integrated over an 11 year
cycle is about 1046Mx2 both from active regions and from coronal mass ejections. Thus, the sign agrees
with that of the current helicity obtained using vector magnetograms. More recently, Démoulin et al.
[46] showed that oppositely signed twist and writhe from shear are able to largely cancel, producing a
small total magnetic helicity. This idea of a bi-helical field is supported further by studies of sigmoids
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Fig. 2.4. Net magnetic flux through the solar surface at the northern hemisphere (left hand panel) and magnetic helicity flux
for northern and southern hemispheres (right hand panel, lower and upper curves, respectively). Adapted from Berger and
Ruzmaikin[43].

Fig. 2.5.X-ray image at 195̊A showing anN-shaped sigmoid (right-handed writhe) of the active region NOAA AR 8668 at the
northern hemisphere (1999 August 21 at 18:51 UT). Adapted from Gibson et al.[47].

[47]: an example isFig. 2.5, which shows a TRACE image of anN-shaped sigmoid (right-handed writhe)
with left-handed twisted filaments of the active region NOAA AR 8668, which is typical of the northern
hemisphere. This observation is quite central to our new understanding of nonlinear dynamo theory
[48,49]and will be addressed in more detail below (Section 9.6.2).

2.1.3. Active longitudes
An important piece of information about the sun concerns the so-called active longitudes. These are

longitudes where magnetic activity re-occurs over long durations, exceeding even the length of the solar
cycle[50–53]. On shorter time scales of about half a year, the angular velocity of active longitudes depends
on the phase during the solar cycle, and hence on the latitude of their occurrence. At the beginning of
the cycle, when new flux appears at high latitudes (±30◦ latitude), the rotation rate of these active
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Fig. 2.6. Radial profiles of the internal solar rotation rate, as inferred from helioseismology (sidereal, i.e. in a fixed frame). The
rotation rate of active zones at the beginning of the cycle (at≈ 30◦ latitude) and near the end (at≈ 4◦) is indicated by horizontal
bars, which intersect the profiles of rotation rate atr/R� ≈ 0.97. For orientation, the conventionally defined Carrington rotation
period of 27.3 days (synodic value, corresponding to 424 nHz) has been translated to the sidereal value of 456 nHz. Courtesy of
Benevolenskaya et al.[54].

longitudes is about 446 nHz. At this latitude the rotation rate of 446 nHz agrees with the value inferred
from helioseismology at the fractional radiusr/R� ≈ 0.95; seeFig. 2.6.

If this magnetic activity were to come from the bottom of the convection zone atr/R� ≈ 0.7, where
the rotation rate is around 435 nHz, it would be by 11 nHz too slow (Fig.2.6). After half a year, the
corresponding regions atr/R� ≈ 0.7 and 0.95 would have drifted apart by 62◦. Thus, if the active
longitudes were to be anchored atr/R� ≈ 0.7, they could not be connected with matter at this latitude;
instead they would need to be mapped to a lower latitude of about 15◦, where the rotation rate atr/R� ≈
0.7 agrees with the value of 446 nHz found for the active longitudes at 30◦ latitude. Alternatively, they
may simply be anchored at a shallower depth corresponding tor/R� ≈ 0.95, where the rotation rate of
these active longitudes agrees with the helioseismologically inferred value. Similar considerations apply
also to the rotation rate of old flux that occurs at about±4◦ latitude. However, here the anchoring depth
is ambiguous and could be eitherr/R� ≈ 0.97 or in the range 0.75. . .0.80. The rather unconventional
suggestion of a shallow anchoring depth[55] will be addressed further at the end of Section 11.2.8.

2.2. Magnetic fields of late type stars

Looking at other stars is important for appreciating that the solar dynamo is not unique and just one
particular example of a dynamo that happened to be a cyclic one. In fact, we now know that all stars
with outer convection zones (usually referred to as ‘late-type stars’) have magnetic fields whose strength
tends to increase with their angular velocity. Some very young stars (e.g. T Tauri stars) haveaveragefield
strengths of about 2 kG[56]. These stars are fully convective and their field varies in a more erratic fashion.
Cyclic variations are known to exist only for stars with colorsB − V in the range 0.57 and 1.37, i.e. for
spectral types between G0 and K7[57]. Some examples of the time traces are shown inFig. 2.7. The
sun’s color is 0.66, being close to the upper (bluer) end of the mass range where stars show cyclic activity.
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Fig. 2.7. Time traces of the relative Calcium H and K line emission,S, for 4 stars (including the sun) with oscillatory activity
behavior between the years 1966 and 1992 (adapted from Baliunas et al.[57]).

For the stars in this mass range there exists an empirical relation between three important parameters.
One is the inverse Rossby number,Ro−1 ≡ 2��turnover, where�turnover ≈ 
/urms is the turnover time
of the convection, estimated in terms of the mixing length,
, and the rms velocity of the convection,
urms. The second parameter is the ratio of cycle to rotation frequency,�cyc/�, where�cyc = 2	/Pcyc
andPcyc is the cycle period (≈ 11 years for the sun, but ranging from 7 to 21 years for other stars). The
third parameter is the ratio of the mean chromospheric Calcium H and K line emission to the bolometric
flux, 〈R′

HK〉, which can be regarded as a proxy of the normalized magnetic field strength, with〈R′
HK〉 ∝

(|〈B〉|/Beq)

 and
 ≈ 0.47; see Ref.[58]. These three parameters are related to each other by approximate

power laws,

�cyc/� ≈ c1Ro−�, �cyc/� ≈ c2〈R′
HK〉�, 〈R′

HK〉 ≈ c3Ro−� , (2.1)

wherec1 = c2c
�
3 and� = ��. It turns out that the slopes� and� are positive for active (A) and inactive (I)

stars and that both groups of stars fall on distinct branches with�A ≈ 0.46 and�A ≈ 0.85 for active stars
and�I ≈ 0.48 and�I ≈ 0.72 for inactive stars[59]. Since� and� are obtained from separate fits, there is
of course no guarantee that the relation� = �� will be obeyed by the data obtained from separate fits.

In Fig. 2.8we present scatter plots showing the mutual correlations between each of the three quantities
for all cyclic stars whose parameters have been detected with quality parameters that were labeled[57]
as ‘good’ and ‘excellent’. Plots similar to the third panel ofFig. 2.8have also been produced for other
activity proxies[60]. This work shows that there is a relation between activity proxy and inverse Rossby
number not only for stars with magnetic activity cycles, but for all late type stars with outer convection
zones—even when the stars are members of binaries[61].

The fact that the cycle frequency depends in a systematic fashion on eitherRo−1 or on〈R′
HK〉 suggests

that for these stars the dynamo has a rather stable dependence on the input parameters. What is not well
understood, however, is the slope� ≈ 0.5 in the relation�cyc/� ∼ Ro−�, and the fact that there are two
distinct branches. We note that there is also evidence for a third branch for even more active (‘superactive’)
stars, but there the exponent� is negative[61]. Standard dynamo theory rather predicts that� is always
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Fig. 2.8. Mutual correlations between the three quantities�cyc/�, Ro−1, and〈R′
HK 〉. Note the two distinct branches, separate

by a factor of about 6 in the ratio�cyc/�, with positive slope in the first two panels. The numbers and letters in the plots are
abbreviations for specific active and inactive stars, respectively (adapted from Ref.[59], where also a key with the abbreviations
of all stars is given). The values of�, �, and�, given in the titles of the three plots, are obtained from three independent plots
and hence do not obey the relation� = ��.

negative[62]. We return to a possible interpretation of the exponent� and the origin of the different
branches in Section 11.3.2.

2.3. Magnetic fields in accretion discs

Gaseous discs spinning around some central object are frequently found in various astrophysical set-
tings, for example around young stars, stellar mass compact objects (white dwarfs, neutron stars, or black
holes), or in supermassive (107–109M�) black holes that have been found or inferred to exist in virtually
all galaxies.

Explicit evidence for magnetic fields in discs is sparse: magnetization of meteorites that were formed
in the disc around the young sun[63] or proxies of magnetic activity such asH line emission from discs
in binary stars[64]. A direct search for Zeeman-induced splitting of the maser lines in the accretion disc
of the Seyfert II galaxy NGC 4258 has resulted in upper limits of<50 mG for the toroidal component of
theB field at a distance of about 0.2 pc from the central black hole[65]. Faraday rotation measure (RM)
maps of the central parsecs of quasars and radio galaxies hosting relativistic jets[66] also reveal that the
medium on parsec scales surrounding AGNs could be significantly magnetized[67].

There are two strong theoretical reasons, however, why accretion discs should be magnetized. First,
discs are often formed in an already magnetized environment. This is particularly clear for protostellar
discs whose axes of rotation are often aligned with the direction of the ambient field[68]. Second, discs
with weak ambient fields are unstable to the magnetorotational instability[69,70] which, coupled with
the dynamo instability, can leads to equipartition field strengths. In the case of protostellar discs, however,
it is possible that the magnetorotational instability only worked in its early stages. At later stages, the
parts of the disc near the midplane and at∼ 1 AU distance from the central star may have become too
cold and almost neutral, so these parts of the disc may then no longer be magnetized[71].



14 A. Brandenburg, K. Subramanian / Physics Reports 417 (2005) 1–209

Many accretion discs around black holes are quite luminous. For example, the luminosity of active
galactic nuclei can be as large as 100 times the luminosity of ordinary galaxies. Here, magnetic fields
provide the perhaps only source of an instability that can drive the turbulence and hence facilitate the
conversion of potential energy into thermal energy or radiation. In discs around active galactic nu-
clei the magnetic field may either be dragged in from large radii or it may be regenerated locally by
dynamo action.

The latter possibility is particularly plausible in the case of discs around stellar mass black holes.
Simulations have been carried out to understand this process in detail; see Section 11.4. Magnetic fields
may also be crucial for driving outflows from discs. In many cases these outflows may be collimated by
the ambient magnetic field to form the observed narrow jets[72].

2.4. Galactic magnetic fields

Galaxies and clusters of galaxies are currently the only astrophysical bodies where a large scale magnetic
field can be seen inside the body itself. In the case of stars one only sees surface manifestations of the
field. Here we describe the structure and magnitude of galactic fields.

2.4.1. Synchrotron emission from galaxies
Magnetic fields in galaxies are mainly probed using radio observations of their synchrotron emission.

Excellent accounts of the current observational status can be found in the various reviews by Beck[73–76]
and references therein. We summarize here those aspects which are relevant to our discussion of galactic
dynamos. Some earlier reviews of the observations and historical perspectives can be found in Refs.
[15–17,77]. A map of the total synchrotron intensity allows one to estimate the total interstellar magnetic
field in the plane of the sky (averaged over the volume sampled by the telescope beam). The synchrotron
emissivity also depends on the number density of relativistic electrons, and so some assumption has to
be made about its density. One generally assumes that the energy densities of the field and particles are
in equipartition. (Specifically, equipartition is assumed to hold between magnetic fields and relativistic
protons so that the proton/electron ratio enters as another assumption, with 100 taken as a standard value.)
In our Galaxy the accuracy of the equipartition assumption can be tested, because we have independent
measurements of the local cosmic-ray electron energy density from direct measurements and about the
cosmic-ray proton distribution from�-ray data. The combination of these with the strength of the radio
continuum synchrotron emission gives a local strength of the total magnetic field of 6±1�G [78], which
is almost the same value as that derived from energy equipartition[74].

The mean equipartition strength of the total magnetic field for a sample of 74 spiral galaxies is〈Btot〉=
9�G [73,79]. The total field strength ranges from〈Btot〉 ∼ 4�G, in radio faint galaxies like M31 and
M33 to 〈Btot〉 ∼ 15�G in grand design spiral galaxies like M51, M83 and NGC 6946[76]. The strength
of the total field in the inner spiral arms of M51 is about 30�G.

Synchrotron radiation is intrinsically highly linearly polarized, by 70–75% in a completely regular
magnetic field[80]. The observable polarization is however reduced due to a number of reasons. First
the magnetic field usually has a tangled component which varies across the telescope beam (geometrical
depolarization); second due to Faraday depolarization in the intervening medium and third because some
part of the radio emission arises due to thermal continuum emission, rather than synchrotron emission. A
map of the polarized intensity and polarization angle then gives the strength and structure of the ordered
field, sayB in the plane of the sky. Note that polarization can also be produced by any random field,
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which is compressed or stretched in one dimension (i.e. an anisotropic field which incoherently reverses
its direction frequently)[81,82]. So, to make out if the field does really have large scale order one needs
also a map of Faraday rotation measures (RMs), as this will show large scale coherence only for ordered
fields. Such a map also probes the strength and direction of the average magnetic field along the line
of sight.

The large scale regular field in spiral galaxies (observed with a resolution of a few 100 pc) is ordered
over several kpc. The strength of this regular field is typically 1. . .5�G, and up to∼ 13�G in the
interarm region of NGC 6946, which has an exceptionally strong large scale field[83]. In our Galaxy
the large scale field inferred from the polarization observations is about 4�G, giving a ratio of regular to
total field of about〈B0〉/〈Btot〉 ∼ 0.6–0.7 [84–86]. However the value inferred from pulsar RM data is
〈B0〉 ≈ 1.4 ± 0.2�G [87–89], which is less than the above estimate. This may be understood if there is
anticorrelation between the electron densityne and the total fieldB [90].

In the context of dynamo theory it is of great interest to know the ratio of the regular to the random
component of the magnetic field in galaxies. This is not easy to determine, especially because of the
systematic biases that can arise in the magnetic field estimates[90]. Nevertheless, current estimates
suggest that the ratio of regular to random fields is typically 1 in interarm regions and 0.5 or less in spiral
arms (R. Beck, private communication[91,92]).

2.4.2. Global structure of galactic fields
The global structure of the mean (or regular) magnetic field and that of the total field (mean+ random)

are also of interest. The random field is almost always strongest within the spiral arms and thus follows
the distribution of cool gas and dust. The regular field is generally weak within spiral arms, except for rare
cases like M51 with strong density waves. Thus the total field is also strongest within the spiral arms where
the random field dominates. The strongest total and regular fields in M51 are located at the positions of
the prominent dust lanes on the inner edges of the optical spiral arms[93,94], as expected if it were due to
compression by density waves. However, the regular field also extends far into the interarm regions. The
regular field in M31 is nearly aligned with the spiral arms forming the bright ‘ring’ of emission seen in
this galaxy[95]. TheB vectors of the regular field in several other galaxies (M81, M83, NGC 1566) also
follow the optical spiral, though they are generallyoffsetfrom the optical arms. A particularly spectacular
case is that of the galaxy NGC 6946[83,96]; here the polarized emission (tracing the regular field) is
located in dominant magnetic spiral arms. These magnetic spiral arms are interlaced and anti-correlated
with the optical spiral structure. They have widths of about 500–1000 pc and regular fields of∼ 13�G.
The field in these arms is also ordered, as inferred from RM observations[74]. In Fig. 2.9we show 6 cm
radio observations of the galaxies M51 and NGC 6946, with superposed magnetic field vectors. One can
clearly see that the magnetic field is ordered over large scales.

As we remarked earlier, RM observations are absolutely crucial to distinguish between coherent and
incoherent fields. Coherence of RM on a large scale is indeed seen in a number of galaxies (for example,
M31 [95], NGC 6946[74], NGC 2997[97]). The galaxy M31 seems to have a 20 kpc sized torus of
emission, with the regular field nearly aligned with the spiral arms forming an emission ‘ring’, with an
average pitch angle of about−15◦ [95,98,99]. Such a field can probably be produced only by a large
scale dynamo.

The structure of the regular field is described in dynamo models by modes of different azimuthal and
vertical symmetry; see Section 6.5.5. Again, Faraday rotation measure (RM) observations are crucial for
this purpose[100]. The current data indicate a singly periodic azimuthal variation of RMs, suggesting
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Fig. 2.9. Left: M51 in 6 cm, total intensity with magnetic field vectors. Right: NGC 6946 in 6 cm, polarized intensity with magnetic
field vectors. The physical extent of the images is approximately 28× 34 kpc2 for M51 (distance 9.6 Mpc) and 22× 22 kpc2 for
NGC 6946 (distance 7 Mpc). (VLA and Effelsberg. Courtesy R. Beck.)

a largely axisymmetric (ASS,m = 0 symmetry) mean field structure in M31[98] and IC 342[101].
There is an indication of a bisymmetric spiral mode (BSS,m = 1 symmetry) in M81[102]. The field in
M51 seems to be best described by a combination of ASS and BSS[103]. The magnetic arms in NGC
6946 may be the result of a superposition of ASS and quadrisymmetric (m = 2) modes[73]. Indeed, in
most galaxies the data cannot be described by only a single mode, but require a superposition of several
modes which still cannot be resolved by the existing observations. It has also been noted[104] that in
4 out of 5 galaxies, the radial component of the spiral field could be such that the field pointsinward.
This is remarkable in that the induction equation and the related nonlinearities do not distinguish between
solutionsB and−B. An exception is the Hall effect where the direction matters[105], but this idea has
not yet been applied to the field orientation in galaxies.

The vertical symmetry of the field is much more difficult to determine. The local field in our Galaxy
is oriented mainly parallel to the plane (cf.[14,77,88]). This agrees well with the results from several
other external edge-on galaxies[106], where the observed magnetic fields are generally aligned along the
discs of the galaxies. Further, in our Galaxy the RMs of pulsars and extragalactic radio sources have the
same sign above and below the galactic midplane, for galactic longitudes between 90◦ and 270◦, while
toward the galactic center there is a claim that the RMs change sign cf.[107,108]. This may point toward
a vertically symmetric field in the Galaxy away from its central regions. Note that the determination of
magnetic field structure in the Galaxy from Faraday rotation can be complicated by local perturbations.
Taking into account such complications, and carrying out an analysis of the Faraday rotation measures
of extragalactic sources using wavelet transforms, one finds evidence that the horizontal components of
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the regular magnetic field have even parity throughout the Galaxy, that is the horizontal components are
similarly directed on both sides of the disc[109]. Note that a vertically symmetric field could arise from
a quadrupolar meridional structure of the field, while vertically antisymmetric fields could arise from a
dipolar structure. A vertically symmetric field also seems to be indicated from RM studies of the galaxy
M31 [99].

The discovery of isolated nonthermal filaments throughout the inner few hundred parsecs of the galaxy
[110–112]with orientations largely perpendicular to the galactic plane were interpreted as evidence for
several milligauss level, space filling vertical fields in the central 200 pc of our galaxy[111]. However
a recent 20 cm survey which has found numerous linear filaments finds them to have a wide range of
orientations, which could complicate this simple picture[113,114]. The observational situation needs to
be clarified. If indeed the presence of a dipolar field in the galactic center regions is confirmed this would
provide an important challenge for dynamo theory.

Although most edge-on galaxies have fields aligned along the disc, several galaxies (NGC 4631, NGC
4666 and M82) have also radio halos with a dominant vertical field component[73]. Magnetic spurs in
these halos are connected to star forming regions in the disc. The field is probably dragged out by a strong,
inhomogeneous galactic wind[115,116].

Ordered magnetic fields with strengths similar to those in grand design spirals have also been detected
in flocculent galaxies (M33[92], NGC 3521 and 5055[117], NGC 4414[118]), and even in irregular
galaxies (NGC 4449[119]). The mean degree of polarization is also similar between grand design and
flocculent galaxies[117]. Also, a grand design spiral pattern is observed in all the above flocculent
galaxies, implying that gaseous spiral arms are not an essential feature to obtain ordered fields.

There is little direct evidence on the nature of magnetic fields in elliptical galaxies, although magnetic
fields may well be ubiquitous in the hot ionized gas seen in these galaxies[120]. This may be due to the
paucity of relativistic electrons in these galaxies, which are needed to illuminate the magnetic fields by
generating synchrotron emission. Faraday rotation of the polarized emission from background objects
has been observed in a few cases. Particularly intriguing is the case of the gravitationally lensed twin
quasar 0957+ 561, where the two images have a differential Faraday rotation of∼ 100 rad m−2 [121].
One of the images passes through the central region of a possibly elliptical galaxy acting as the lens, and
so this may indicate that the gas in this elliptical galaxy has ordered magnetic fields. It is important to
search for more direct evidence for magnetic fields in elliptical galaxies.

2.5. Magnetic fields in clusters of galaxies

The most recent area of study of astrophysical magnetic fields is perhaps the magnetic fields of
clusters of galaxies. Galaxy clusters are the largest bound systems in the universe, having masses of
∼ 1014–1015M� and typical sizes of several Mpc. Observations of clusters in X-rays reveal that they
generally have an atmosphere of hot gas with temperaturesT ∼ 107 to 108 K, extending over Mpc scales.
The baryonic mass of clusters is in fact dominated by this hot gas component. It has become clear in the
last decade or so that magnetic fields are also ubiquitous in clusters. Succinct reviews of the observational
data on cluster magnetic fields can be found in Refs.[122,123]. Here we gather some important facts that
are relevant in trying to understand the origin of these fields.

Evidence for magnetic fields in clusters again comes from mainly radio observations. Several clusters
display relatively smooth low surface brightness radio halos, attributed to synchrotron emission from
the cluster as a whole, rather than discrete radio sources. The first such halo to be discovered was that
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associated with the Coma cluster (called Coma C)[124]. Only recently have many more been found
in systematic searches[125–128]. These radio halos have typically sizes of∼ 1 Mpc, steep spectral
indices, low surface brightness, low polarizations (<5%), and are centered close to the center of the
X-ray emission. Total magnetic fields in cluster radio halos, estimated using minimum energy arguments
[129] range from 0.1 to 1�G [130], the value for Coma being∼ 0.4�G [131]. [The equipartition field
will depend on the assumed proton to electron energy ratio; for a ratio of 100, like in the local ISM, the
equipartition field will be larger by a factor∼ 1002/7 ≈ 3.7 (R. Beck, private communication)].

Cluster magnetic fields can also be probed using Faraday rotation studies of both cluster radio galaxies
and also background radio sources seen through the cluster. High resolution RM studies have been
performed in several radio galaxies in both cooling flow clusters and noncooling flow clusters (although
the issue of the existence of cooling flows has become questionable). If one assumes a uniform field in
the cluster, then minimum magnetic fields of 5 to 10�G are inferred in cooling flow clusters, whereas
it could be a factor of 2 lower in noncooling flow clusters[122]. However, the observed RM is patchy
indicating magnetic field coherence scales of about 5–10 kpc in these clusters. If we use such coherence
lengths, then the estimated fields become larger. For example in the cooling flow cluster 3C295 the
estimated magnetic field strength is∼ 12�G in the cluster core[132], whereas in the noncooling flow
cluster 3C129 the estimated field is about 6�G [133]. In Hydra A, there is an intriguing trend for all
the RMs to the north of the nucleus to be positive and to the south to be negative[134]. Naively this
would indicate quite a large scale field (100 kpc) with strength∼ 7�G [134], but it is unclear which
fraction is due to a cocoon surrounding the radio source (cf. Ref.[138]). The more tangled fields in
the same cluster were inferred to have strengths of∼ 30�G and coherence lengths∼ 4 kpc [134].
More recently, a novel technique to analyze Faraday rotation maps has been developed, assuming that
the magnetic fields are statistically isotropic. This technique has been applied to several galaxy clusters
[135,136]. This analysis yields an estimate of 3�G in Abell 2634, 6�G in Abell 400 and 12�G in Hydra
A as conservative estimates of the field strengths, and field correlation lengths of∼ 4.9,3.6 and 0.9 kpc,
respectively, for these three clusters. (For Hydra A, a recent re-analysis of the data using an improved RM
map and revised cluster parameters, has led to revised values of the central field of the cluster of 7�G and
correlation length of 3 kpc, as well as a tentative determination of a Kolmogorov type magnetic power
spectrum[137].)

There is always some doubt whether the RMs in cluster radio sources are produced due to Faraday
rotation intrinsic to the radio source, rather than due to the intervening intracluster medium. While this
is unlikely in most cases[122], perhaps more convincing evidence is the fact that studies of RMs of
background radio sources seen through clusters, also indicate several�G cluster magnetic fields. A very
interesting statistical study in this context is a recent VLA survey[139], where the RMs in and behind a
sample of 16 Abell clusters were determined. The RMs were plotted as a function of distance from the
cluster center and compared with a control sample of RMs from field sources; seeFig. 2.10. This study
revealed a significant excess RM for sources within about 0.5 Mpc of the cluster center. Using a simple
model, where the intracluster medium consists of cells of uniform size and field strength, but random
field orientations, Clarke et al.[139] estimate cluster magnetic fields of∼ 5(l/10 kpc)−1/2 �G, wherel
is the coherence length of the field.

Cluster magnetic fields can also be probed by comparing the inverse Compton X-ray emission and the
synchrotron emission from the same region. Note that this ratio depends on the ratio of the background
radiation energy density (which in many cases would be dominated by the Cosmic microwave background)
to the magnetic field energy density. The main difficulty is in separating out the thermal X-ray emission.
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Fig. 2.10. Galaxy-corrected rotation measure plotted as a function of source impact parameter in kiloparsecs for the sample of
16 Abell clusters. The open points represent theclustersources viewed through the thermal cluster gas while the closed points
are thecontrol sources at impact parameters beyond the cluster gas. Note the clear increase in the width of the RM distribution
toward smaller impact parameter. Adapted from Clarke et al.[139].

This separation can also be attempted using spatially resolved X-ray data. Indeed, an X-ray excess
(compared to that expected from a thermal atmosphere) was seen at the location of a diffuse radio relic
source in Abell 85[140]. This was used in Ref.[140] to derive a magnetic field of 1.0 ± 0.1�G for
this source.

Overall it appears that there is considerable evidence that galaxy clusters are magnetized with fields
ranging from a few�G to several tens of�G in some cluster centers, and with coherence scales of order
10 kpc. These fields, if not maintained by some mechanism, will evolve as decaying MHD turbulence,
and perhaps decay on the appropriate Alfvén time scale, which is∼ 108 yr, much less than the age of the
cluster. We will have more to say on the possibility of dynamos in clusters in later sections toward the
end of the review.

3. The equations of magnetohydrodynamics

In stars and galaxies, and indeed in many other astrophysical settings, the gas is partially or fully ionized
and can carry electric currents that, in turn, produce magnetic fields. The associated Lorentz force exerted
on the ionized gas (also called plasma) can in general no longer be neglected in the momentum equation
for the gas. Magneto-hydrodynamics (MHD) is the study of the interaction of the magnetic field and the
plasma treated as a fluid. In MHD we combine Maxwell’s equations of electrodynamics with the fluid
equations, including also the Lorentz forces due to electromagnetic fields. We first discuss Maxwell’s
equations that characterize the evolution of the magnetic field.
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3.1. Maxwell’s equations

In Gaussian cgs units, Maxwell’s equations can be written in the form

1

c

�B

�t
= −∇ × E, ∇ · B= 0 , (3.1)

1

c

�E

�t
= ∇ × B− 4	

c
J, ∇ · E= 4	�e , (3.2)

whereB is the magnetic flux density (usually referred to as simply the magnetic field),E is the electric
field, J is the current density,c is the speed of light, and�e is the charge density.

Although in astrophysics one uses mostly cgs units, in much of the work on dynamos the MHD equations
are written in ‘SI’ units, i.e. with magnetic permeability�0 and without factors like 4	/c. (Nevertheless,
the magnetic field is still quoted often in gauss [G] and cgs units are used for density, lengths, etc.)
Maxwell’s equations in SI units are then written as

�B

�t
= −∇ × E, ∇ · B= 0 , (3.3)

1

c2

�E

�t
= ∇ × B− �0J, ∇ · E= �e/ε0 , (3.4)

whereε0 = 1/(�0c
2) is the permittivity of free space.

To ensure that∇ ·B= 0 is satisfied at all times it is often convenient to defineB= ∇ ×A and to replace
Eq. (3.3) by the ‘uncurled’ equation for the magnetic vector potential,A,

�A

�t
= −E− ∇� , (3.5)

where� is the scalar potential. Note that magnetic and electric fields are invariant under the gauge
transformation

A′ = A+ ∇� , (3.6)

�′ = � − ��

�t
. (3.7)

For numerical purposes it is often convenient to choose the gauge� = ∫
� dt , which implies that�′ = 0.

Thus, instead of Eq. (3.5) one now solves the equation�A′/�t =−E. There are a few other gauge choices
that are numerically convenient (see, e.g., Section 8.1).

3.2. Resistive MHD and the induction equation

Using the standard Ohm’s law in a fixed frame of reference,

J= � (E+ U× B) , (3.8)
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where� is the electric conductivity, and introducing the magnetic diffusivity�= (�0�)
−1, or�=c2/(4	�)

in cgs units, we can eliminateJ from Eq. (3.4), so we have(
1

�
+ 1

c2

�

�t

)
E= −

(
1

�
U− ∇

)
× B . (3.9)

This formulation shows that the time derivative term (also called the Faraday displacement current)
can be neglected if the relevant time scale over which the electric field varies, exceeds the Faraday
time �Faraday= �/c2. Below we shall discuss that for ordinary Spitzer resistivity,� is proportional to
T −3/2 and varies between 10 and 1010 cm2 s−1 for temperatures betweenT = 108 and T = 102 K.
Thus, the displacement current can be neglected when the variation time scales are longer than 10−20 s
(for T ≈ 108 K) and longer than 10−11s (for T ≈ 102 K). For the applications discussed in this
review, this condition is always met, even for neutron stars where the time scales of variation can
be of the order of milliseconds, but the temperatures are very high as well. We can therefore safely
neglect the displacement current and eliminateE, so Eq. (3.4) can be replaced by Ampere’s law
J= ∇ × B/�0.

It is often convenient to considerJ simply as a short hand for∇ × B. This can be accomplished by
adopting units where�0 = 1. We shall follow here this convection and shall therefore simply write

J= ∇ × B . (3.10)

Occasionally we also state the full expressions for clarity.
Substituting Ohm’s law into the Faraday’s law of induction, and using Ampere’s law to eliminateJ,

one can write a single evolution equation forB, which is called the induction equation:

�B

�t
= ∇ × (U× B− � J) . (3.11)

We now describe a simple physical picture for the conductivity in a plasma. The force due to an electric
field E accelerates electrons relative to the ions; but they cannot move freely due to friction with the
ionic fluid, caused by electron–ion collisions. They acquire a ‘terminal’ relative velocityV with respect
to the ions, obtained by balancing the Lorentz force with friction. This velocity can also be estimated as
follows. Assume that electrons move freely for about an electron–ion collision time�ei , after which their
velocity becomes again randomized. Electrons of chargee and massme in free motion during the time
�ei acquire from the action of an electric fieldE an ordered speedV ∼ �eieE/me. This corresponds to a
current densityJ ∼ eneV ∼ (nee

2�ei/m)E and hence leads to� ∼ nee
2�ei/me.

The electron–ion collision time scale (which determines�) can also be estimated as follows. For a
strong collision between an electron and an ion one needs an impact parameterb which satisfies the
conditionZe2/b>mev

2. This gives a cross-section for strong scattering of�t ∼ 	b2. Since the Coulomb
force is a long range force, the larger number of random weak scatterings add up to give an extra ‘Coulomb
logarithm’ correction to make�t ∼ 	(Ze2/mv2)2 ln �, where ln� is in the range between 5 and 20. The
corresponding mean free time between collisions is

�ei ∼ 1

ni�t v
∼ (kBT )

3/2m
1/2
e

	Ze4ne ln �
, (3.12)
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where we have used the fact thatmev
2 ∼ kBT andZni = ne. Hence we obtain the estimate

� ∼ (kBT )
3/2

m
1/2
e 	Ze2 ln �

, (3.13)

where most importantly the dependence on the electron density has canceled out.A more exact calculation
can be found, for example, in Landau and Lifshitz[141] (vol. 10; Eq. (44.11)) and gives an extra factor
of 4(2/	)1/2 multiplying the above result. The above argument has ignored collisions between electrons
themselves, and treated the plasma as a ‘lorentzian plasma’.The inclusion of the effect of electron–electron
collisions further reduces the conductivity by a factor of about 0.582 forZ = 1 to 1 forZ → ∞; see the
book by Spitzer[142], and Table 5.1 and Eqs. (5)–(37) therein, and leads to a diffusivity, in cgs units, of
� = c2/(4	�) given by

� = 104
(

T

106 K

)−3/2 (
ln �

20

)
cm2 s−1 . (3.14)

As noted above, the resistivity is independent of density, and is also inversely proportional to the tem-
perature (larger temperatures implying larger mean free time between collisions, larger conductivity and
hence smaller resistivity).

The corresponding expression for the kinematic viscosity� is quite different. Simple kinetic theory
arguments give� ∼ vtli , whereli is the mean free path of the particles which dominate the momentum
transport andvt is their random velocity. For a fully ionized gas the ions dominate the momentum transport,
and their mean free pathli ∼ (ni�i)

−1, with the cross-section�i , is determined again by the ion–ion
‘Coulomb’ interaction. From a reasoning very similar to the above for electron–ion collisions, we have
�i ∼ 	(Z2e2/kBT )

2 ln �, where we have usedmiv
2
t ∼ kBT . Substituting forvt andli , this then gives

� ∼ (kBT )
5/2

nim
1/2
i 	Z4e4 ln �

. (3.15)

More accurate evaluation using the Landau collision integral gives a factor 0.4 for a hydrogen plasma,
instead of 1/	 in the above expression (see the end of Section 43 in vol. 10 of Landau and Lifshitz[141]).
This gives numerically

� = 6.5 × 1022
(

T

106 K

)5/2( ni

cm−3

)−1
(

ln �

20

)−1

cm2 s−1 , (3.16)

so the magnetic Prandtl number is

Pm ≡ �

�
= 1.1 × 10−4

(
T

106 K

)4( �

0.1 g cm−3

)−1( ln �

20

)−2

. (3.17)

Thus, in the sun and other stars (T ∼ 106 K, � ∼ 0.1 g cm−3) the magnetic Prandtl number is much less
than unity. Applied to the galaxy, usingT = 104 K and� = 10−24g cm−3, ln � ∼ 10, this formula gives
Pm = 4 × 1011. The reasonPm is so large in galaxies is mostly because of the very long mean free path
caused by the low density[143]. For galaxy clusters, the temperature of the gas is even larger and the
density smaller, making the medium much more viscous and having even largerPm.
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Table 1
Summary of some important parameters in various astrophysical settings. The values given should be understood as rough
indications only. In particular, the applicability of Eq. (3.17) is questionable in some cases and has therefore not been used for
protostellar discs (see text). We have assumed ln� = 20 in computingRm andPm. CZ means convection zone, CV discs and
similar refer to cataclysmic variables and discs around other compact objects such as black holes and neutron stars. AGNs are
active galactic nuclei. Numbers in parenthesis indicate significant uncertainty due to other effects

T [K] � [g cm−3] Pm urms [cm s−1] L [cm] Rm

Solar CZ (upper part) 104 10−6 10−7 106 108 106

Solar CZ (lower part) 106 10−1 10−4 104 1010 109

Protostellar discs 103 10−10 10−8 105 1012 10
CV discs and similar 104 10−7 10−6 105 107 104

AGN discs 107 10−5 104 105 109 1011

Galaxy 104 10−24 (1011) 106 1020 (1018)
Galaxy clusters 108 10−26 (1029) 108 1023 (1029)

In protostellar discs, on the other hand, the gas is mostly neutral with low temperatures. In this case, the
electrical conductivity is given by� = nee

2�en/me, where�en is the rate of collisions between electrons
and neutral particles. The associated resistivity is� = 234x−1

e T 1/2 cm2 s−1, wherexe = ne/nn is the
ionization fraction andnn is the number density of neutral particles[144]. The ionization fraction at the
ionization–recombination equilibrium is approximately given byxe=(�/nn)

1/2, where� is the ionization
rate and = 3 × 10−6T −1/2 cm3 s−1 is the dissociative recombination rate[145,146]. For a density of
�=10−10 g cm−3, and a mean molecular weight 2.33mp [144], we havenn=2.6×1013cm−3. Adopting
for � the cosmic ray ionizing rate� ∼ 10−17s−1, which is not drastically attenuated by the dense gas in
the disk, and a disc temperatureT =103 K, we estimatexe ∼ 2×10−12, and hence� ∼ 4×1015cm2 s−1.

In Table 1we summarize typical values of temperature and density in different astrophysical settings
and calculate the corresponding values ofPm. Here we also give rough estimates of typical rms velocities,
urms, and eddy scales,L, which allow us to calculate the magnetic Reynolds number as

Rm = urms/(�kf ) , (3.18)

wherekf = 2	/L. This number characterizes the relative importance of magnetic induction relative to
magnetic diffusion.A similar number is the fluid Reynolds number, Re=Rm/Pm, which characterizes the
relative importance of inertial forces to viscous forces. (We emphasize that in the above table, Reynolds
numbers are defined based on the inverse wavenumber; our values may therefore be 2	 times smaller than
those by other authors. The present definition is a natural one in simulations where one forces power at
a particular wavenumber aroundkf .)

3.3. Stretching, flux freezing and diffusion

TheU× B term in Eq. (3.11) is usually referred to as the induction term. To clarify its role we rewrite
its curl as

∇ × (U× B) = − U · ∇B︸ ︷︷ ︸
advection

+ B · ∇U︸ ︷︷ ︸
stretching

− B∇ · U︸ ︷︷ ︸
compression

, (3.19)
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Fig. 3.1. The surfaceSenclosed by the curveC is carried by fluid motion to the surfaceS′ after a time dt . The flux through this
surface� is frozen into the fluid for a perfectly conducting fluid.

where we have used the fact that∇ · B= 0. As a simple example, we consider the effect of a linear shear
flow, U = (0, Sx,0) on the initial fieldB = (B0,0,0). The solution isB = (1, St,0)B0, i.e. the field
component in the direction of the flow grows linearly in time.

The net induction term more generally implies that the magnetic flux through a surface moving with
the fluid remains constant in the high-conductivity limit. Consider a surfaceS, bounded by a curveC,
moving with the fluid, as shown inFig. 3.1. Suppose we define the magnetic flux through this surface,
� = ∫

S
B · dS. Then after a time dt the change in flux is given by

�� =
∫
S′
B(t + dt) · dS−

∫
S

B(t) · dS . (3.20)

Applying
∫ ∇ · BdV = 0 at timet + dt , to the ‘tube’-like volume swept up by the moving surfaceS,

shown inFig. 3.1, we also have∫
S′
B(t + dt) · dS=

∫
S

B(t + dt) · dS−
∮
C

B(t + dt) · (dl × Udt) , (3.21)

whereC is the curve bounding the surfaceS, and dl is the line element alongC. (In the last term, to linear
order in dt , it does not matter whether we take the integral over the curveC or C′.) Using the above
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condition in Eq. (3.20), we obtain

�� =
∫
S

[B(t + dt) − B(t)] · dS−
∮
C

B(t + dt) · (dl × U)dt . (3.22)

Taking the limit of dt → 0, and noting thatB · (dl × U) = (U× B) · dl, we have

d�

dt
=

∫
S

�B

�t
· dS−

∮
C

(U× B) · dl = −
∫
S

(∇ × �J) · dS . (3.23)

In the second equality we have used
∮
C
(U × B) · dl = ∫

S
∇ × (U × B) · dS together with the induction

equation (3.11). One can see that, when� → 0, d�/dt → 0 and so� is constant.
Now suppose we consider a small segment of a thin flux tube of lengthl and cross-sectionA, in a

highly conducting fluid. Then, as the fluid moves about, conservation of flux impliesBA is constant,
and conservation of mass implies�Al is constant, where� is the local density. SoB ∝ �l. For a nearly
incompressible fluid, or a flow with small changes in�, one will obtainB ∝ l.Any shearing motion which
increasesl will also amplifyB; an increase inl leading to a decrease inA (because of incompressibility)
and hence an increase inB (due to flux freezing). This effect, also obtained in our discussion of stretching
above, will play a crucial role in all scenarios involving dynamo generation of magnetic fields.

The concept of flux freezing can also be derived from the elegant Cauchy solution of the induction
equation with zero diffusion. This solution is of use in several contexts and so we describe it briefly below.
In the case� = 0, the∇ × (U× B) term in Eq. (3.11) can be expanded to give

DB

Dt
= B · ∇U− B(∇ · U) , (3.24)

where D/Dt=�/�t+U ·∇ is the lagrangian derivative. If we eliminate the∇ ·U term using the continuity
equation for the fluid,

��

�t
= −∇ · (�U) , (3.25)

where� is the fluid density, then we can write

D

Dt

(
B

�

)
= B

�
· ∇U . (3.26)

Suppose we describe the evolution of a fluid element by giving its trajectory asx(x0, t), wherex0 is its
location at an initial timet0. Consider further the evolution of two infinitesimally separated fluid elements,
A andB, which, at an initial timet = t0, are located atx0 andx0 + �x0, respectively. The subsequent
location of these fluid elements will be, say,xA = x(x0, t) andxB = x(x0 + �x0, t) and their separation is
xB − xA = �x(x0, t). Since the velocity of the fluid particles will beU(xA) andU(xA) + �x · ∇U, after a
time�t , the separation of the two fluid particles will change by�t �x ·∇U. The separation vector therefore
evolves as

D�x

Dt
= �x · ∇U , (3.27)

which is an evolution equation identical to that satisfied byB/�. So, if initially, at timet = t0, the fluid
particles were on a given magnetic field line with(B/�)(x0, t0)=c0�x(t0)=c0�x0, wherec0 is a constant,
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then for all times we will haveB/� = c0�x. In other words, ‘if two infinitesimally close fluid particles are
on the same line of force at any time, then they will always be on the same line of force, and the value of
B/� will be proportional to the distance between the particles’ (Section 65 in Ref.[147]). Further, since
�xi(x0, t) = Gij�x0j , whereGij = �xi/�x0j , we can also write

Bi(x, t) = �c0�xi = Gij (x0, t)

detG
B0j (x0) , (3.28)

where we have used the fact that�(x, t)/�(x0, t0) = (detG)−1. We will use this Cauchy solution in
Appendix B.1.

3.4. Magnetic helicity

Magnetic helicity plays an important role in dynamo theory. We therefore give here a brief account of
its properties. Magnetic helicity is the volume integral

H =
∫
V

A · BdV (3.29)

over a closed or periodic volumeV. By a closed volume we mean one in which the magnetic field lines
are fully contained, so the field has no component normal to the boundary, i.e.B · n = 0. The volumeV
could also be an unbounded volume with the fields falling off sufficiently rapidly at spatial infinity. In
these particular cases,H is invariant under the gauge transformation (3.6), because

H ′ =
∫
V

A′ · B′ dV = H +
∫
V

∇� · BdV = H +
∮

�V
�B · n̂dS = H , (3.30)

wheren̂ is the normal pointing out of the closed surface�V . Here we have made use of∇ · B= 0.
Magnetic helicity has a simple topological interpretation in terms of the linkage and twist of isolated

(nonoverlapping) flux tubes. For example consider the magnetic helicity for an interlocked, but untwisted,
pair of thin flux tubes as shown inFig. 3.2, with �1 and�2 being the fluxes in the tubes aroundC1 and
C2 respectively. For this configuration of flux tubes,Bd3x can be replaced by�1 dl onC1 and�2 dl on
C2. The net helicity is then given by the sum

H = �1

∮
C1

A · dl + �2

∮
C2

A · dl = 2�1�2 (3.31)

where we have used Stokes theorem to transform∮
C1

A · dl =
∫
S(C1)

B · dS≡ �2,

∮
C2

A · dl =
∫
S(C2)

B · dS≡ �1 . (3.32)

For a general pair of nonoverlapping thin flux tubes, the helicity is given byH = ±2�1�2; the sign ofH
depending on the relative orientation of the two tubes[148].

The evolution equation forH can be derived from Faraday’s law and its uncurled version forA,
Eq. (3.5), so we have

�

�t
(A · B) = (−E+ ∇�) · B+ A · (−∇ × E)

= − 2E · B+ ∇ · (�B+ A× E) . (3.33)
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φ2

φ1

C1

C2

Fig. 3.2. Two flux tubes with fluxes�1 and�2 are linked in such a way that they have a helicityH = +2�1�2. Interchanging
the direction of the field in one of the two rings changes the sign ofH.

Integrating this over the volumeV, the magnetic helicity satisfies the evolution equation

dH

dt
= −2

∫
V

E · BdV +
∮

�V
(A× E+ �B) · n̂dS = −2�C , (3.34)

whereC = ∫
V
J · BdV is the current helicity. Here we have used Ohm’s law,E = −U × B + �J, in the

volume integral and we have assumed that the surface integral vanishes for closed domains. If the�0
factor were included, this equation would read dH/dt = −2��0C.

In the nonresistive case,�=0, the magnetic helicity is conserved, i.e. dH/dt=0. However, this does not
guarantee conservation ofH in the limit � → 0, because the current helicity,

∫
J · BdV , may in principle

still become large. For example, the Ohmic dissipation rate of magnetic energyQJoule ≡ ∫
�J2 dV can

be finite and balance magnetic energy input by motions, even when� → 0. This is because small enough
scales develop in the field (current sheets) where the current density increases with decreasing� as∝ �−1/2

as� → 0, whilst the rms magnetic field strength,Brms, remains essentially independent of�. Even in
this case, however, the rate of magnetic helicity dissipationdecreaseswith �, with an upper bound to
the dissipation rate∝ �+1/2 → 0, as� → 0. Thus, under many astrophysical conditions whereRm is
large (� small), the magnetic helicityH, is almost independent of time, even when the magnetic energy
is dissipated at finite rates.1 This robust conservation of magnetic helicity is an important constraint on

1 Peculiar counter examples can however be constructed[153]. As an example, take a nonhelical large scale field together
with a small scale helical field. Obviously, the small scale component will decay faster, and so the magnetic helicity can decay
faster than magnetic energy. However, in the generic case where magnetic helicity is distributed over all scales, the magnetic
energy will always decay faster than the magnetic helicity.
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the nonlinear evolution of dynamos and will play a crucial role below in determining how large scale
turbulent dynamos saturate. Indeed, it is also at the heart of Taylor relaxation in laboratory plasmas,
where an initially unstable plasma relaxes to a stable ‘force-free’ state, dissipating energy, while nearly
conserving magnetic helicity[149].

We also note the very important fact that the fluid velocity completely drops out from the helicity
evolution equation (3.34), since(U×B) ·B= 0. Therefore, any change in the nature of the fluid velocity,
for example due to turbulence (turbulent diffusion), the Hall effect, or ambipolar drift (see below), does
not affect magnetic helicity conservation. We will discuss in more detail the concept of turbulent diffusion
in a later section, and its role in dissipating the mean magnetic field. However, such turbulent magnetic
diffusion doesnot dissipate the net magnetic helicity. This property is crucial for understanding why,
in spite of the destructive properties of turbulence, large scale spatio-temporal coherence can emerge if
there is helicity in the system.

For open volumes, or volumes with boundaries through whichB · n̂ �= 0, the magnetic helicityH, as
defined by Eq. (3.29), is no longer gauge-invariant. One can define a gauge-invariant relative magnetic
helicity [150–152]

Hrel =
∫
V

(A+ Aref) · (B− Bref)dV , (3.35)

whereBref = ∇ × Aref is a reference magnetic field that is taken to be the potential field solution (where
Bref = ∇� is the gradient of a potential, so there is no current), with the boundary condition

n̂ · Bref = n̂ · B , (3.36)

i.e. the two fields have the same normal components. The quantityHrel is gauge-invariant, because in
Eq. (3.30) the term̂n · B is replaced bŷn · (B− Bref), which vanishes on the boundaries.

The evolution equation of the relative magnetic helicity is simplified by adopting a specific gauge for
Aref, with

∇ · Aref = 0, Aref · n̂|�V = 0 . (3.37)

We point out, however, that this restriction can in principle be relaxed. When the gauge (3.37) is used for
the reference field, the relative magnetic helicity satisfies the evolution equation

dHrel

dt
= −2�C − 2

∮
�V
(E× Aref) · dS , (3.38)

where dS= n̂dS is the surface element. The surface integral covers the fullclosedsurface around the
volumeV. In the case of the sun the magnetic helicity fluxes from the northern and southern hemispheres
are expected to be about equally big and of opposite sign, so they would cancel approximately to zero. One
is therefore usually interested in the magnetic helicity flux out of the northern or southern hemispheres,
but this means that it is necessary to include the contribution of the equator to the surface integral in
Eq. (3.38). This contribution can easily be calculated for data from numerical simulations, but in the case
of the sun the contribution from the equatorial surface is not observed.

We should point out that it is also possible to define magnetic helicity as linkages of flux analogous to
the Gauss linking formula for linkages of curves. We have recently used this approach to formulate the
concept of a gauge invariant magnetic helicity density in the case of random fields, whose correlation
length is much smaller than the system size[154].
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We have emphasized earlier in this section that no net magnetic helicity can be produced by any kind
of velocity. However, this is not true of the magnetic helicity flux which is affected by the velocity via the
electric field. This can be important if there is differential rotation or shear which can lead to a separation
of magnetic helicity in space. A somewhat related mechanism is the alpha effect (Section 6) which can
lead to a separation of magnetic helicity in wavenumber space. Both processes are important in the sun
or the galaxy.

3.5. The momentum equation

Finally we come to the momentum equation, which is just the ordinary Navier–Stokes equation in fluid
dynamics supplemented by the Lorentz force,J× B, i.e.

�
DU

Dt
= −∇p + J× B+ f + Fvisc , (3.39)

whereU is the ordinary bulk velocity of the gas,� is the density,p is the pressure,Fvisc is the viscous force,
andf subsumes all other body forces acting on the gas, including gravity and, in a rotating system also the
Coriolis and centrifugal forces. (We use an upper caseU, because later on we shall use a lower caseu for
the fluctuating component of the velocity.) Eq. (3.39) has to be supplemented by the continuity equation,

��

�t
= −∇ · (�U) , (3.40)

an equation of state,p = p(�, e), an energy equation for the internal energye, and an evolution equation
for the magnetic field.

An important quantity is the adiabatic sound speed,cs, defined asc2
s = (�p/��)s , evaluated at constant

entropys. For a perfect gas with constant ratio� of specific heats (� = 5/3 for a monotomic gas) we
havec2

s = �p/�. When the flow speed is much smaller than the sound speed, i.e. when the average Mach
number Ma= 〈U2/c2

s〉1/2 is much smaller than unity and if, in addition, the density is approximately
uniform, i.e.� ≈ �0 = const, the assumption of incompressibility can be made. In that case, Eq. (3.25)
can bereplacedby ∇ · U= 0, and the momentum equation then simplifies to

DU

Dt
= − 1

�0
∇p + J× B

�0
+ f + �∇2U , (3.41)

where� is the kinematic viscosity andf is now an external body force per unit mass. The ratioPm = �/�
is the magnetic Prandtl number; see Eq. (3.17).

The assumption of incompressibility is a great simplification that is useful for many analytic consid-
erations, but for numerical solutions this restriction is often not necessary. As long as the Mach number
is small, say below 0.3, the weakly compressible case is believed to be equivalent to the incompressible
case[155].

3.6. Kinetic helicity evolution

We introduce the vorticityW = ∇ × U, and define the kinetic helicity asF = ∫
W · UdV . Using

Eq. (3.41), and ignoring the magnetic field,F obeys the evolution equation

dF

dt
= 2

∫
W · f dV − 2�

∫
W · QdV , (3.42)
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whereQ= ∇ ×W is the curl of the vorticity. Note that in the absence of forcing,f = 0, and without
viscosity,� = 0, the kinetic helicity is conserved, i.e.

dF

dt
= 0 (if � = 0 andf = 0) . (3.43)

On the other hand, in thelimit � → 0 (which is different from the case� = 0) the rate of kinetic helicity
production will not converge to zero with decreasing values of�. This is a major difference to magnetic
helicity conservation, where the rate of helicity production converges to zero at low resistivity. Ignoring
compressibility effects, i.e.� = const, this follows by assuming that both kinetic energy,1

2

∫
U2 dV , and

the rate of kinetic energy dissipation,ε = �
∫
W2 dV , are independent of�. Therefore, both the magnitude

of the vorticity, |W|, and the typical wavenumberk� associated with|W| ≈ k�|U| scale likek� ∼ �−1/2.
Thus,|Q| ∼ k�|W| ∼ �−1, so�|W · Q| ∼ �−1/2, and hence∣∣∣∣dFdt

∣∣∣∣ ∼ �−1/2 → ∞ (for � → 0) . (3.44)

For comparison (as we pointed out earlier), in the magnetic case, the current density also diverges
like |J| ∼ �−1/2, but the rate of magnetic helicity production is only proportional toJ · B, and� J · B
∼ �+1/2 → 0, so∣∣∣∣dHdt

∣∣∣∣ ∼ �+1/2 → 0 (for � → 0) . (3.45)

It is worth emphasizing again that it is for this reason that the magnetic helicity is such an important
quantity in magnetohydrodynamics.

3.7. Energy and helicity spectra

Magnetic energy and helicity spectra are usually calculated as

Mk = 1

2

∫
k-shell

B∗
k · Bkk2 d�k , (3.46)

Hk = 1

2

∫
k-shell

(A∗
k · Bk + Ak · B∗

k)k
2 d�k , (3.47)

where d�k is the solid angle element in Fourier space,Bk= ik×Ak is the Fourier transform of the magnetic
field, andAk is the Fourier transform of the vectors potential. These spectra are normalized such that∫ ∞

0
Hk dk = 〈A · B〉V ≡ H , (3.48)

∫ ∞

0
Mk dk = 〈1

2B
2〉V ≡ M , (3.49)

whereH andM are magnetic helicity and magnetic energy, respectively, and angular brackets denote
volume averages.
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There is a conceptual advantage[4] in working with the real space Fourier filtered magnetic vector
potential and magnetic field,Ak andBk, whereBk = ∇ ×Ak, and the subscriptk (which is now a scalar!)
indicates Fourier filtering to keep only those wavevectorsk that lie in the shell

k − �k/2� |k|<k + �k/2 (k-shell) . (3.50)

Magnetic energy and helicity spectra can then be written as

Mk = 1
2〈B2

k〉V/�k , (3.51)

Hk = 〈Ak · Bk〉V/�k , (3.52)

where angular brackets denote averages over all space. We recall that, for a periodic domain,H is gauge
invariant. Since its spectrum can be written as an integral over all space, see Eq. (3.52),Hk is—like
H—also gauge invariant.

It is convenient to decompose the Fourier transformed magnetic vector potential,Ak, into a longitudinal
component,h‖, and eigenfunctionsh± of the curl operator. Especially in the context of spherical domains
these eigenfunctions are also called Chandrasekhar–Kendall functions[156], while in cartesian domains
they are usually referred to as Beltrami waves. This decomposition has been used in studies of turbulence
[157], in magnetohydrodynamics[158], and in dynamo theory[159]. Using this decomposition we can
write the Fourier transformed magnetic vector potential as

Ak = a+
k h

+
k + a−

k h
−
k + a

‖
kh

‖
k , (3.53)

with

ik× h±
k = ±kh±

k , k = |k| , (3.54)

and

〈h+
k

∗ · h+
k 〉 = 〈h−

k
∗ · h−

k 〉 = 〈h‖
k

∗ · h‖
k〉 = 1 , (3.55)

where asterisks denote the complex conjugate, and angular brackets denote, as usual, volume averages.
The longitudinal parta‖

kh
‖
k is parallel tok and vanishes after taking the curl to calculate the magnetic

field. In the Coulomb gauge,∇ · A= 0, the longitudinal component vanishes altogether.
The (complex) coefficientsa±

k (t) depend onk and t, while the eigenfunctionsh±
k , which form an

orthonormal set, depend only onk and are given by

h±
k = 1√

2

k× (k× e) ∓ ik(k× e)

k2
√

1 − (k · e)2/k2
, (3.56)

wheree is an arbitrary unit vector that is not parallel tok. With these preparations we can write the
magnetic helicity and energy spectra in the form

Hk = k(|a+
k |2 − |a−

k |2)V , (3.57)

Mk = 1
2k

2(|a+
k |2 + |a−

k |2)V , (3.58)
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whereV is the volume of integration. (Here again the factor�−1
0 is ignored in the definition of the magnetic

energy.) From Eqs. (3.57) and (3.58) one sees immediately that[148,159]

1
2k|Hk|�Mk , (3.59)

which is also known as therealizability condition. A fully helical field has thereforeMk = ±1
2kHk.

For further reference we now define power spectra of those components of the field that are either right
or left handed, i.e.

H±
k = ±k|a±

k |2V, M±
k = 1

2k
2|a±

k |2V . (3.60)

Thus, we haveHk =H+
k +H−

k andMk =M+
k +M−

k . Note thatH±
k andM±

k can be calculated without
explicit decomposition into right and left handed field components using

H±
k = 1

2(Hk ± 2k−1Mk), M±
k = 1

2(Mk ± 1
2kHk) . (3.61)

This method is significantly simpler than invoking explicitly the decomposition in terms ofa±
k h

±
k .

In Section 8.3 plots ofM±
k will be shown and discussed in connection with turbulence simulations.

Here the turbulence is driven with a helical forcing function proportional toh+
k ; see Eq. (3.56).

3.8. Departures from the one-fluid approximation

In many astrophysical settings the typical length scales are so large that the usual estimates for the
turbulent diffusion of magnetic fields, by far exceed the ordinary Spitzer resistivity. Nevertheless, the
net magnetic helicity evolution, as we discussed above, is sensitive to the microscopic resistivity and
independent of any turbulent contributions. It is therefore important to discuss in detail the foundations of
Spitzer resistivity and to consider more general cases such as the two-fluid and even three-fluid models.
In some cases these generalizations lead to important effects of their own, for example the battery effect.

3.8.1. Two-fluid approximation
The simplest generalization of the one-fluid model is to consider the electrons and ions as separate

fluids which are interacting with each other through collisions. This two-fluid model is also essential for
deriving the general form of Ohm’s law and for describing battery effects, that generate fields ab-initio
from zero initial field. We therefore briefly consider it below.

For simplicity assume that the ions have one charge, and in fact they are just protons. That is the plasma
is purely ionized hydrogen. It is straightforward to generalize these considerations to several species of
ions. The corresponding set of fluid equations, incorporating the nonideal properties of the fluids and
the anisotropy induced by the presence of a magnetic field, is worked out and summarized by Braginsky
[160]. For our purpose it suffices to follow the simple treatment of Spitzer[142], where we take the stress
tensor to be just isotropic pressure, leaving out nonideal terms, and also adopt a simple form for the
collision term between electrons and protons. The equations of motion for the electron and proton fluids
may then be written as

Deue
Dt

= − ∇pe
neme

− e

me

(E+ ue × B) − ∇�g − (ue − up)

�ei
, (3.62)
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Diui
Dt

= − ∇pi
nimi

+ e

mi

(E+ ui × B) − ∇�g + mene

mini

(ue − ui)

�ei
. (3.63)

HereDjuj /Dt = �uj /�t +uj ·∇uj and we have included the forces due to the pressure gradient, gravity,
electromagnetic fields and electron–proton collisions. Further,mj, nj , uj , pj are respectively the mass,
number density, velocity, and the partial pressure of electrons (j = e) and protons (j = i), �g is the
gravitational potential, and�ei is thee–i collision time scale. One can also write down a similar equation
for the neutral componentn. Adding thee, i andn equations we can recover the standard MHD Euler
equation.

More interesting in the present context is the difference between the electron and proton fluid equations.
Using the approximationme/mi>1, this gives the generalized Ohms law; see the book by Spitzer[142],
and Eqs. (2)–(12) therein,

E+ ui × B= −∇pe
ene

+ J

�
+ 1

ene
J× B+ me

e2

�

�t

(
J

ne

)
, (3.64)

whereJ= (eniui − eneue) is the current density and

� = nee
2�ei

me

(3.65)

is the electrical conductivity. [Ifne �= ni , additional terms arise on the RHS of (3.64) withJ in (3.64)
replaced by−eui(ne − ni). These terms can usually be neglected since(ne − ni)/ne>1. Also negligible
are the effects of nonlinear terms∝ u2

j .]
The first term on the RHS of Eq. (3.64), representing the effects of the electron pressure gradient, is the

‘Biermann battery’ term. It provides the source term for the thermally generated electromagnetic fields
[161,162]. If ∇pe/ene can be written as the gradient of some scalar function, then only an electrostatic
field is induced by the pressure gradient. On the other hand, if this term has a curl then a magnetic field
can grow. The next two terms on the RHS of Eq. (3.64) are the usual Ohmic termJ/� and the Hall electric
field J × B/(nee), which arises due to a nonvanishing Lorentz force. Its ratio to the Ohmic term is of
order�e�ei , where�e = eB/me is the electron gyrofrequency. The last term on the RHS is the inertial
term, which can be neglected if the macroscopic time scales are large compared to the plasma oscillation
periods.

Note that the extra component of the electric field introduced by the Hall term is perpendicular toB,
and so it does not alterE · B on the RHS of the helicity conservation equation (3.34). Therefore the Hall
electric field does not alter the volume dissipation/generation of helicity. The battery term however can
in principle contribute to helicity dissipation/generation, but this contribution is generally expected to be
small. To see this, rewrite this contribution to helicity generation, say(dH/dt)Batt, usingpe =nekBTe, as(

dH

dt

)
Batt

= 2
∫ ∇pe

ene
· BdV = −2

∫
ln ne
e
B · ∇(kBTe)dV , (3.66)

wherekB is the Boltzmann constant, and the integration is assumed to extend over a closed or periodic
domain, so there are no surface terms.2 We see from Eq. (3.66) that generation/dissipation of helicity

2 Note thatne in the above equation can be divided by an arbitrary constant density, sayn0 to make the argument of the log
term dimensionless since, on integrating by parts,

∫
ln(n0)B · ∇(kBTe)dV = 0.
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can occur only if there are temperature gradients parallel to the magnetic field[163–165]. Such parallel
gradients are in general very small due to fast electron flow along field lines. We will see below that the
battery effect can provide a small but finite seed field; this can also be accompanied by the generation of
a small but finite magnetic helicity.

From the generalized Ohm’s law one can formally solve for the current components parallel and
perpendicular toB (cf. the book by Mestel[166]). Defining an ‘equivalent electric field’

E′ = J

�
+ J× B

ene
, (3.67)

one can rewrite the generalized Ohms law as[166]

J= �E′‖ + �1E
′⊥ + �2

B× E′

B
, (3.68)

where

�1 = �

1 + (�e�ei)
2 , �2 = (�e�ei)�

1 + (�e�ei)
2 . (3.69)

The conductivity becomes increasingly anisotropic as�e�ei increases. Assuming numerical values ap-
propriate to the galactic interstellar medium, say, we have

�e�ei ≈ 4 × 105
(

B

1�G

)(
T

104 K

)3/2( ne

1 cm−3

)−1
(

ln �

20

)−1

. (3.70)

The Hall effect and the anisotropy in conductivity are therefore important in the galactic interstellar
medium and in the cluster gas with high temperaturesT ∼ 108 K and low densitiesne ∼ 10−2 cm−3.
Of course, in absolute terms, neither the resistivity nor the Hall field are important in these systems,
compared to the inductive electric field or turbulent diffusion. For the solar convection zone with
ne ∼ 1018–1023cm−3, �e�ei>1, even for fairly strong magnetic fields. On the other hand, in neutron
stars, the presence of strong magnetic fieldsB ∼ 1013G, could make the Hall term important, especially
in their outer regions, where there are also strong density gradients. The Hall effect in neutron stars can
lead to magnetic fields undergoing a turbulent cascade[167]. It can also lead to a nonlinear steepening of
field gradients[168] for purely toroidal fields, and hence to enhanced magnetic field dissipation. However,
even a small poloidal field can slow down this decay considerably[169]. In protostellar discs, the ratio of
the Hall term to microscopic diffusion is∼ �e�en ∼ (8 × 1017/nn)

1/2(vA/cs), wherevA andcs are the
Alfvén and sound speeds respectively[144,146,170]. The Hall effect proves to be important in deciding
the nature of the magnetorotational instability in these discs.

A strong magnetic field also suppresses other transport phenomena like the viscosity and thermal
conduction perpendicular to the field. These effects are again likely to be important in rarefied and hot
plasmas such as in galaxy clusters.

3.8.2. The effect of ambipolar drift
In a partially ionized medium the magnetic field evolution is governed by the induction equation (3.11),

but withU replaced by the velocity of the ionic component of the fluid,ui . The ions experience the Lorentz
force due to the magnetic field. This will cause them to drift with respect to the neutral component of the
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fluid. If the ion-neutral collisions are sufficiently frequent, one can assume that the Lorentz force on the
ions is balanced by their friction with the neutrals. Under this approximation, the Euler equation for the
ions reduces to

�i�in(ui − un) = J× B (strong coupling approximation) , (3.71)

where�i is the mass density of ions,�in the ion-neutral collision frequency andun the velocity of the
neutral particles. For gas with nearly primordial composition and temperature∼ 104 K, one gets the
estimate[240] of �i�in = ni�n〈�v〉eff , with 〈�v〉eff ∼ 4 × 10−9 cm3 s−1, in cgs units. Here,ni is the
number density of ions and�n the mass density of neutrals.

In a weakly ionized gas, the bulk velocity is dominated by the neutrals, and (3.71) substituted into the
induction equation (3.11) then leads to a modified induction equation,

�B

�t
= ∇ × [(U+ aJ× B) × B− � J] , (3.72)

wherea = (�i�in)
−1. The modification is therefore an addition of an extra drift velocity, proportional to

the Lorentz force. One usually refers to this drift velocity as ambipolar drift (and sometimes as ambipolar
diffusion) in the astrophysical community (cf. Refs.[166,171,172]for a more detailed discussion).

We note that the extra component of the electric field introduced by the ambipolar drift is perpendicular
to B and so, just like the Hall term, does not alterE · B on the RHS of the helicity conservation equation
(3.34); so ambipolar drift—like the Hall effect—does not alter the volume dissipation/generation of
helicity. (In fact, even in the presence of neutrals, the magnetic field is still directly governed by only
the electron fluid velocity, which does not alter the volume dissipation/generation of helicity.) Due to
this feature, ambipolar drift provides a very useful toy model for the study of the nonlinear evolution
of the mean field. Below, in Sections 5.3 and 8.10, we will study a closure model that exploits this
feature.

Ambipolar drift can also be important in the magnetic field evolution in protostars, and also in the
neutral component of the galactic gas. In the classical (nonturbulent) picture of star formation, ambipolar
diffusion regulates a slow infall of the gas, which was originally magnetically supported[166]; see also
Chapter 11. In the galactic context, ambipolar diffusion can lead to the development of sharp fronts
near nulls of the magnetic field. This, in turn, can affect the rate of destruction/reconnection of the field
[173–175].

3.9. The Biermann battery

Note thatB = 0 is a perfectly valid solution of the induction equation (3.11), so no magnetic field
would be generated if one were to start with zero magnetic field. The universe probably did not start with
an initial magnetic field. One therefore needs some way of violating the induction equation to produce
a cosmic battery effect, and to drive currents from a state with initially no current. There are a number
of such battery mechanisms which have been suggested[19,161,162,176– 181]. Almost all of them lead
to only weak fields, much weaker than the observed fields. Therefore, dynamo action due to a velocity
field acting to exponentiate small seed fields efficiently, is needed to explain observed field strengths. We
briefly comment on one cosmic battery, the Biermann battery.

The basic problem any battery has to address is how to produce finite currents from zero currents? Most
astrophysical mechanisms use the fact that positively and negatively charged particles in a charge-neutral
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universe, do not have identical properties. For example if one considered a gas of ionized hydrogen, then
the electrons have a much smaller mass compared to protons. This means that for a given pressure gradient
of the gas the electrons tend to be accelerated much more than the ions. This leads in general to an electric
field, which couples back positive and negative charges. This is exactly the thermally generated field we
found in deriving the generalized Ohm’s law.

Taking the curl of Eq. (3.64), using Maxwell’s equations (Faraday’s and Ampere’s law), and writing
pe = nekBT , wherekB is the Boltzmann constant, we obtain

�B

�t
= ∇ × (U× B) − ∇ × � J− ckB

e

∇ne
ne

× ∇T . (3.73)

Here we have taken the velocity of the ionic component to be also nearly the bulk velocity in a completely
ionized fluid, so we putui =U. We have neglected the Hall effect and inertial effects as they are generally
very small for the fields one generates.

We see that over and above the usual flux freezing and diffusion terms we have asource termfor the
magnetic field evolution, even if the initial field were zero. This source term is nonzero if and only if
the density and temperature gradients,∇ne and∇T , are not parallel to each other. The resulting battery
effect, known as the Biermann battery, was first proposed as a mechanism for the thermal generation of
stellar magnetic fields[161,162].

In the cosmological context, the Biermann battery can also lead to the thermal generation of seed fields
in cosmic ionization fronts[177]. These ionization fronts are produced when the first ultraviolet photon
sources, like quasars, turn on to ionize the intergalactic medium (IGM). The temperature gradient in a
cosmic ionization front is normal to the front. However, a component to the density gradient can arise in
a different direction, if the ionization front is sweeping across arbitrarily laid down density fluctuations.
Such density fluctuations, associated with protogalaxies/clusters, in general have no correlation to the
source of the ionizing photons. Therefore, their density gradients are not parallel to the temperature
gradient associated with the ionization front. The resulting thermally generated electric field has a curl,
and magnetic fields on galactic scales can grow. After compression during galaxy formation, they turn
out to have a strengthB ∼ 3 × 10−20 G [177]. A similar effect was considered earlier in the context of
generating fields in the interstellar medium in Ref.[182]. (This mechanism also has analogues in some
laboratory experiments, when laser generated plasmas interact with their surroundings[183,184]. Indeed,
our estimate for the generated field is very similar to the estimate in Ref.[183].) This field by itself falls
far short of the observed microgauss strength fields in galaxies, but it can provide a seed field, coherent
on galactic scales, for a dynamo. Indeed the whole of the IGM is seeded with magnetic fields of small
strength but coherent on megaparsec scales.

This scenario has in fact been confirmed in detailed numerical simulations of IGM reionization[185],
where it was found that the breakout of ionization fronts from protogalaxies and their propagation through
the high-density neutral filaments that are part of the cosmic web, and that both generate magnetic
fields. The field strengths increase further due to gas compression occurring as cosmic structures form.
The magnetic field at a redshiftz ∼ 5 closely traces the gas density, and is highly ordered on mega-
parsec scales. Gnedin et al.[185] found a mean mass-weighted field strength ofB ∼ 10−19G in their
simulation box.

The Biermann battery has also been shown to generate both vorticity and magnetic fields in oblique
cosmological shocks which arise during cosmological structure formation[178,186]. In fact, Kulsrud
et al. [178] point out that the well-known analogy between the induction equation and the vorticity
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equation (without Lorentz force) extends even to the case where a battery term is present. Suppose we
assume that the gas is pure hydrogen, has a constant (in space) ionization fraction�, and has the same
temperature for electrons, protons and hydrogen, it follows thatpe=�p/(1+�) andne=��/mp. Defining
�B = eB/mp, the induction equation with the thermal battery term can then be written as

��B

�t
= ∇ × (U× �B − �∇ × �B) + ∇p × ∇�

�2

1

1 + �
. (3.74)

The last term, without the extra factor of−(1 + �)−1, corresponds to the baroclinic term in the equation
for the vorticity� = ∇ × U,

��

�t
= ∇ × (U× � − �∇ × �) − ∇p × ∇�

�2 . (3.75)

So, provided viscosity and magnetic diffusivity were negligible, both�B(1+ �) and−� satisfy the same
equation. Furthermore, if they were both zero initially then, for subsequent times, we have
eB/mp = −�/(1 + �). Numerically, a value of� ∼ 10−15s−1 corresponds to a magnetic field of about
∼ 10−19G.

We briefly comment on the extensive work trying to generate magnetic fields in the early universe;
for example in a phase transition or during inflation (see for example the reviews[19,176,179,180]and
references therein). The main difficulty with generating such primordial fields in an early universe phase
transition is the very small correlation length of the generated field, which is typically limited to a fraction
of the Hubble radius at the epoch of generation. So, even if a significant fraction of the energy density
of the universe went into magnetic fields, the field averaged over galactic dimensions turns out to be
extremely small, typically smaller than the astrophysically generated seed fields discussed above. One
exception is if helicity is also generated, in which case an inverse cascade can lead to an increase in the
scale of the field[187,188].

Generation of primordial fields during inflation can lead to the required large correlation lengths.
However, one needs to break the conformal invariance of the electromagnetic action.A number of ways of
breaking conformal invariance and generating magnetic fields have been explored[19,179,180,189,190].
But the amplitude of the generated primordial field is exponentially sensitive to the parameters. Primordial
fields generated in the early universe can also influence structure formation in the universe if they are bigger
than about a nanogauss[191–193]. Such fields can be constrained using CMB anisotropy observations
[194– 200]. In this review we shall not treat these issues in any detail but refer the interested reader to
the papers referred to above.

4. Dynamos and the flow of energy

The dynamo mechanism provides a means of converting kinetic energy into magnetic energy. We
shall focus on the astrophysically relevant case of a turbulent dynamo, as opposed to a laminar one.
Laminar dynamos are easier to understand—and we shall discuss some simple examples—while turbulent
dynamos have to be tackled via direct numerical simulations or by stochastic methods. Both will be
discussed below.
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Fig. 4.1. Energy budget in a local accretion disc simulation where the turbulence is maintained by the Balbus–Hawley instability.
The numbers on the arrows indicate the approximate energy conversion rates in units of�EM, where� is the angular velocity
andEM is the steady state value of the magnetic energy (adapted from Ref.[201]).

4.1. Energetics

Important insight can be gained by considering the magnetic energy equation. By taking the dot product
of Eq. (3.11) withB/(2�0) and integrating over the volumeV, we obtain

d

dt

∫
V

B2

2�0
dV = −

∫
V

U · (J× B)dV −
∫
V

J2

�
dV −

∮
�V

E× B

�0
dS . (4.1)

This equation shows that the magnetic energy can be increased by doing work against the Lorentz force,
provided this term exceeds resistive losses (second term) or losses through the surface (Poynting flux,
last term). Likewise, by taking the dot product of Eq. (3.39) with�U and integrating, one arrives at the
kinetic energy equation

d

dt

∫
V

1
2�U2 dV = +

∫
V

p∇ · UdV +
∫
V

U · (J× B)dV

+
∫
V

�U · gdV −
∫
V

2��S2 dV , (4.2)

whereSij = 1
2(ui,j +uj,i)− 1

3�ij uk,k is the traceless rate of strain tensor, and commas denote derivatives.
In deriving Eq. (4.2) we have assumed stress-free boundary conditions, so there are no surface terms and
no kinetic energy is lost through the boundaries. Eqs. (4.1) and (4.2) show that the generation of magnetic
energy goes at the expense of kinetic energy, without loss of net energy.

In many astrophysical settings one can distinguish four different energy reservoirs that are involved
in the dynamo process: magnetic, kinetic, thermal, and potential energy. In accretion discs the magnetic
energy comes ultimately from potential energy which is first converted into kinetic energy. This is only
possible by getting rid of angular momentum via Reynolds and/or Maxwell stresses. Half of the potential
energy goes into orbital kinetic energy and the other half goes into turbulent kinetic energy which is then
dissipated into heat and radiation. This requires turbulence to produce small enough length scales so that
enough kinetic energy can indeed be dissipated on a dynamical time scale. This turbulence is most likely
driven by the Balbus–Hawley (or magneto-rotational) instability; see Ref.[70] for a review. InFig. 4.1
we show a typical energy diagram from a local simulation of the Balbus–Hawley instability. Here, the
magnetic field necessary for the instability is maintained by a dynamo process. Most of the turbulent
energy is dissipated by Joule heating[201]. The magnetic energy typically exceeds the kinetic energy by
a factor of about 3 or more, but is below the thermal energy by a factor of about 10–20; see Ref.[202].

In the case of solar convection the energy for the dynamo comes ultimately from the nuclear reactions
in the center of the star. These act as a source of thermal energy which gets converted into kinetic energy
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Fig. 4.2. Energy budget in a local convection simulation. The dynamo is convectively driven by the luminosity entering from
below, giving rise to convection via work done by adiabatic compression,Wc = ∫

p∇ · udV , and through work done against
the Lorentz force,WL = ∫

u · (J × B)dV . Energy is being fed back from magnetic and kinetic energy to thermal energy via
Joule and viscous heating,QJ andQv. Some of the kinetic energy is constantly being exchanged with potential energyEP via
Wb = ∫

�g · udV (adapted from Ref.[203]).

via the convection instability. The corresponding energy diagram for this case is shown inFig. 4.2.
Potential energy does not contribute directly: it only contributes through rearranging the mean density
stratification[203].

4.2. Kinematic dynamos

The onset of dynamo action can be studied in the linear approximation, i.e. the velocity field is assumed
to be given (kinematic problem). There is in general a critical value of the magnetic Reynolds number
above which the magnetic field grows exponentially. A lot of work has been devoted to the question of
whether the growth rate can remain finite in the limitRm → ∞ (the so-called fast dynamo problem); see
Refs.[204–206]for reviews. Fast dynamos are physically meaningful only until nonlinear effects begin
to modify the flow to limit further growth of the field.

In the following we consider two simple examples of a dynamo. Both are slow dynamos, i.e. magnetic
diffusion is crucial for the operation of the dynamo. We also discuss the stretch-twist-fold dynamo as a
qualitative example of what is possibly a fast dynamo.

4.2.1. The Herzenberg dynamo
In the wake of Cowling’s antidynamo theorem[207] the Herzenberg dynamo[208]played an important

role as an early example of a dynamo where the existence of excited solutions could be proven rigorously.
The Herzenberg dynamo does not attempt to model an astrophysical dynamo. Instead, it was complemen-
tary to some of the less mathematical and more phenomenological models at the time, such as Parker’s
migratory dynamo[209]as well as the observational model of Babcock[210], and the semi-observational
model of Leighton[211], all of which were specifically designed to describe the solar cycle.
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Fig. 4.3. Three-dimensional visualization of the magnetic field geometry of the Herzenberg dynamo.B-vectors are shown when
their length exceeds about 25% of the maximum value (adapted from Ref.[212]).

The Herzenberg dynamo is based on the mutual interaction of the magnetic fields produced by two
spinning spheres in a conducting medium. In its simplest variant, the axes of the two spheres lie in two
parallel planes and have an angle� to each other; seeFig. 4.3, which shows the field vectors from a
numerical simulation of the Herzenberg dynamo[212].

Dynamo action is possible unless the angle� is exactly 0◦, 90◦, or 180◦. For 90◦ <�<180◦ nonoscil-
latory dynamo action is possible. In the limit where the radius of the spheres,a, is small compared with
their separationd, one can expand the field locally in terms of multipoles to lowest order. Defining a
magnetic Reynolds number asRm = �d2/�, where� is the spin frequency of each of the spheres, the
critical magnetic Reynolds number for dynamo action,Rcrit, is found to be[148]

R−2
crit = − 1

4800

(a
d

)6
sin2� cos� (for 90◦ <�<180◦) , (4.3)

which shows that the smallest value ofRcrit is reached for� ≈ 125◦. Critical magnetic Reynolds
numbers are several hundreds. However, becauseRm depends quadratically ond, Rcrit would be only
around 10 if we were to redefine the magnetic Reynolds number based on some typical wavenumber;
see Eq. (3.18). The dynamo works on the principle that each sphere winds up its ambient field, creates
thereby a strong toroidal field around itself. Because there is an angle between the two spheres the
toroidal field of one sphere acts as a poloidal field for the other sphere. For the toroidal field of each
sphere to propagate to the other sphere, a nonzero diffusion is necessary, hence making this dynamo a
slow dynamo.

Already back in the 1960s, the idea of the Herzenberg dynamo has been verified experimentally
[213,214]using two conducting cylinders embedded in a solid block of the same material. The cylinders
were in electric contact with the block through a thin lubricating film of mercury.

The asymptotic theory of Herzenberg[208] assumed thata/d>1; for excellent reviews of the Herzen-
berg dynamo see Refs.[148,215]. Using numerical simulations[212], it has been shown that Eq. (4.3) re-
mains reasonably accurate even whena/d ≈ 1.These simulations also show that in the range 0◦ <�<90◦
dynamo action is still possible, but the solutions are no longer steady but oscillatory; see Ref.[212] for
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Fig. 4.4. Roberts flow pattern with periodicity 2a, corresponding to Eq. (4.4) (adapted from Ref.[218]).

an asymptotic treatment. In the early papers, only steady solutions were sought, which is the reason why
no solutions were originally found for 0◦ <�<90◦.

4.2.2. The Roberts flow dynamo
In the early years of dynamo theory most examples were constructed and motivated based on what

seems physically possible and plausible. An important element of astrophysical dynamos is that the flow
is bounded in space and that the magnetic field extends to infinity. Later, and especially in recent years,
these restrictions were relaxed in may approaches. One of the first examples is the Roberts dynamo
[216,217]. The flow depends on only two coordinates,U= U(x, y), and can be written in the form

U(x, y) = k−1
f ∇ × (�ẑ) + k−2

f ∇ × ∇ × (�ẑ) , (4.4)

with the stream function�=√
2U0 coskxx coskyy, wherekx = ky = 	/a; seeFig. 4.4. This flow is fully

helical withW= kfU, werek2
f = k2

x + k2
y andW= ∇ × U. The flow is normalized such that〈U2〉 = U2

0 .
While the flow is only two-dimensional (in the sense thatU is a function only ofx andy), the magnetic
field must be three-dimensional for all growing solutions (dynamo effect). The field must therefore also
depend onz.

The governing equations are homogeneous with coefficients that are independent ofz and t. The
solutions of the kinetic problem can therefore be written in the form

B(x, y, z, t) = Re[B̂kz(x, y)exp(ikzz + �t)] , (4.5)

whereB̂kz is the eigenfunction, which is obtained by solving the eigenvalue problem

�Âkz = U× B̂kz + �(∇2 − k2
z )Âkz , (4.6)
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Fig. 4.5. Critical magnetic Reynolds number,Rcrit =U0/(�kf )crit , for the Roberts flow as a function ofkz/kf , wherek2
f =k2

x+k2
y .

The critical magnetic Reynolds number based onkz, Rcrit,kz = U0/(�kz)crit , has a minimum atkz ≈ 0.34kf ≈ 0.48kx (dotted
line). The case of a squared domain withkx = ky = kz, i.e.kz/kf = 1/

√
2, is indicated by the vertical dash–dotted line.

whereB̂kz = ∇ × Âkz + ikz × Âkz is expressed in terms ofÂkz , which is a mixed representation of the
vector potential; in real space the vector potential would be Re[Âkz(x, y)exp(ikzz + �t)]. In Fig. 4.5
we present critical values of the magnetic Reynolds number as a function ofkz, obtained by solving
Eq. (4.6) numerically as described in Refs.[218,219]. For kz = kx = ky ≈ 0.71kf , the marginal state
(� = 0) is reached whenRcrit ≡ U0/(�kf )crit ≈ 3.90. The larger the domain in thez-direction, the lower
is the critical magnetic Reynolds number. However, the critical magnetic Reynolds number based onkz,
Rcrit,kz = U0/(�kz)crit, has a minimum atkz ≈ 0.34kf ≈ 0.48kx with Rcrit,kz ≈ 3.49; cf.Fig. 4.5.

The horizontally averaged eigenfunction isB̂kz = (i,1,0), corresponding to a Beltrami wave (see
Section 3.7), which has maximum magnetic helicity with a sign that is opposite to that of the flow. In the
present case, the kinetic helicity of the flow is positive, so the magnetic and current helicities of the mean
field are negative.

The significance of this solution is two-fold. On the one hand, this dynamo is the prototype of any
fully helical dynamo capable of generating a large scale field (kz>kf ). On the other hand, it is a simple
model of the Karlsruhe dynamo experiment where a similar flow of liquid sodium is generated by an
arrangement of pipes with internal ‘spin generators’ making the flow helical. It is also an example of a
flow where the generation of the magnetic field can be described in terms of mean field electrodynamics.

Unlike the original Roberts flow dynamo, the flow in the Karlsruhe dynamo experiment is bounded

and embedded in free space. Within the dynamo domain, the mean field,B̂kz = (i,1,0), has only(x, y)-
components. The field lines must close outside the dynamo domain, giving therefore rise to a dipole lying
in the(x, y)-plane. Similar fields have long been predicted for rapidly rotating stars[220]. This will be
discussed in more detail in Section 11.3.3.

4.3. Fast dynamos: the stretch-twist-fold picture

An elegant heuristic dynamo model illustrating the possibility of fast dynamos is what is often referred
to as the Zeldovich ‘stretch-twist-fold’ (STF) dynamo (seeFig. 4.6). This is now discussed in many
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(A) (B)

(C)(D)

Fig. 4.6. A schematic illustration of the stretch-twist-fold-merge dynamo.

books[206,222]and we briefly outline it here, as it illustrates nicely several features of more realistic
dynamos.

The dynamo algorithm starts with first stretching a closed flux rope to twice its length preserving its
volume, as in an incompressible flow(A → B in Fig. 4.6). The rope’s cross-section then decreases by
factor two, and because of flux freezing the magnetic field doubles. In the next step, the rope is twisted
into a figure eight(B → C in Fig. 4.6) and then folded(C → D in Fig. 4.6) so that now there are two
loops, whose fields now point in the same direction and together occupy a similar volume as the original
flux loop. The flux through this volume has now doubled. The last important step consists of merging the
two loops into one(D → A in Fig. 4.6), through small diffusive effects. This is important in order that
the new arrangement cannot easily undo itself and the whole process becomes irreversible. The newly
merged loops now become topologically the same as the original single loop, but now with the field
strength scaled up by factor 2.

Repeating the algorithmn times, leads to the field in the flux loop growing by factor 2n, or at a growth
rate∼ T −1 ln 2 whereT is the time for the STF steps. This makes the dynamo potentially a fast dynamo,
whose growth rate does not decrease with decreasing resistivity. Also note that the flux through a fixed
‘Eulerian surface’grows exponentially, although the flux through any lagrangian surface is nearly frozen;
as it should be for small diffusivities.

The STF picture illustrates several other features: first we see that shear is needed to amplify the field at
step A→ B. However, without the twist part of the cycle, the field in the folded loop would cancel rather
than add coherently. To twist the loop the motions need to leave the plane and go into the third dimension;
this also means that field components perpendicular to the loop are generated, albeit being strong only
temporarily during the twist part of the cycle. The source for the magnetic energy is the kinetic energy
involved in the STF motions.

Most discussions of the STF dynamo assume implicitly that the last step of merging the twisted loops
can be done at any time, and that the dynamo growth rate is not limited by this last step. This may well be
true when the fields in the flux rope are not strong enough to affect the motions, that is, in the kinematic
regime. However as the field becomes stronger, and if the merging process is slow, the Lorentz forces due
to the small scale kinks and twists will gain in importance compared with the external forces associated
with the driving of the loop as a whole. This may then limit the efficiency of the dynamo.
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Indeed, the growing complexity of the field, in the repeated application of the STF process, without
the merging, can be characterized particularly by the evolution of the magnetic helicity spectrum. This
is discussed for example in Ref.[223], where it is pointed out that the repeated application of the STF
cycle (with the same sense for the twist part of the cycle), under flux freezing, leads to both a large scale
writhe helicityassociated with the repeated crossings of the flux tube, and oppositely signedtwist helicity
at much smaller scales. If one does not destroy this small scale structure by diffusion, then the Lorentz
forces associated with these structures will interfere with the STF motions. A somewhat similar situation
holds for the mean field turbulent dynamos, where we will find oppositely signed (almost equal strength)
helicities being generated by the motions on different scales. In that case we also find the dynamo to be
eventually resistively limited, when there is strict helicity conservation.

In this context one more feature deserves mentioning: if in the STF cycle one twists clockwise and
folds, or twists counter-clockwise and folds one will still increase the field in the flux rope coherently.
However, one would introduce opposite sense of writhe in these two cases, and so opposite internal twists.
So, although the twist part of the cycle is important for the mechanism discussed here, the sense of twist
can be random and does not require net helicity. This is analogous to a case when there is really only
a small scale dynamo, but one that requires finite kinetic helicity density locally. We should point out,
however, that numerical simulations[224]have shown that dynamos work and are potentially independent
of magnetic Reynolds number even if the flow has zero kinetic helicity density everywhere.

If the twisted loops can be made to merge efficiently, the saturation of the STF dynamo would probably
proceed differently. For example, the field in the loop may become too strong to be stretched and twisted,
due to magnetic curvature forces. Another interesting way of saturation is that the incompressibility
assumed for the motions may break down; as one stretches the flux loop the field pressure resists the
decrease in the loop cross-section, and so the fluid density in the loop tends to decrease as one attempts
to make the loop longer. (Note that it isB/� which has to increase during stretching.) The STF picture
has inspired considerable work on various mathematical features of fast dynamos and some of this work
can be found in the book by Childress and Gilbert[206] which in fact has STF in its title!

4.4. Fast ABC-flow dynamos

ABC flows are solenoidal and fully helical with a velocity field given by

U=
(
C sinkz + B cosky
A sinkx + C coskz
B sinky + A coskx

)
. (4.7)

WhenA, B, andC are all different from zero, the flow is no longer integrable and has chaotic streamlines.
There is numerical evidence that such flows act as fast dynamos[225]. The magnetic field has very small
net magnetic helicity[159,223]. This is a general property of any dynamo in the kinematic regime and
follows from magnetic helicity conservation, as will be discussed later (Section 8.2 andFig. 8.2). Even
in a nonlinear formulation of the ABC flow dynamo problem, where the flow is driven by a forcing
function similar to Eq. (4.7) the net magnetic helicity remains unimportant[226,227]. This is however
not surprising, because the development of net magnetic helicity requires sufficient scale separation, i.e.
the wavenumber of the flow must be large compared with the smallest wavenumber in the box (k = k1 ≡
2	/L, whereL is the size of the box). If this is not the case, helical MHD turbulence behaves similarly to
nonhelical turbulence[254]. A significant scale separation also weakens the symmetries associated with



A. Brandenburg, K. Subramanian / Physics Reports 417 (2005) 1–209 45

the flow and the field, and leads to a larger kinematic growth rate, more compatible with the turnover
time scale[228]. These authors also find that the cigar-like magnetic field structures which develop in
canonicalA = B = C flows with stagnation points, are replaced by more ribbon like structures in flows
without such stagnation points.

Most of the recent work on nonlinear ABC flow dynamos has focused on the case with small scale
separation and, in particular, on the initial growth and possible saturation mechanisms[229]. In the kine-
matic regime, these authors find a near balance between Lorentz work and Joule dissipation. The balance
originates primarily from small volumes where the strong magnetic flux structures are concentrated.
The net growth of the magnetic energy comes about through stretching and folding of relatively weak
field which occupies most of the volume. The mechanism for saturation could involve achieving a local
pressure balance in these strong field regions[230].

5. Small scale turbulent dynamos

Dynamos are often divided into small scale and large scale dynamos. Large scale dynamos are those
responsible for the solar cycle, for example. They show large scale spatial coherence and, in the case of
the sun, they also show long-term temporal order in the sense of the 11 year cycle, i.e. much longer than
the time scale of the turbulent motions. Small scale dynamos produce magnetic fields that are correlated
on scales of the order of or smaller than the energy carrying scale of the turbulence. In the literature such
dynamos are sometimes also referred to as ‘fluctuation dynamos’. Nonhelical turbulent flows can act as
small scale dynamos, while flows with significant amounts of kinetic helicity act as large scale dynamos.
Inhomogeneous and anisotropic flows (e.g. shear flows) are potential candidates for producing large scale
dynamo action. Of course, there may not be a clear boundary between small and large scale dynamos and
indeed the two may interact (Section 5.6).

Small scale dynamos are potentially important for several reasons. First, they typically have larger
growth rates than large scale dynamos. The question now arises as to what effect this rapidly generated
magnetic ‘noise’ has on the large scale dynamo action. Further, there could be physical settings where
large scale dynamos do not work, like in clusters of galaxies or in elliptical galaxies where rotation effects
are negligible and hence any turbulent flows lack helicity and persistent shear. In such systems, turbulence
may still lead to small scale dynamo action and generate magnetic fields. Whether such fields are coherent
enough to lead to the observed cluster rotation measures, for example, is an important question to settle.

5.1. General considerations

In a turbulent flow fluid particles random walk away from each other with time. A magnetic field line
frozen into the fluid (assuming largeRm) will then also lengthen by this random stretching. This leads to
an increase inB/� and for flows with� ≈ const, the magnetic field will be amplified. The lengthening of
the field line in a given direction also leads to a decrease in its scale in the directions perpendicular to the
stretching. As the field strength increases, the scale of individual field structures decreases and the Ohmic
dissipation increases, until it roughly balances the growth due to random stretching. What happens after
this? This question of the long term behavior of the magnetic field in a turbulent flow was first raised
by Batchelor[231]. He argued on the basis of the analogy of the induction equation to the equation for
vorticity, that the field will grow exponentially if the magnetic Prandtl number is larger than unity. This
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argument is dubious and the possibility of dynamo action in turbulent flows that lack helicity was first
elucidated in a decisive manner by Kazantsev[13] for a special kind of flow. Numerical simulations of
turbulent flows also show invariably that dynamo action can occur for forced turbulence. We first discuss
the Kazantsev dynamo model and then present some results from simulations of turbulent flows.

5.2. Kazantsev theory

Kazantsev considered a velocity field,v, which is an isotropic, homogeneous, Gaussian random field
with zero mean and also, more importantly, which is�-correlated in time. [We use the symbolv instead
of U to emphasize thatv is not the solution of the momentum equation (3.41).] The two point spatial
correlation function of the velocity field can be written as〈vi(x, t)vj (y, s)〉 = Tij (r)�(t − s), where

Tij (r) =
(
�ij − rirj

r2

)
TN(r) + rirj

r2 TL(r) . (5.1)

Here〈·〉 denotes averaging over an ensemble of the stochastic velocity fieldv, r=|x−y|, ri=xi−yi and we
have written the correlation function in the form appropriate for a statistically isotropic and homogeneous
tensor (cf. Section 34 of Ref.[232]). Note that homogeneity implies that the two point correlation function
depends only onx−y. Together with isotropy this also implies that the correlation tensor can only contain
terms proportional to�ij , rirj andεijk and the functions multiplying these tensors depend only onr.TL(r)

andTN(r) are the longitudinal and transverse correlation functions for the velocity field. (The helical part
of the velocity correlations is assumed to be zero in this section; see however Section 5.6.) Ifv is assumed
to be divergence free, thenTN is related toTL via

TN = 1

2r

�

�r
[r2TL(r)] , (5.2)

with

TL(0) = 1
3

∫ t

0
〈v(t) · v(t ′)〉 dt ′ . (5.3)

We will see in the next section thatTL(0) is actually the turbulent diffusion coefficient for the mean field.

5.2.1. Kazantsev equation in configuration space
The stochastic induction equation can now be converted into equations for the various moments of the

magnetic field. Assume that there is no mean field or first moment, and that the magnetic correlation has
the same symmetries as the flow; i.e. it is isotropic and homogeneous. Then its equal time, two point
correlation is given by〈Bi(x, t)Bj (y, t)〉 = Mij (r, t), where

Mij =
(
�ij − rirj

r2

)
MN(r, t) + rirj

r2 ML(r, t) , (5.4)

andML(r, t) andMN(r, t) are, respectively, the longitudinal and transversal correlation functions of the
magnetic field. Since∇ · B= 0,

MN = 1

2r

�

�r
(r2ML) . (5.5)
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Kazantsev derived an equation forML(r, t) by deriving the equation for thek-space magnetic spectrum
using diagram techniques, and transforming the resulting integro-differential equation ink-space into
a differential equation inr-space. Thisk-space equation was also derived by Kraichnan and Nagarajan
[233]. Subsequently, Molchanov et al.[234,235]derived this equation directly inr-space by the Wiener
path integral method. We present a simple derivation of the Kazantsev equation in the more general case of
helical turbulence in Appendix A, following the method outlined in Subramanian[236]. For a nonhelical
random flow we have

�ML

�t
= 2

r4

�

�r

[
r4�T(r)

�ML

�r

]
+ GML , (5.6)

where�T(r) = � + �t(r) is the sum of the microscopic diffusivity,�, and an effective scale-dependent
turbulent magnetic diffusivity�t(r) = TL(0) − TL(r). The termG = −2(T ′′

L + 4T ′
L/r), where primes

denoter derivatives, describes the rapid generation of magnetic fluctuations by velocity shear and the
potential existence of a small scale dynamo (SSD)independentof any large scale field; see the book by
Zeldovich et al.[222] and references therein.

One can look for eigenmode solutions to Eq. (5.6) of the form�(r)exp(2�t) = r2√�TML. This
transforms Eq. (5.6) forML(r, t), into a time independent, Schrödinger-type equation, but with a variable
(and positive) mass,

−�� = −�T
d2�

dr2 + U0(r)� . (5.7)

The ‘potential’ is

U0(r) = T ′′
L + 2

r
T ′

L + 1

2
�′′

T − (�′
T)

2

4�T
+ 2

r2 �T (5.8)

for a divergence free velocity field. The boundary condition is� → 0 for r → 0,∞. Note thatU0 →
2�/r2 asr → 0, and sinceTL(r) → 0 asr → ∞, it follows thatU0 → 2[� + TL(0)]/r2 asr → ∞. The
possibility of growing modes with�>0 is obtained, if one can have a potential well withU0 sufficiently
negative in some range ofr. This allows for the existence ofbound stateswith ‘energy’E=−�<0. The
solutions to the Kazantsev equation for various forms ofTL(r) have been studied quite extensively by
several authors[13,222,236–242].

Suppose we have random motions correlated on a single scaleL, with a velocity scaleV. Define the
magnetic Reynolds numberRm = VL/�. (Here we defineRm using the correlation scaleL instead of
L/2	 since this appears most natural, and is also commonly used, in real space treatments of the SSD.)
Such a random flow may arise if the fluid is highly viscous, and it will also be relevant for the viscous
cut-off scale eddies in Kolmogorov turbulence. Then one finds that there is a criticalRm = Rcrit, so
that forRm >Rcrit, the potentialU0 allows for the existence of bound states. ForRm = Rcrit, one has
� = 0, and this marginal stationary state is the ‘zero’ energy eigenstate in the potentialU0. The value of
Rcrit one gets ranges between 30− 60, depending on the assumed form ofTL(r) [236–238]. (ThisRcrit
corresponds to a value 30/2	 − 60/2	 if we were to use the corresponding wavenumber 2	/L to define
Rm.) ForRm >Rcrit, �>0 modes of the SSD can be excited, and the fluctuating field that is correlated on
a scaleL grows exponentially on the corresponding ‘eddy’ turnover time scale. For example, suppose one
adoptsTL(r)= (V L/3)(1− r2/L2) for r <L, and zero otherwise, as appropriate for a single scale flow
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(or the flow below the viscous cut-off). Then, a WKBJ analysis[236] gives the growth rate for the fastest
growing mode as� = 5

4V/L − O((lnRm)
−2).

To examine the spatial structure for various eigenmodes of the small scale dynamo, it is more instructive
to consider the function

w(r, t) = 〈B(x, t) · B(y, t)〉 = 1

r2

�

�r
(r3ML), r = |x− y| , (5.9)

which measures the ensemble average of the dot product of the fluctuating field at two locations, with
w(0, t)= 〈B2〉. We have

∫ ∞
0 w(r)r2 dr = ∫ ∞

0 (r3ML)
′ = 0, sinceML is regular at the origin and vanishes

faster thanr−3 asr → ∞. Therefore the curver2w(r) should have zero area under it. Sincew(0, t)=〈B2〉,
w is positive near the origin. Therefore,B points in the same direction for small separation. As one goes
to larger values ofr, there must be values ofr, sayr ∼ d, wherew(r) becomes negative. For such values
of r, the field at the origin and at a separationd are, on the average, pointing in opposite directions. This
can be interpreted as indicating that the field lines, on the average, are curved on the scaled.

For the growing modes of the small scale dynamo, one finds[236–240]thatw(r) is strongly peaked
within a regionr = rd ≈ LR

−1/2
m about the origin, for all the modes, and for the fastest growing mode,

changes sign acrossr ∼ L and rapidly decays with increasingr/L. The scalerd is in fact the diffusive
scale determined by the balance of rate of the Ohmic decay,�/r2

d, and the growth rateV/L due to random
shearing. (Note for the single scale flow one has linear shear at small scales, and hence a scale-independent
shearing rate.) Detailed asymptotic solutions forw(r)have been given in Ref.[238]and aWKBJ treatment
can also be found in Ref.[236]. A physical interpretation of this correlation function[222,238,239]is that
the small scale field in the kinematic regime is concentrated in structures with thicknessrd and curved
on a scale up to∼ L. How far such a picture holds in the nonlinear regime is still matter of investigation
(see below).

The small scale dynamo in Kolmogorov turbulence can be modeled[236,240]by adoptingTL(r) =
1
3VL[1 − (r/L)4/3] in the inertial rangeld<r <L, a form suggested in Ref.[243]. HereL is the outer
scale andld ≈ LRe−3/4 is the viscous cut-off scale of the turbulence, whereRe= VL/� is the fluid
Reynolds number. For Kolmogorov turbulence, the eddy velocity at any scalel, isvl ∝ l1/3, in the inertial
range. So the scale dependent diffusion coefficient scales asvll ∝ l4/3. This scaling, also referred to as
Richardson’s law, is the motivation for the above formTL(r). Also, in order to ensure thatT ′

L(0) = 0,
TL is continued from its value atr = ld to zero, and was taken to be zero forr >L. (The exact form of
the continuation has little effect on the conclusions.) In the inertial range the potential then has the scale
invariant form

U = vl

3l

[
−8

9

(r
l

)−2/3 − (4/9)(r/ l)2/3

3/Rm(l) + (r/ l)4/3
+ 6

Rm(l)

(
L2

r2

)]
, (5.10)

whereRm(l)= vll/� =Rm(l/L)
3/4 is the magnetic Reynolds number associated with a scalel. Note that

the potentialU (not to be confused with the velocityU) has the same form at any scalel, with Rm(l)

appropriate to that scale. This suggests that conclusions about the excitation conditions can be applied
separately at different scales,l, provided we use the corresponding velocity scalevl and Reynolds number
Rm(l) appropriate to the scalel. For example, the condition for excitation of small scale dynamo modes
which are concentrated at a scalel, is alsoRm(l) = Rcrit?1.
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Note thatRm(l) decreases as one goes to smaller scales, and so the small scale dynamo will be first
excited when the magnetic Reynolds number at the outer scale satisfiesRm(L)>Rcrit. For Kolmogorov
turbulence described by the aboveTL(r) it was estimated[236] using a WKBJ analysis thatRcrit ∼ 60.
Also, the marginal mode which has zero growth rate, in this case, hasw(r)peaked withinr ∼ L/R

3/4
m .This

different scaling can be understood as arising due to the fact that the shearing rate now is(V/L)(r/L)−2/3

at any scaler in the inertial range. For the marginal mode this is balanced by dissipation atr = rd which
occurs at a rate�/r2

d.
In Kolmogorov turbulence, the cut-off scale eddies haveRm(ld) = Pm, i.e. the cutoff-scale magnetic

Reynolds number is equal to the magnetic Prandtl number. So, ifPm >Rcrit these eddies are themselves
capable of small scale dynamo action. The fastest growing modes then have a growth rate∼ vd/ld,
which is equal to the eddy turnover time associated with the cut-off scale eddies, a time scale much
smaller than the turnover time of outer scale eddies. Also, for the fastest growing modew(r) is peaked
about a radius corresponding to the diffusive scales associated with these eddies, and changes sign
at r ∼ ld.

We have taken the scale-dependent turbulent diffusion coefficientTL(0) − TL(r) ∝ rn with n = 4
3

to model Kolmogorov turbulence. The indexn measures how ‘rough’ the velocity field is, withn = 2
corresponding to a smooth velocity field. It turns out that for growing modes one requiresn>1 at least
[13]. Also, in a smallPm flow the closern is to unity, the larger could be the criticalRm needed to excite
the small scale dynamo[244]. This may be of relevance for understanding the results of smallPm dynamo
simulations that are described below (Section 5.5).

5.2.2. Kazantsev dynamo in Fourier space
It is instructive to study the Kazantsev problem in Fourier space. Ink space the differential equation

(5.6) becomes an integro-differential equation for the magnetic spectrumM(k, t), which is in general
difficult to solve. However, if the magnetic spectrum is peaked on scales much smaller than the flow, as
is the case for small fluid Reynolds number (largePm) flows, one can provide an approximate treatment
for the largek regime,k?kf . Herekf is the forcing scale in case of a single scale random flow, or the
viscous scale in case of Kolmogorov turbulence (assuming that eddies at the cut-off scale can also induce
dynamo action). In this largek?kf limit the Kazantsev equation becomes[143]

�M

�t
= �

5

(
k2�2M

�k2 − 2k
�M

�k
+ 6M

)
− 2�k2M , (5.11)

where� = −(1/6)[∇2Tii(r)]r=0, is a measure of the rate of shearing by the flow. In terms ofTL, we
have� = 7T ′′

L (0) + 8T ′
L(0)/r. The evolution of the magnetic spectrum was analyzed in some detail in

Ref. [143], and is summarized nicely in Ref.[245].
Suppose the initial magnetic spectrum is peaked at somek = k′>kfR

1/2
m , i.e. at a wavenumber much

smaller than the resistive wavenumber, then the amplitude of each Fourier mode grows exponentially
in time at the rate3

4�. Meanwhile, the peak of excitation moves to largerk, with kpeak = k′ exp(3
5�t),

leaving behind a power spectrumM(k) ∝ k3/2. These features can of course be qualitatively under-
stood as due to the effects of random stretching. Once the peak reaches the resistive scale, one has
to solve again an eigenvalue problem to determine the subsequent evolution ofM(k, t). Substituting
M(k, t)= exp��t�(k/k�), wherek� = (�/10�)1/2, into (5.11) and demanding that� → 0 ask → ∞, one
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Fig. 5.1. Magnetic and kinetic energy spectra from a nonhelical turbulence simulation withPm = 1. The kinetic energy is
indicated as a dashed line (except for the first time displayed where it is shown as a thin solid line). At early times the magnetic
energy spectrum follows thek3/2 Kazantsev law [the dashed line gives the fit to Eq. (5.12)], while the kinetic energy shows
a shortk−5/3 range. The Reynolds number isurms/(�kf ) ≈ 600 and 5123 meshpoints were used[254]. The time difference
between the spectra is about 14(kf urms)

−1.

gets the solution[245]

�(k/k�) = const× k3/2K�(�)(k/k�), �(�) =
√

5(� − 3
4) . (5.12)

HereK� is the Macdonald function and the eigenvalue� must be determined from the boundary condition
at smallk. This is a bit more tricky in thek-space analysis since the equations were simplified by taking
the largek limit; fortunately the results seem independent of the exact form of the boundary condition at
smallk in the largeRm limit. In Ref. [245] a zero flux boundary condition is imposed at somek= k∗>k�

and it is shown that this fixes� ≈ 3/4 and� ≈ 0. In case we adoptTL(r) = 1
3VL(1 − r2/L2), for r <L

and zero otherwise, one gets� = 5
3V/L and so the growth rate is� = 3

4� = 5
4V/L, which agrees with

the WKBJ analysis of the Kazantsev equation obtained in Section 5.2.1. We also get 1/k� = √
6LR−1/2

m
which is of the same order as expected for the diffusive scalerd in the real-space treatment.

We show in Figs.5.1and5.2the time evolution of the magnetic spectrum from simulations which are
described in detail later. One important difference between simulations and the picture described above
arises due to the presence of power (however small) in the initial spectrum, at the resistive scale. This leads
to the magnetic spectrum extending to the resistive scale, and locking onto an eigenfunction right from
the early stages of evolution, as can be seen inFig. 5.1. We also show the corresponding time evolution
for a highPm simulation, which represents more closely the SSD for when the kinetic spectrum is peaked
on a single scale; seeFig. 5.2.

5.2.3. Further results on the Kazantsev dynamo
A number of other interesting results have been found for the Kazantsev problem, particularly for the

case of a single scale flow. In this case one can approximate the velocity to be a linear random shear flow.
In the regime when the field has not yet developed small enough scales, resistivity is unimportant and
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Fig. 5.2. Magnetic and kinetic energy spectra from a nonhelical turbulence simulation withPm = 50. The kinetic energy is
indicated as a dotted line (except for the first time displayed where it is shown as a thin solid line). The magnetic spectrum
for the last time is shown as a thick line. The Reynolds number isurms/(�kf ) ≈ 80, and the magnetic Reynolds number
is urms/(�kf ) ≈ 4000 and 5123 meshpoints were used. Like inFig. 5.1, the time difference between the spectra is about
14(kf urms)

−1. At the end of the run the field is still not completely saturated.

one can assume the field to be frozen into the flow. The result of such passive random advection is that
the magnetic field strength develops a log-normal probability distribution function (PDF)[246,247]. This
log-normal form for the PDF ofB can be understood from the induction equation without the diffusion
termḂi = Bjui,j where the time derivative is a lagrangian derivative. Since the RHS is linear inBi and
is multiplied by a constant random matrixui,j , the “gaussianity” of logB is expected from the central
limit theorem. This implies that the magnetic field becomes highly intermittent. To what extent this PDF
is altered by resistivity is examined in Ref.[248]. They find that even when resistivity is included, the
field is still intermittent and may be thought of as being concentrated into narrow strips.

This seems to be also borne out by a study of the behavior of higher orderk-space correlators[249]. By
examining their late time evolution, these authors find that the log-normality of the magnetic field PDF
persists in the dissipative regime. An interpretation of theirk-space scalings, suggests that the magnetic
structures in physical space could look like ‘ribbons’ with the field directed along these ribbons. Recent
numerical work[250], however, finds that even in the kinematic regime, the PDF of|B| changes character,
perhaps due to having a finite box in the simulation.

Motivated by the need to understand the eventual nonlinear saturation of the small scale dynamo, work
has been done by looking at the statistical properties of the Lorentz force, in particular the component
B · ∇B [245,247,251]. The idea is that in an incompressible flow, the effects of the Lorentz force will be
dominated by the magnetic curvature rather than the magnetic pressure gradient. (Note that although the
magnetic pressure forces may be much larger, they are largely balanced by thermal pressure gradients
in the incompressible limit.) In Ref.[247] it was shown that though both magnetic energy and mean-
square curvature of field lines grow exponentially, the field strength and the curvature are anti-correlated.
Thus, regions of strong field are nearly straight, while sharply curved fields are relatively weak. Such a
result was in fact found earlier in simulations of dynamo generation of magnetic fields due to convection
[203,252]. In these simulations the magnetic field was found to be intermittent with relatively stronger field
concentrated in structures which are relatively straight. Furthermore, the saturation of the dynamo was
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traced back to the component ofB · ∇B that is perpendicular to the direction of the field; its field-aligned
component (i.e. the tension force) was found to be unimportant for saturation[253].

The anti-correlation between the field strength and the curvature is interpreted by[245,247]as showing
that the field lies in folds, which are curved on the flow scale and with rapid reversals on the diffusive
scale. To what extent the small scale dynamo generated field is indeed structured in this way is still a
matter of debate (see below). Also, one should keep in mind that all the above semi-analytic results on
the structure of the field pertain to the kinematic regime. The recent simulations of Haugen et al.[254],
discussed in Section 5.4, show occasional field reversals, but such events occupy only a small part of
the volume.

5.3. Saturation of the small scale dynamo

How does the small scale dynamo saturate? The answer to this question will be crucial to understanding
both the effect of the small scale dynamo generated fields on the large scale dynamo, as well of the
relevance of these fields to explain say cluster fields. From the discussion of the kinematic regime, we
saw that the field would become intermittent and also concentrated into structures whose thickness, in at
least one dimension, is the resistive scale. However nonlinear effects may intervene to alter this kinematic
result. There have been a number of attempts to model the nonlinear saturation of the small scale dynamo,
none of which are entirely compelling. We discuss these below.

Some effects of the growing magnetic field can arise just due to plasma phenomena like ambipolar drift
in a partially ionized gas[240], anisotropic viscosity[255] or collisionless damping[256]. For example,
collisionless processes can become important on scales smaller than the ion mean free path and could
prevent the magnetic field from being concentrated below such a scale[256]. Ambipolar diffusion is
particularly relevant in the galactic context, where there could be a significant neutral component to the
interstellar medium. It changes the effective diffusivity by adding an ambipolar diffusion component
[236,240]; see Section 3.8.2 and Appendix A. The effective magnetic Reynolds number of the interstellar
medium, taking ambipolar diffusion into account, decreases from about 3× 1019 to RAD ∼ 106 [240],
as the field grows to microgauss strengths. This will then lead to an important increase of the effective
diffusive scale which, due to nonlinear ambipolar drift, will become of orderL/R

1/2
AD ∼ 10−3L. However,

sinceRAD?Rcrit, the small scale dynamo does not saturate due to this mechanism.

5.3.1. Saturation via artificial nonlinear drifts
The above discussion of ambipolar drift motivates a nonlinear model problem which may give hints

as to how the small scale dynamo can in principle saturate even in a fully ionized gas[257]. Suppose
one assumes that, as the magnetic field grows and the Lorentz force pushes on the fluid, the fluid in-
stantaneously responds by developing an additive ‘drift’ component to the velocity, where the drift is
proportional to the Lorentz force. The model velocity in the induction equation is thenu = v+ vN, i.e.
the sum of an externally prescribed stochastic fieldv, and a drift componentvN = aJ× B. For ambipolar
drift, a would be related to the properties of the partially ionized gas. Suppose we adopt insteada = �/�,
where� is some response (or correlation) time, treated as a phenomenological free parameter and� is
the fluid density. This gives a model problem, where the nonlinear effects of the Lorentz force are taken
into account as simple modification of the velocity field. (Note that in reality it is the acceleration and not
the velocity which is proportional to the Lorentz force. Nevertheless the above model provides a useful
toy problem for examining the nonlinear saturation effects, especially if the correlation time� is small
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compared to the Alfvén time.) Adding a velocity contribution proportional to the Lorentz force of course
also leads to a problem of closure, since in the equation forML, the nonlinear drift term brings in a fourth
order magnetic correlation. In Refs.[236,257]a Gaussian closure is assumed (cf. Appendix A).

The backreaction in the form of a nonlinear drift then simply replaces� by an effective time-dependent
�D = � + 2aML(0, t) in the�T(r) term of Eq. (5.6)[257] (cf. Appendix A). We thus obtain

�ML

�t
= 2

r4

�

�r

[
r4�T(r)

�ML

�r

]
+ GML + K , (5.13)

K(r, t) = 4aML(0, t)
1

r4

�

�r

(
r4�ML

�r

)
. (5.14)

Define an effective magnetic Reynolds number (just likeRAD), for fluid motions on scaleL, byRD(t)=
VL/�D(t). Then, as the energy density in the fluctuating field, sayEM(t) = 3

2ML(0, t), increases,RD
decreases. In the final saturated state, with�ML/�t = 0 (obtained, say, at timets), ML, and hence the
effective�D in Eq. (5.13) become independent of time. Solving for this stationary state then becomes
identical to solving for the marginal (stationary) mode of the kinematic problem, except thatRm is
replaced byRD(ts). The final saturated state is then the marginal eigenmode which one obtains whenEM
has grown (andRD decreased) such thatRD(ts) = VL/[� + 2aML(0, ts)] = Rcrit ∼ 30–60 (depending
on the nature of the velocity field). Also, for this saturated state we predict thatw(r) is peaked within a
regionr ≈ L(Rcrit)

−1/2 about the origin, changes sign acrossr ∼ L, and then rapidly decays for larger
r/L. Further, from the above constraint it follows thatML(0, ts)=vL/(2aRcrit), where we have assumed
�>2aML(0, ts). So, the magnetic energy at saturation isEM(ts) = 3

2ML(0, ts) = 3
2(�v

2/2) (L/v�)R−1
c .

Of course, since� is an unknown model parameter, one cannot unambiguously predictEM.If we were to
adopt� ∼ L/v, that is the eddy turnover time, thenEM at saturation is a small fraction,∼ R−1

crit (>1), of
the equipartition energy density.

Note that the mechanism for saturation is quite subtle. It is not that the fluid velocity has been decreased
by the Lorentz force, as can be explicitly seen by looking at the kinetic energy spectra obtained in direct
simulations incorporating such a nonlinear drift (see Section 8.10). Rather, the nonlinear drift due to the
Lorentz force introduces an extra ‘diffusion’between the field and fluid, effectively a growing ‘ambipolar’
diffusion (or growing impedance), which leads to the dynamo saturation. This model for saturation may
be quite simplistic, but gives a hint of one possible property of the saturated state: it suggests that the
final saturated state of the small scale dynamo could be (i) universal in that it does not depend on the
microscopic parameters far away from the resistive/viscous scales, and (ii) could have properties similar
to the marginal eigenmode of the corresponding kinematic small scale dynamo problem. It is of interest
to check whether such a situation is indeed obtained in simulations.

The nonlinear drift velocity assumed above is not incompressible. Indeed ambipolar drift velocity in a
partially ionized medium, need not have a vanishing divergence. It is the extra diffusion that causes the
dynamo to saturate. One may then wonder what happens if we retained incompressibility of the motions
induced by the Lorentz force? Is there still increased nonlinear diffusion? This has been examined in
Ref. [258] by adoptingu = v+ vN, with an incompressiblevN = a(B · ∇B − ∇p). Here,p includes the
magnetic pressure, but can be projected out in the usual way using∇ · vN = 0. Such a model of the effects
of nonlinearity is very similar to the quasilinear treatments mean field dynamo saturation (Appendix D).
For this form of nonlinearity, one gets an integro-differential equation for the evolution ofML, which in
general is not analytically tractable. One can however make analytic headway in two limitsr=|x−y|?l,
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andr>l, wherel(t) is the length scale over whichML(r, t) is peaked. For example, during the kinematic

evolution,ML(r, t) is strongly peaked within a radiusl = rd ∼ L/R
1/2
m , whereL is the correlation length

associated with the motions. One gets[258]

K(r, t) =
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Thus, the nonlinear backreaction termK in this model problem is like a nonlinear diffusion for small
r>l (yet partially compensated by a constant), transiting to nonlinear hyperdiffusion forr?l [258]. (The
hyperdiffusion coefficient�HD itself depends onML and its explicit form is given in Eq. (D.15).) In both
regimes the damping coefficients are proportional toEM(t). So, as the small scale field grows andEM
increases, the damping increases, leading to a saturated state. Note that both diffusion and hyperdiffusion
would lead to an increase in the effective resistivity, just as in the case of ambipolar drift. Evidently, this
property is obtained even if one demandsvN to be incompressible.

A somewhat different model of the nonlinear backreaction can be motivated, if the fluid is highly viscous
with Re>1>Rm [259,260]. In this casevN is assumed to satisfy the equation�∇2vN +J×B−∇p=0, and
∇ · vN = 0. Again the equation forML becomes an integro-differential equation. The extra nonlinear term
is again simplified nearr=0. One getsK(0, t)=−M2

L/3−∫ ∞
0 r(M ′

L(r))
2 [259]. This can be interpreted

as a nonlinear reduction of theG term governing the stretching property of the flow. Saturation of the
small scale dynamo will then result in a model where Lorentz forces reduce the random stretching, rather
than increased diffusion as in the models of Refs.[257,258].

5.3.2. Modifying the Kazantsev spectral equation
Another approach to the nonlinear small scale dynamo with a large Prandtl numberPm has been

explored in Refs.[245,261]. The idea is to modify the coefficients of the Kazantsev equation in a phe-
nomenologically motivated manner and then examine its consequences. The motivation arises from the
expectation that, as the magnetic field grows, it suppresses the dynamo action of eddies that have energies
smaller than the field. Only eddies that have energies larger than the field are able to still amplify the field.
Also, in the kinematic regime of a small scale dynamo with largePm, the magnetic spectrum is peaked at
largek = k� (the resistive wavenumber). With these features in mind, Schekochihin et al.[245] modify
the� in the Kazantsevk-space equation Eq. (5.11) by taking it to be proportional to the turnover rate of
the smallest ‘unsuppressed eddy’ and study the resulting evolution, assuming the fluid has a largePm.
Specifically, they adopt

�(t) = c1

[∫ ks(t)

0
k2E(k)dk

]1/2

, c2

∫ ∞

ks(t)

E(k)dk = EM(t) , (5.16)

whereE(k) is the kinetic energy spectrum,c1, c2 are constants, andks(t) is the wavenumber at which
the magnetic energy equals the kinetic energy of all the suppressed eddies.

In this model, after the magnetic energy has grown exponentially to the energy associated with the
viscous scale eddies, its growth slows down, and becomes linear in time withEM(t)= εt , whereε=v3/L

is the rate of energy transfer in Kolmogorov turbulence. This phase proceeds until the energy reaches that
of the outer scale eddies. However, the peak in the magnetic spectrum evolves to values ofk smaller than
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the initial k = k� only on the resistive time scale, which is very long for realistic astrophysical systems.
This implies that the saturated small scale fields could have energies comparable to the energy of the
motions, but the field will be still largely incoherent. More recently, another model has been explored in
which saturation is achieved as a result of the velocity statistics becoming anisotropic with respect to the
local direction of the growing field[261].

Clearly, more work needs to be done to understand the saturation of small scale dynamos. A general
feature however in all the above models is that the small scale dynamo saturates because of a ‘renormaliza-
tion’ of the coefficients governing its evolution: increased nonlinear diffusion[257], increased diffusion
plus additional hyperdiffusion[258], or reduced stretching[245,259–261]. The nature of the saturated
fields is still not very clear from these simplified models and one needs guidance also from simulations,
to which we now turn.

5.4. Simulations

Since the pioneering work of Meneguzzi et al.[262], small scale dynamo action has frequently been
seen in direct simulations of turbulence. In the early years of dynamo theory, the Kazantsev result was
not yet well known and it came somewhat as a surprise to many that kinetic helicity was not necessary for
dynamo action. Until then, much of the work on dynamos had focused on the� effect. Indeed, the helically
and non-helically forced simulations of Meneguzzi et al.[262] in cartesian geometry were rather seen as
being complementary to the global simulations of Gilman and Miller[263] in the same year. In the global
dynamo simulations the flow was driven by thermal convection in a spherical shell in the presence of
rotation, so there was helicity and therefore also an� effect. The fact that dynamos do not require kinetic
helicity was perhaps regarded as a curiosity of merely academic interest, because turbulence in stars and
galaxies is expected to be helical.

Only more recently the topic of nonhelical MHD turbulence has been followed up more systematically.
One reason is that in many turbulence simulations kinematic helicity is often found to be rather weak, even
if there is stratification and rotation that should produce helicity[203,253,264].Another reason is that with
the advent of large enough simulations nonhelical dynamo action has become a topic of practical reality
for any electrically conducting flow. Local and unstratified simulations of accretion disc turbulence also
have shown strong dynamo action[265]. The fact that even completely unstratified nonrotating convection
can display dynamo action has been used to speculate that much of the observed small scale magnetic
field seen at the solar surface might be the result of a local dynamo acting only in the surface layers of
the sun[266]. The other possible source of small scale magnetic fields in the sun could be the shredding
of large scale fields by the turbulence[267,268].

When the magnetic field is weak enough, but the magnetic Reynolds number larger than a certain critical
value, the magnetic energy grows exponentially. The growth rate of the magnetic field scales with the
inverse turnover time of the eddies at the dissipative cutoff wavenumberkd, i.e.� ∼ ukdkd ∼ k

2/3
d ∼ R

1/2
m ,

where we have usedkd ∼ R
3/4
m (and assumedRm = Re). Quantitatively, it has been found[254] that, in

the range 200<Rm <1000,

�/(urmskf ) ≈ 3 × 10−3R1/2
m ≈ 0.018× (Rm/Rcrit)

1/2 . (5.17)

The critical magnetic Reynolds number for dynamo action is around 35 whenPm = 1; see Ref.[254].
This is around 30 times larger than the critical value for helical dynamos which is only around 1.2[4].
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It is also larger by about a factor 3 compared toRcrit obtained in the Kazantsev model, which assumes a
delta-correlated velocity field, showing that realistic flows are less efficient compared to the Kazantsev
model (see also below).3 At early times the magnetic energy spectrum follows thek3/2 Kazantsev law,
but then it reaches saturation. The kinetic energy spectrum is decreased somewhat, such that the magnetic
energy exceeds the kinetic energy at wavenumbersk/k1>5; seeFig. 5.1.

Kazantsev’s theory is of course not strictly applicable, because it assumes a delta correlated flow.
Also, thek3/2 spectrum in the kinematic regime is obtained only for scales smaller than that of the flow,
whereas in the simulations the velocity is not concentrated solely at the largest scale. This may be the
reason why, according to Kazantsev’s theory, the growth rate is always overestimated: in the simulations
(Run D2 of Ref.[254] with Rm = 600) the actual growth rate of the magnetic field is only∼ 0.07urmskf .
Nevertheless, the estimate for the Kazantsev cutoff wavenumberk�, which is approximately where the
kinematic spectrum peaks, is still fairly accurate (see Section 5.2.2).

Meanwhile, simulations of nonhelical dynamos have been carried out at a resolution of 10243 mesh-
points[270]. Such simulations are nowadays done on large parallel machines using the message passing
interface (MPI) for the communication between processors. Often, spectral methods are used to calculate
derivatives and to solve a Poisson-type equation for the pressure.Alternatively, high order finite difference
schemes can be used, which are more easily parallelized, because only data of a small number of neigh-
boring meshpoints need to be communicated to other processors. In such cases it is advantageous to solve
the compressible equations, whose solutions approximate the incompressible ones when the rms velocity
is small compared with the sound speed. One such code, that is documented and publicly available, is
the PENCIL CODE [271]. Many of the simulations presented in this review have been done using this code.
Details regarding the numerical method can also be found in Ref.[272]. Quantitative comparisons with
spectral codes are presented in Ref.[273].

In the simulations of Haugen et al.[270] the velocity field is forced randomly at wavenumbers between
1 and 2, wherek= 1 is the smallest wavenumber in a box of size(2	)3. These simulations begin to show
indications of a small inertial range beyond the wavenumberk ≈ 8; seeFig. 5.3. The magnetic energy in
the saturated state is also peaked at about this wavenumber. Note that the semi-analytic closure models
which lead to a renormalization of the diffusion coefficient[236,257], suggest a peak of the saturated
spectrum at a wavenumberkp ∼ kfR

1/2
crit . Forkf ≈ 1.5 andRcrit ∼ 35, this predictskp ∼ 8, which indeed

seems to match the value obtained from the simulation.
The fact that the magnetic energy spectrum peaks atk ≈ 8 (or less) implies that in the present

simulations there is not much dynamical range available before dissipation sets in. Furthermore, just
before the dissipative subrange, hydrodynamic turbulence exhibits a ‘bottleneck effect’, i.e. a shallower
spectrum (or excess power) at largek. It has been argued[274] that this is because of nonlocal wavevector
interactions corresponding to elongated triangles with one short wavevector (corresponding to a long
scale in the inertial range) and two long ones (corresponding to short scales in the dissipative subrange).
These nonlocal interactions, which couple the inertial range with the resistive subrange, limit the amount
of energy that the inertial range modes can dispose of.

3 We recall that in this section and throughout most of this review we have definedRm with respect to the wavenumber of
the energy-carrying eddies. If, instead,Rm is defined with respect to thescale
f =2	/kf , as was done in Table 1 of Ref.[4], one
has to divide his values (between 7 and 9) by 2	, giving therefore values between 1.1 and 1.4. As another example we consider
the Ponomarenko or screw dynamo with helical motion in an infinite cylinder of radiusR. Here, the magnetic Reynolds number
is usually defined with respect toRand the critical value is around 17.7[269].



A. Brandenburg, K. Subramanian / Physics Reports 417 (2005) 1–209 57

Fig. 5.3. Magnetic, kinetic and total energy spectra. 10243 meshpoints. The Reynolds number isurms/(�kf ) ≈ 960 (from
Ref. [270]).

While the bottleneck effect is not very pronounced in laboratory wind tunnel turbulence[275,276], it
has now become a very marked effect in fully three-dimensional spectra available from high resolution
simulations[277–279]. The reason for the discrepancy has been identified as being a mathematical
consequence of the transformation between three-dimensional and one-dimensional spectra[155]. This
may also explain the shallowerk−3/2 (instead ofk−5/3) spectra seen inFig. 5.3for a narrow wavenumber
interval. Another possibility is that the true inertial range has not yet been seen, and that asymptotic
spectral equipartition may occur at still larger wavenumbers and larger Reynolds numbers[280].

In Fig. 5.4we show a visualization of the magnetic field vectors at those points where the magnetic
field exceeds a certain field strength. The structures displayed represent a broad range of sizes even within
one and the same structure: the thickness of the structures is often comparable to the resistive scale, their
width is a bit larger (probably within the inertial range) and their length is comparable to the box size
(subinertial range). Although large scales are involved in this simulations, we must distinguish them from
the type of large scale magnetic fields seen in simulations with kinetic helicity that will be discussed in
more detail in Section 8 and that are invoked to explain the solar cycle. Further, although the thickness
of these structures is comparable to the resistive scale, we should keep in mind that these represent the
rare structures with|B|>4Brms, and are not volume filling.

At large magnetic Prandtl numbers the field shows folded structures that were discussed in detail by
Schekochihin et al.[281]. An example of an arbitrarily chosen cross-section of a simulation withPm =50
is shown inFig. 5.5, together with enlargements of different parts of the domain. The sectionA shows
a region where the field is clearly folded; with the fairly straight field lines displaying rapid reversals
transverse to its general direction. On the other hand there are also many other regions likeB andC in the
box, where the field is equally strong but is not in resistive scale folds. This illustrates that whereas there
are folded structures, they need not be volume filling (Fig. 5.6).

Folded structures are less prominent whenPm = 1. A comparison of the typical field structure for
Pm =1 and 50 is shown inFig. 5.7, where we show color/gray scale representations ofBz at an arbitrarily
chosen moment during the saturated phase. The magnetic Reynolds number isurms/(�kf ) ≈ 600 and
4000 in the left and right hand panels, respectively, and the resolution is 5123 meshpoints in both cases.

For comparison with the analytic theory we plot inFig. 5.8the correlation function (5.9) of the magnetic
field at saturation (and similarly for the velocity) for runs withPm = 1 [254]. Similar autocorrelation
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Fig. 5.4. Magnetic field vectors shown at those locations where|B|>4Brms. Note the long but thin arcade-like structures
extending over almost the full domain. The structures are sheet-like with a thickness comparable to the resistive scale (from
Ref. [254]).

Fig. 5.5. Snapshot of the magnetic field forPm = 50, shown in a cross-section through the middle of the computational domain
at a time when the field is in a saturated state. The data correspond to the spectra shown inFig. 5.2. The field component
perpendicular to the plane of the figure is shown color coded (or in shades of gray) with black corresponding to field pointing
into the plane, and white to field pointing out of the plane. The field in the plane of the figure is shown with vectors whose length
is proportional to the field strength. The right hand side shows an enlargement of the sub-domainA marked on the left hand side.
Note the folded structures in sub-domainA.
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Fig. 5.6. Magnetic field in sub-domainsB andC that were indicated on the left hand side ofFig. 5.5. Note the lack of folded
structures.

Pm=1

Bz/Brms

3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0

Pm=50

Bz/Brms

3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0

Fig. 5.7. Comparison ofBz (in shades of gray shown on the periphery of the box) forPm = 1 (left) andPm = 50 (right). The
data shown here correspond to the spectra shown in Figs.5.1and5.2, respectively. Note that the magnetic field forPm = 50 is
more intermittent in space and less space filling than forPm = 1.

functions have also been seen in simulations of convective dynamos[203]. It turns out that the velocity
correlation length is∼ 3 (50% of the box size) while the magnetic field correlation length is∼ 0.5 (8%
of the box size); seeFig. 5.8. (We recall that the box size is 2	.) Clearly, the magnetic correlation length
is much shorter than the velocity correlation length, but it is practically independent of Re (=Rm) and
certainly much longer than the resistive scale,∼ 2	/kd ≈ 0.04 (0.7% if the box size). The fact thatw(r)
in the saturated state is independent of the microscopicRm agrees with the corresponding prediction of
the closure model involving artificial nonlinear drifts[236,257], discussed in Section 5.3.1.

In contrast to large scale dynamos with helicity, which are now generally believed to have a resistively
limited saturation phase in closed or periodic domains, the situation is less clear for nonhelical small
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Fig. 5.8. Autocorrelation functions of magnetic field and velocity. Note that the autocorrelation functions are nearly indepen-
dent of resolution and Reynolds number. The velocity correlation length is∼3 while the magnetic correlation length is∼0.5
(from Ref.[254]).

Fig. 5.9. Saturation behavior of the spectral magnetic energy at wavenumbersk = 1 (solid line) andk = 16 (dashed line). The
average forcing wavenumber iskf = 1.5 and the resolution is 5123 meshpoints. Note the slow saturation behavior fork = 1
(from Ref.[254]).

scale dynamos; see Section 5.3.2 and Refs.[245,281]. The simulation results shown inFig. 5.9seem
compatible with a slow saturation behavior for some intermediate time span (80<urmskf t <200), but
not at later times (urmskf t >200).

As the small scale dynamo saturates, various magnetic length scales in the simulation increase quite
sharply–some of them almost by a factor of two. For example, in convective dynamo simulations of a
layer of depthd the magnetic Taylor microscale,

√
5〈B2〉/〈J2〉, increased from 0.04d to 0.07d during

saturation (see Fig. 4 of Ref.[203]). This increase of the characteristic length scale is in qualitative
agreement with the analytic theory of the nonlinear saturation of the small scale dynamo (Section 5.3).
In particular, during the kinematic stage these length scales remain unchanged. This can be seen from
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Fig. 5.10. Evolution of characteristic wavenumbers. Note that the characteristic parallel wavenumber of the field,k‖, becomes
comparable with the scale of the box, while the so-called rms wavenumber,krms, drops by almost a factor of two as saturation sets
in. Here,k2‖ = 〈|B · ∇B|2〉/〈B4〉 andk2

rms= 〈|∇B|2〉/〈B2〉, where angular brackets denote volume averages. (The wavenumbers
kB×J andkB·J are defined similarly tok‖, but withB× J andB · J, respectively, and follow a trend similar to that ofkrms.) The
rms wavenumber of the flow,k�, is proportional to the inverse Taylor microscale and decreases only slightly during saturation.
Courtesy Schekochihin[281].

Fig. 5.10, where we show the evolution of various wavenumbers in a simulation of Schekochihin et al.
[281]. The approximate constancy of the characteristic wavenumbers during the kinematic stage illustrates
that the simple-minded picture of the evolution of single structures (Section 5.1) is different from the
collective effect for an ensemble of many structures that are constantly newly generated and disappearing.
We also note that in the saturated state the characteristic wavenumbers are approximately unchanged,
suggesting that in the nonlinear regime there is no slow saturation phase (unlike the helical case that will
be discussed later). During saturation, the drop of various characteristic wavenumbers is comparable to
the increase of the Taylor microscale seen in the convective dynamo simulations[203].

5.5. Comments on the Batchelor mechanism andPm dependence

In an early attempt to understand the possibility of small scale dynamo action, Batchelor[231]appealed
to the formal analogy between the induction equation and the vorticity equation,

DW

Dt
=W · ∇U+ �∇2W , (5.18)

DB

Dt
= B · ∇U+ �∇2B . (5.19)
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These equations imply the following evolution equations for enstrophy and magnetic energy:

1
2

d〈W2〉
dt

= WiWjsij − �〈(∇ ×W)2〉 , (5.20)

1
2

d〈B2〉
dt

= BiBj sij − �〈(∇ × B)2〉 , (5.21)

wheresij = 1
2(ui,j + uj,i) is the rate of strain tensor. Assuming that the rate of enstrophy dissipation,

�〈(∇ ×W)2〉, is approximately balanced by the rate of enstrophy production,WiWjsij , and that this rate
is similar to the rate of magnetic energy production, Batchelor argued that magnetic energy would grow
in time provided�< �, i.e.

Pm ≡ �/�>1 . (5.22)

By now there have been several numerical investigations of small scale dynamos that operate in a regime
where the magnetic Prandtl number is less than unity. However, it is still not clear whether there exists
a critical value ofPm below which no dynamo action is possible[282], whether the critical magnetic
Reynolds number becomes independent ofPm for small enough values[244,283], or whether, asPm
decreases, there continues to be a rise of the critical magnetic Reynolds number[254].

Comparing with Batchelor’s argument, the main reason why his argument may not apply is that,
again, theW andB fields are in general not identical, and they do in general show quite different statistics
[201,203]. (AlsoWobeys a nonlinear equation, whileBobeys a linear equation for a givenU.) Establishing
the asymptotic dependence ofRcrit on Pm is important because, even though the computing power
will increase, it will still not be possible to simulate realistic values ofPm in the foreseeable future.
Schekochihin et al.[273] have compared the results from two independent codes and show that there is
as yet no evidence for an asymptotic independence ofRcrit onPm; seeFig. 5.11.

We note thatFig. 5.11compares not only the results of two different codes, but at the same time the
results of an incompressible calculation with one of the weakly compressible equations (Mach number
about 0.1). No significant difference is seen between the two simulations. However, when the flow becomes
transonic (Mach number about 1), the critical magnetic Reynolds number increases by about a factor of
2; see Ref.[284] for results withPm = 1 and 5.

Finally, we mention one property where theW andB fields do seem to show some similarity. For a
k−5/3 spectrum of kinetic energy the enstrophy spectrum is proportional tok1/3, so one may expect a
similar spectrum for the magnetic energy in the wavenumber range where feedback from the Lorentz
force can be neglected. Such results have indeed been reported in the context of convection[203] and
forced turbulence[254] during the kinematic stage. For forced turbulence, ak1/3 spectrum has only been
seen in the rangek1<k<kp, wherekp ≈ kfR

1/2
crit is the wavenumber where the magnetic energy spectrum

peaks; seeFig. 5.3and Section 5.4. We should emphasize, however, that it is not clear that this result is
really a consequence of the (imperfect) analogy betweenW andB.

5.6. Small and large scale dynamos: a unified treatment

We have so far discussed the case of small scale dynamos where the generated field has correlation
lengths of order or smaller than the forcing scale of the flow. In the next section and thereafter we will
discuss large scale or mean field dynamos. The large and small scale dynamo problems are usually treated
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Fig. 5.11. Dependence ofRcrit on Re. “JLM” refers to simulations done with the incompressible spectral code written by
Maron: runs with Laplacian viscosity, 4th-, 6th-, and 8th-order hyperviscosity (resolutions 643–2563). In this set of simulations,
hyperviscous runs were done at the same values of� as the Laplacian runs, so the difference between the results for these runs is
nearly imperceptible. “PENCIL” refers to weakly compressible simulations done with the PENCIL CODE: runs with Laplacian
viscosity, 6th-order hyperviscosity, and Smagorinsky large-eddy viscosity (resolutions 643–5123). Courtesy Schekochihin[273].

separately. However this separation is often artificial; there is no abrupt transition from the field correlated
on scales smaller thanL and that correlated on larger scales. If we consider both large and small scale
fields to be random fields, it turns out that the equations for the magnetic correlation functions, which
involve nowbothlongitudinal and helical parts, are already sufficiently general to incorporate both small
and large scale dynamos. They provide us with a paradigm to study the dynamics in a unified fashion,
which could be particularly useful for studying the inverse cascade of magnetic fields to scales larger
thanL. We elaborate below.

We add a helical piece to the two point correlation of the velocity field for the Kazantsev–Kraichnan
flow, so we have

Tij (r) =
(
�ij − rirj

r2

)
TN(r) + rirj

r2 TL(r) + εijkrk F (r) , (5.23)

whereF(r) represents the helical part of the velocity correlations. Atr = 0, we have

−2F(0) = −1
3

∫ t

0
〈v(t) · ∇ × v(t ′)〉 dt ′ , (5.24)

indicating thatF(r) is related to the kinetic helicity of the flow.
Consider a system of sizeS?L, for which the mean field averaged over any scale is zero. Of course,

the concept of a large scale field still makes sense, as the correlations between field components separated
at scalesr?L, can in principle be nonzero.
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Since the flow can be helical, we need to allow the magnetic field to also have helical correlations. So,
the equal-time, two point correlation of the magnetic field,Mij (r, t), is now given by

Mij =
(
�ij − rirj

r2

)
MN + rirj

r2 ML + εijkrk C , (5.25)

whereC(r, t) represents the contribution from current helicity to the two-point correlation.
The Kazantsev equation can now be generalized to describe the evolution of bothML andC [236,257,

285,286](see Appendix A). We get

�ML

�t
= 2

r4

�

�r

[
r4�T

�ML

�r

]
+ GML + 4�C , (5.26)

�H

�t
= −2�TC + �ML , C = −

(
H ′′ + 4H ′

r

)
, (5.27)

whereML =ML(r, t) andC =C(r, t), while � = �(r) and�T = �T(r), and we have defined the magnetic
helicity correlation functionH(r, t). Note thatH(0, t) = 1

6A · B, whereasC(0, t) = 1
6J · B. Also,

�(r) = −2[F(0) − F(r)] , (5.28)

and so represents the effect of the helicity in the velocity field on the magnetic field. [We will see later in
Section 8.10 that�(r → ∞) is what is traditionally called the� effect]. This new term has some surprising
consequences.

Suppose�0 = −2F(0) �= 0. Then one can see from Eqs. (5.26) and (5.27), that new “regenerating”
terms arise atr?L, or for scales much larger than the correlation scales of the flow, due to the� effect.
These are in the forṁML = · · · + 4�0C andḢ = · · · + �0M, which coupleML andC and lead to the
growth of large scale correlations. There is also decay of the correlations forr?L due to diffusion with
an effective diffusion coefficient,�T0 = � + TL(0). From dimensional analysis, the effective growth rate
is �R ∼ �0/R − �T0/R

2 for correlations on scale∼ R. This is exactly as in the large scale�2 dynamo
to be discussed in the next section. This also picks out a special scaleR0 ∼ �T0/�0 for a stationary state
(see below). Further, as the small scale dynamo, is simultaneously leading to a growth ofML at r <L,
the growth of large scale correlations can be seeded by the tail of the small scale dynamo eigenfunction
at r >L. Indeed, as advertised, both the small and large scale dynamos operate simultaneously when
�0 �= 0, and can be studied simply by solving for a single functionML(r, t).

The coupled time evolution ofH andML for a nonzero�0 requires numerical solution, which we
discuss later in Section 8.10. But interesting analytical insight into the system can be obtained for the
marginal, quasi-stationary mode, witḣML ≈ 0, Ḣ ≈ 0. Note that for� �= 0, we will find that the
above system of equations always evolves the correlation function at the resistive time scale. But for
time scales much shorter than this, one can examine quasi-stationary states. ForḢ ≈ 0, we get from
Eq. (5.27)C ≈ [�(r)/2�T(r)]M. Substituting this into Eq. (5.26) and defining once again�=r2√�TML,
we get

−�T
d2�

dr2 + �

[
U0 − �2(r)

�T(r)

]
= 0 , (5.29)

whereU0 is the potential defined earlier in Eq. (5.8). We see that the problem of determining the magnetic
field correlations for the quasi-stationary mode once again becomes the problem of determining the
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Fig. 5.12. Schematic illustration of the potentialU(r) for the marginal mode in helical turbulence. A nonzero�0 allows the
tunneling of the zero-energy state to produce large scale correlations.

zero-energy eigenstate in a modified potential,U = U0 − �2/�T. (Note that theU in this subsection is
not to be confused with velocity in other sections.) The addition toU0, due to the helical correlations, is
always negative definite. Therefore, helical correlations tend to make bound states easier to obtain. When
F(0) = 0, and there is no net� effect, the addition toU0 vanishes atr?L, andU → 2�T /r

2 at larger,
as before. The critical magnetic Reynolds number, for the stationary state, will however be smaller than
whenF(r) ≡ 0, because of the negative definite addition toU0 (see also Ref.[287]).

When�0 = −2F(0) �= 0, a remarkable change occurs in the potential. Atr?L, where the turbulence
velocity correlations vanish, we haveU(r) = 2�T0/r

2 − �2
0/�T0. So the potentialU tends to a negative

definite constant value of−�2
0/�T0 at larger (and the effective mass changes, 1/2�T → 1/2�T0, which

is independent ofr.) So there are strictly no bound states, with zero energy/growth rate, for which the
correlations vanish at infinity. We have schematically illustrated the resulting potentialU in Fig. 5.12,
which is a modification ofFig. 8.4of Zeldovich et al.[222]. In fact, for a nonzero�0, U corresponds
to a potential which allowstunneling(of the bound state) in the corresponding quantum mechanical
problem. It implies that the correlations are necessarily nonzero at larger >L. The analytical solution
to (5.29) at larger?L, is easily obtained. We have forr?L, ML(r)= M̄L(r) ∝ r−3/2J±3/2(�r), where
� = �0/�T0 = R−1

0 . This corresponds to

w(r) = w̄(r) = �r−1[C1 sin�r + C2 cos�r]; r?L , (5.30)

whereC1, C2 are arbitrary constants. Clearly for a nonzero�0, the correlations in the steady state at large
r, are like ‘free-particle’ states, extending to infinity! In fact this correlation function is also the one which
one obtains if we demand the random field to be force free with∇×B=�B. We see therefore that having
helicity in the flow opens up the possibility of generating large scale fields of scales much larger than that
of the turbulent flow. This is the feature we will elaborate on more in the following sections.
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5.7. Comments on anisotropy and nonlocality in MHD turbulence

The usual approach to MHD turbulence is to proceed analogously to hydrodynamic turbulence. Note
that in hydrodynamic turbulence, one usually makes the assumption that the velocity field is statistically
isotropic and homogeneous, and that the nonlinear interactions in wavenumber space are local. There
is also a unique time scale associated with the nonlinear interactions, the eddy turnover time,�k =
(kvk)

−1, wherevk = [2kE(k)]1/2 is the turbulent velocity at wavenumberk andE(k) is the 1-D kinetic
energy spectrum. Demanding that in the ‘inertial range’ the energy transfer flux,ε = v2

k/�k, is a constant,
independent of scale, we havevk ∝ k−1/3 and therefore the Kolmogorov spectrumE(k) = Cε2/3k−5/3

for hydrodynamic turbulence.
There is a crucial difference in the presence of magnetic fields. A uniform velocity field simply advects

the eddies and leaves the physical system unchanged (Galilean invariance). But a uniform (or large
scale) magnetic fieldB, cannot be transformed away. Its presence supports propagation of hydromagnetic
waves (Alfvén waves), and introduces a nonlocal coupling between small and large scales. Since these
waves propagate alongB at the Alfvén speedVA = B/

√
4	�, they introduce one more time scale, the

Alfvén crossing time�A(k) = (kV A)
−1, which can play a role in determining the turbulence properties.

Furthermore,B introduces a locally preferred direction, and the turbulence can in principle be anisotropic.
The work of Iroshnikov[288] and Kraichnan[289] (IK) emphasized the importance of the Alfvén

crossing time�A(k). Since the influential paper by Goldreich and Sridhar[26] it has become clear that
anisotropy will also play a crucial role in MHD turbulence. We briefly discuss these ideas, before draw-
ing comparisons with the MHD turbulence resulting from dynamo action. We focus on incompressible
motions, split the magnetic field asB= B+ b, and write the MHD equations in a more symmetric form,
in terms of Elsasser fieldsz± = u± b/

√
4	�. We have, definingVA = B/

√
4	� as a vector,

�z±
�t

∓VA · ∇z± = −z∓ · ∇z± − ∇� + �∇2z± . (5.31)

Here� = p/� + B2/8	� acts to enforce∇ · z± = 0 and we have assumed for simplicity� = �.
Assuming eitherz+ = 0 or z− = 0 gives exact solutions of the ideal MHD equations. The solution

with z− = 0 represents the Elsasser fieldz+ propagating nondispersively in the direction of the mean
field. A wave packet withz+ = 0, representsz− propagating in the direction opposite to the mean field
direction. Nonlinear interactions occur only if there is an overlap of both type of fluctuations,z±. This
led Kraichnan[289] to suggest that energy transfer in MHD turbulence results from “collisions” between
wave packets moving in opposite directions along the mean field. One can show from Eq. (5.31) that such
collisions conserve the individual energiesz2± of the oppositely traveling wave packets when� = 0. Of
course the total energy is also conserved under ideal MHD. These two conservation laws are equivalent
to the conservation of the total energy and the cross helicityHcross= 1

2

∫
u · bd3x = 1

8

∫
(z2+ − z2−)d3x.

Suppose one assumes that equal amounts ofz+ andz− energies are present, and nonlinear interactions
are due to oppositely directed wave packets. Such a collision occurs over the Alfvén crossing time of
1/(k‖VA), where 1/k‖ is the extent of the wave packet alongB. The magnitude of the nonlinear interaction
term |z∓ · ∇z±| ∼ k⊥z2

k⊥ , wherezk⊥ is the magnitude of either Elsasser variable at wavenumberk⊥,
and 1/k⊥ is the extent of the wave packet transverse toB. (Here we have implicitly assumed that the
component ofz∓ perpendicular toB dominates over the parallel one, or that shear Alfvén waves dominate
pseudo Alfvén waves[26,290]). Due to the nonlinear term, the collision will then induce a fractional
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change� in z±, given by

� ∼ �zk⊥
zk⊥

∼ k⊥zk⊥
k‖VA

. (5.32)

When�>1 we are in the regime of weak turbulence. In this case, each collision results in a small random
change in the wave packet. Since these changes add randomly, of orderN ∼ 1/�2?1 collisions are
required for an order unity fractional change. This implies a time scale for the cascade of energy to a
smaller scale of�cas∼ �−2(1/k‖VA) ∼ (k‖VA)/(k⊥zk⊥)

2.
Let us assume, naively following IK, that turbulence is isotropic, and takezk⊥ = zk, with wave packets

having the same parallel and perpendicular scales, i.e. we putk‖ = k⊥ = k in the above�cas. We demand
that, far away from the injection or dissipative scales, the energy transfer flux,ε = z2

k/�cas= z4
kk/VA,

is a constant, independent of scale, we getzk ∼ (εVA/k)
1/4. Noting that the 1-D energy spectrum

E(k) ∼ z2
k/k, we get the IK spectrumE(k) ∼ (εVA)

1/2k−3/2. At best, the assumption of isotropy may
be of use if the large scale field is itself randomly distributed in direction.

Also implicit in the above analysis is the importance of interactions which couple 3 waves. For weak
turbulence these contribute to energy transfer only if the 3 waves satisfy the closure relations:�1+�2=�3
andk1 + k2 = k3. Since�=VA |k‖|, and the 3-mode coupling vanishes unless waves 1 and 2 propagate in
opposite directions, the closure relations imply that eitherk1‖ or k2‖ must vanish, and the other parallel
component equalsk3‖. So, for weak turbulence, 3-wave interaction do not cascade energy alongk‖.

Now suppose we do not make the assumption of isotropy, and keepk‖ constant in working out the
energy fluxε = z2

k⊥/�cas. Then, settingε to a constant in the inertial range giveszk⊥ ∼ (εk‖VA/k
2⊥)

1/4.

Defining the 1-D anisotropic spectrum byk⊥E(k⊥) = z2
k⊥ , we get

E(k⊥) = z2
k⊥/k⊥ ∼ (εk‖VA)

1/2

k2⊥
. (5.33)

From the expression forzk⊥ we also see that the strength of nonlinear interactions is� ∝ k
1/2
⊥ . So, for

small enough scales� becomes of order unity and turbulence becomes strong.
Indeed strong MHD turbulence is the relevant one for most astrophysical applications, not only because

of the above, but also because the stirring velocities and fields are comparable toB. Recall that in weak
Alfvénic turbulence, where�>1, the Alfvén time�A = (k‖VA)

−1 was small compared to the nonlinear
interaction time�nl = (k⊥zk⊥)

−1. In fact we can write�= �A/�nl. GS argued that strong MHD turbulence
exhibits what they refer to as acritical balance, whereby these 2 time scales become comparable, and
� ∼ 1. We already saw that if� were small then at small enough scales it grows to order unity. On the other
hand, were�?1, for example becausek‖ <kc = k⊥zk⊥/VA, then as the wave packets go through each
other over a distance 1/kc <1/k‖, strong distortions are already introduced, thereby creating structures
with k‖ =kc (see the pictorial illustration in Ref.[291]). As a result,� is driven to unity. It seems plausible
therefore that something like critical balance is a stable fixed point of the system.

Critical balance implies that the cascade time is comparable to the other time scales,�cas∼ �A ∼ �nl.
Assuming again a scale independent energy fluxε = z2

k⊥/�cas= z3
k⊥k⊥, we get the GS relations

zk⊥ ∼ VA(k⊥L)1/3, k‖ ∼ k
2/3
⊥ L−1/3 . (5.34)
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Here we have used the estimateε=V 3
A/L, assuming that the perturbed velocities are of orderVA, and the

scale of stirring isL. These scalings imply that the parallel and perpendicular sizes of eddies are correlated,
with the eddies becoming highly elongated at small scales, even if they were isotropic at the forcing scale.
We can define the three-dimensional spectrumĒ(k⊥, k‖) using

∫
Ē d3k=∑

z2
k⊥ . Sincek‖ ∼ k

2/3
⊥ L−1/3,

this spectrum can be written as̄E(k⊥, k‖) = Af (k‖L1/3/k
2/3
⊥ ), wheref (x) is a positive, symmetric

function ofx, which is of order 1 forx <1 and is negligible for|x|?1. We can fix the dependencies in

the normalization constantA by changing variables in the integral over dk‖ tox=k‖L1/3/k
2/3
⊥ , and using

the definition ofĒ. We get the anisotropic Kolmogorov spectrum[26]

Ē(k⊥, k‖) ∼ V 2
A

k
10/3
⊥ L1/3

f

(
k‖L1/3

k
2/3
⊥

)
. (5.35)

GS also derived a kinetic equation where this spectrum arises as a stationary solution. For some succinct
reviews see also[291,292].

We note that in all the above discussions, the large scale field is assumed to be given or imposed. In
this case, we see that it will introduce anisotropy at all scales, implying spectral nonlocality to all smaller
scales. The full extent of the possible departures from isotropy and locality in wavenumber space, when
the large scale field is generated during dynamo action, is yet to be clarified. It remains therefore to be
seen whether in isotropically forced turbulence (without imposed field and just the dynamo-generated
small scale field) the field averaged over any local sub-domain really introduces nonlocality on all smaller
scales within this domain. If so, one would expect the spectrum of the hydromagnetic turbulence with
imposed field to be similar to the deeper parts of the spectrum in hydromagnetic turbulence without
imposed field. This does not seem to be the case, because in the latter case the spectral magnetic energy
is found to be insuper-equipartition(seeFig. 5.3). This behavior is not seen in simulations with imposed
field where the spectrum of magnetic energy is rather in sub-equipartition if the field is strong.

The effect of anisotropy due to the mean field on the turbulent transport coefficients has been considered
in a number of papers, but no explicit connection with the Goldreich–Sridhar theory has yet been made.
The anisotropic cascade is potentially quite important for a proper understanding of turbulent magnetic
diffusion. Further in discussing MHD turbulence, most of the semi-analytical works set magnetic helicity
to zero. Inclusion of helicity is important to make connection with the large scale dynamo generated
MHD turbulence.

6. Large scale turbulent dynamos

As the simulation results of Section 5.4 and the unified treatment in Section 5.6 have shown, the
distinction between small and large scale dynamos is somewhat artificial. The so-called small scale
dynamo may well generate magnetic field structures extending all the way across the computational
domain; seeFig. 5.4. On the other hand, the overall orientation of these structures is still random. This
is in contrast to the spatio-temporal coherence displayed by the sun’s magnetic field, where the overall
orientation of flux tubes at a certain location in space and time follows a regular rule and is not random.
Dynamo mechanisms that explain this will be referred to as large scale dynamos. Here the geometry of
the domain and the presence of boundaries and shear are important.
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In this section we discuss the basic theory of large scale dynamos in terms of the alpha effect and
discuss simple models. A discussion of large scale dynamos in terms of the inverse cascade is presented
in the next section.

6.1. Phenomenological considerations

Important insights into the operation of the solar dynamo have come from close inspection of magnetic
fields on the solar surface[210]. One important ingredient is differential rotation. At the equator the sun
is rotating about 30% faster than at the poles. This means that any poloidal field will be sheared out and
toroidal field aligned with the direction of the shear will be generated. Mathematically, this is described
by the stretching term in the induction equation; see Eq. (3.19), i.e.

dBtor

dt
= Bpol · ∇Utor + · · · . (6.1)

This term describes the generation of magnetic fieldBtor in the direction of the flowUtor from a cross-
stream poloidal magnetic fieldBpol. To an order of magnitude, the amount of toroidal field generation
from a 100 G poloidal field in a time interval�t = 108 s= 3 yr is

�Btor = Bpol ����t ≈ 100 G× 10−6 × 108 = 104 G , (6.2)

where we have used�� =3×10−6 s−1 for the solar angular velocity, and���/�� =0.3 for the relative
latitudinal differential rotation. So, a 10 kG toroidal field can be regenerated completely from a 100 G
poloidal field in about 3 years. However, in the bulk and the upper parts of the solar convection zone the
poloidal fields are weaker (3–10 G), which would yield toroidal fields on the order of 300–1000 G. This
would be far too weak a field if it was to rise coherently all the way from the bottom of the convection
zone, which is still the standard picture. However, if the field of bipolar regions is produced locally in
the upper parts of the convection zone, as recently supposed in Ref.[55], a 300 G field might well be
sufficient. The 2 kG fields in sunspots could then be the result of local compression by an ambient flow.

On the other hand, according to the standard picture (see Section 2.1.1) the 100 kG field, necessary
to give the right tilt of emerging flux tubes, can perhaps be explained as the result of stretching of more
localized∼ 1 kG field patches that stay coherent over a time span of about 3 yr.

In the bulk of the solar convection zone the turnover time,�turnover=urms/Hp (whereHp is the pressure
scale height) is only about 10 days.4 In order that a toroidal field can be generated, a mean poloidal field
needs to be maintained and, in the case of the sun and other stars with cyclic field reversals, the poloidal
field itself needs to change direction every 11 years.

Magnetic flux frequently emerges at the solar surface as bipolar regions. The magnetic field in sunspots
is also often of bipolar nature. It was long recognized that such bipolar regions are tilted. This is now
generally referred to as Joy’s law[37,293].The sense of average tilt is clockwise in the northern hemisphere
and counter-clockwise in the southern. This tilt is consistent with the interpretation that a toroidal flux
tube rises from deeper layers of the sun to upper layers where the density is less, so the tube evolves in an

4 The thermal flux of the sun is 4× 1010erg cm−2 s−1 A great portion of this energy flux is caused by convection and,
according to mixing length theory,Fconv ≈ �u3

rms. Roughly,� = 0.1 g cm−3 in the lower part of the convection zone, so
u ≈ (4 × 1010/0.1)1/2 = 70 m s−1. The pressure scale height isRT/(�g) = 50 Mm, so�turnover= 10 days.
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Fig. 6.1. Solar magnetogram showing bipolar regions, their opposite orientation north and south of the equator, and the clockwise
tilt in the northern hemisphere and the counter-clockwise tilt in the southern hemisphere. Note that the field orientation has reversed
orientation at the next cycle (here after 10 years). Courtesy of the National Solar Observatory.

expanding flow field which, due to the Coriolis force, attains a clockwise swirl in the northern hemisphere
and counter-clockwise swirl in the southern hemisphere; seeFig. 6.1.

Observations suggest that once a tilted bipolar region has emerged at the solar surface, the field polar-
ities nearer to the poles drift rapidly toward the poles, producing thereby new poloidal field[210,294].
Underneath the surface, the field continues as before, but there it is also slightly tilted, although nec-
essarily in the opposite sense (seeFig. 6.2). Because of differential rotation, the points nearest to the
equator move faster, helping so to line up similarly oriented fields[295]. As is evident fromFig. 6.2, a
toroidal field pointing east in the northern hemisphere and west in the southern will develop into a global
northward pointing field above the surface.

6.2. Mean-field electrodynamics

Parker[209] first proposed the idea that the generation of a poloidal field, arising from the systematic
effects of the Coriolis force (Fig.6.3), could be described by a corresponding term in the induction
equation,

�Bpol

�t
= ∇ × (�Btor + · · ·) . (6.3)
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Fig. 6.2. Sketch of the Babcock–Leighton dynamo mechanism. As bipolar regions emerge near the surface, they get tilted in the
clockwise sense in the northern hemisphere and counter-clockwise in the southern hemisphere. Beneath the surface this process
leaves behind a poloidal field component that points here toward the north pole on either side of the equator. Once the remaining
subsurface field gets sheared by the surface differential rotation, it points in the opposite direction as before, and the whole
process starts again.

Fig. 6.3. Production of positive writhe helicity by an uprising and expanding blob tilted in the clockwise direction by the Coriolis
force in the southern hemisphere, producing a field-aligned currentJ in the opposite direction toB. Courtesy ofYoshizawa[22].

It is clear that such an equation can only be valid for averaged fields (denoted by overbars), because for
the actual fields, the induced electromotive force (EMF)U × B, would never have a component in the
direction ofB. While being physically plausible, this approach only received general recognition and
acceptance after Roberts and Stix[296] translated the work of Steenbeck et al.[297] into English. In
those papers the theory for the� effect, as they called it, was developed and put on a mathematically
rigorous basis. Furthermore, the� effect was also applied to spherical models of the solar cycle (with
radial and latitudinal shear)[298] and the geodynamo (with uniform rotation)[299].
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In mean field theory one solves the Reynolds averaged equations, using either ensemble averages,
toroidal averages or, in cases in cartesian geometry with periodic boundary conditions, two-dimensional
(e.g. horizontal) averages. We thus consider the decomposition

U= U+ u, B= B+ b . (6.4)

HereU andB are the mean velocity and magnetic fields, whileu andb are their fluctuating parts. These
averages satisfy the Reynolds rules,

U1 + U2 = U1 + U2, U= U, Uu= 0, U1 U2 = U1 U2 , (6.5)

�U/�t = �U/�t, �U/�xi = �U/�xi . (6.6)

Some of these properties are not shared by several other averages; for Gaussian filteringU �= U, and for
spectral filteringU U �= U U, for example. Note thatU= U implies thatu= 0.

Here a comment on scale separation is in order. The averaging procedure discussed above is valid even
if there is hardly any scale separation, i.e. if the averaging length of the container is close to the eddy
scale. One concern is that an�2 type large scale dynamo field (i.e. a mean field that is generated without
shear; see below) may no longer be excited; see Section 9.4.1. But apart from this, the absence of scale
separation does not impose any technical restrictions. Poor scale separation does however imply that the
averages are not smooth in time and in the directions in which no averaging is performed. This, in turn,
is reflected in the fact that turbulent transport coefficients estimated from simulations can be very noisy.

Scale separation does become an issue, however, if one wants to use averages for which the Reynolds
rules are not obeyed. For example, if mean field theory is to model nonaxisymmetric features of stellar
or galactic magnetic fields, one would like to define a mean field by averaging over small volumes. In
order that the Reynolds rules remain then at least approximately valid, scale separation must be invoked.

In the remainder we assume that the Reynolds rules do apply. Averaging Eq. (3.11) yields then the
mean field induction equation,

�B

�t
= ∇ × (

U× B+ E − �J
)

, (6.7)

where

E = u× b (6.8)

is the mean EMF. Finding an expression for the correlatorE in terms of the mean fields is a standard
closure problem which is at the heart of mean field theory. In the two-scale approach[148] one assumes
thatE can be expanded in powers of the gradients of the mean magnetic field. This suggests the rather
general expression

Ei = �ij (ĝ, �̂,B, . . .)Bj + �ijk(ĝ, �̂,B, . . .)�Bj/�xk , (6.9)

where the tensor components�ij and�ijk are referred to as turbulent transport coefficients. They depend on
the stratification, angular velocity, and mean magnetic field strength. The dots indicate that the transport
coefficients may also depend on correlators involving the small scale magnetic field, for example the
current helicity of the small scale field, as will be discussed in Section 9.3. We have also kept only the
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lowest large scale derivative of the mean field; higher derivative terms are expected to be smaller (cf.
Section 7.2 in Moffatt[148]), although this may not be justified in certain cases[300].

The general subject has been reviewed in many text books[148,301], but the importance of the
small scale magnetic field (or rather the small scale current helicity) has only recently been appreci-
ated[302,303], even though the basic equations were developed much earlier[9,304]. This aspect of the
problem will be discussed in more detail in Section 8.7.

The general form of the expression forE can be determined by rather general considerations[301].
For example,E is a polar vector andB is an axial vector, so�ij must be a pseudo-tensor. The simplest
pseudo-tensor of rank two that can be constructed using the unit vectorsĝ (symbolic for radial density or
turbulent velocity gradients) and̂� (angular velocity) is

�ij = �1�ij ĝ · �̂ + �2ĝi�̂j + �3ĝj �̂i . (6.10)

Note that the term̂g · �̂ = cos� leads to the co-sinusoidal dependence of� on latitude,�, and a change of
sign at the equator. Additional terms that are nonlinear inĝ or �̂ enter if the stratification is strong or if
the body is rotating rapidly. Likewise, terms involvingU, B andbmay appear if the turbulence becomes
affected by strong flows or magnetic fields. In the following subsection we discuss various approaches to
determining the turbulent transport coefficients.

One of the most important outcomes of this theory is a quantitative formula for the coefficient�1 in
Eq. (6.10) by Krause[305],

�1 ĝ · �̂ = −16
15�2

coru
2
rms� · ∇ ln(�urms) , (6.11)

where �cor is the correlation time,urms the root mean square velocity of the turbulence, and� the
angular velocity vector. The other coefficients are given by�2 = �3 = −�1/4. Throughout most of
the solar convection zone, the product�urms decreases outward.5 Therefore,�>0 throughout most
of the northern hemisphere. In the southern hemisphere we have�<0, and� varies with colatitude� like
cos�. However, this formula also predicts that� reverses sign very near the bottom of the convection zone
whereurms → 0. This is caused by the relatively sharp drop ofurms [306].

The basic form and sign of� is also borne out by simulations of stratified convection[307,308]. One
aspect that was first seen in simulations is the fact that in convection the vertical component of the�
effect can have the opposite sign compared with the horizontal components[307,308]. The same result
has later been obtained in analytic calculations of the� effect in supernova-driven interstellar turbulence
[309] and in first order smoothing approximation (FOSA) calculations[310].

6.3. Calculation of turbulent transport coefficients

Various techniques have been proposed for determining turbulent transport coefficients. Even in the
kinematic regime, where the changes in the velocity field due to Lorentz forces are ignored, these tech-
niques have some severe uncertainties. Nevertheless, the various techniques produce similar terms, al-
though the so-called minimal� approximation (MTA) does actually predict an extra time derivative of the

5 This can be explained as follows: in the bulk of the solar convection zone the convective flux is approximately constant, and
mixing length predicts that it is approximately�u3

rms. This in turn follows fromFconv ∼ �urmscp�T andu2
rms/Hp ∼ g�T/T

together with the expression for the pressure scale heightHp=(1− 1
� )cpT /g. Thus, since�u3

rms ≈ const, we haveurms ∼ �−1/3

and�u3
rms ∼ �2/3.
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Table 2
Summary of various approaches to calculate turbulent transport coefficients

Technique Refs. Linear? Homogeneous? b2/B2

EDQNM [304] No Yes Large
MTA [8,320] No No Large?
Simulations [307,308,311] No No Modest/large
FOSA [148,301] No No Small
Stochastic [235] Yes No Large
Random waves [148,312,313] No No Small
Individual blobs [309,314] No No Small

electromotive force[8]. This will be discussed in full detail in Section 10. We only mention here that in
MTA the triple correlations are not neglected, as they are in FOSA; see Section 6.3.1. Instead, the triple
correlations are approximated by quadratic terms. This is similar in spirit to the usual� approximation
used in the Eddy Damped Quasi-Normal Markovian (EDQNM) closure approximation (see Section 7.2),
where the irreducible part of quartic correlations are approximated by a relaxation term proportional
to the triple correlations. Other approaches include direct simulations[307,308,311](see Section 6.4),
calculations based on random waves[148,312,313]or individual blobs[309,314](see Section B.2.1),
or calculations based on the assumption of delta-correlated velocity fields[13,235,315](Section B.2).
A summary of the different approaches, their properties and limitations is given inTable 2.

One of the most promising approaches is indeed MTA, because there is now some numerical evidence
from turbulence simulations that MTA may be valid even when the fluctuations are large and the correlation
time not very short; see Section 9.2, and Ref.[316]. This is of course beyond the applicability regime of
FOSA. Early references to MTA include the papers of Vainshtein and Kitchatinov[317] and Kleeorin and
collaborators[318–320], but since MTA is based on a closure hypothesis, detailed comparisons between
theory and simulations[4,8,316,321]have been instrumental in giving this approach some credibility.

In the following we discuss the foundations of FOSA and MTA, but we defer detailed applications and
calculations of MTA to Section 10.

6.3.1. First order smoothing approximation
The first order smoothing approximation (FOSA) or, synonymously, the quasilinear approximation, or

the second order correlation approximation is the simplest way of calculating turbulent transport coeffi-
cients. The approximation consists of linearizing the equations for the fluctuating quantities and ignoring
quadratic terms that would lead to triple correlations in the expressions for the quadratic correlations. This
technique has traditionally been applied to calculating the turbulent diffusion coefficient for a passive
scalar or the turbulent viscosity (eddy viscosity).

Suppose we consider the induction equation. The equation for the fluctuating field can be obtained by
subtracting Eq. (6.7) from Eq. (3.11), so

�b

�t
= ∇ × (U× b+ u× B+ u× b− E − � j) , (6.12)
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wherej = ∇ × b ≡ J − J is the fluctuating current density. The first order smoothing approximation
consists ofneglectingthe termu× b on the RHS of Eq. (6.12), because it is nonlinear in the fluctuations.
This can only be done if the fluctuations are small, which is a good approximation only under rather
restrictive circumstances, for example ifRm is small. The termE is also nonlinear in the fluctuations,
but it is not a fluctuating quantity and gives therefore no contribution, and theU × b is often neglected
because of simplicity (but see, e.g., Ref.[301]). The neglect of theU term may not be justified for
systems with strong shear (e.g. for accretion discs) where the inclusion ofU itself could lead to a new
dynamo effect, namely the shear-current effect[322–324]. In the case of smallRm, one can neglect
both the nonlinear termG ≡ ∇ × (u × b− u× b), and the time derivative ofb, resulting in a linear
equation

�∇2b= −∇ × (u× B) . (6.13)

This can be solved forb, if u is given.E can then be computed relatively easily[148,301].
However, in most astrophysical applications,Rm?1. In such a situation, FOSA is thought to still be

applicable if the correlation time�cor of the turbulence is small, such that�corurmskf>1, whereurmsandkf
are typical velocity and correlation wavenumber, associated with the random velocity fieldu. Under this
condition, the ratio of the nonlinear term to the time derivative ofb is argued to be∼ (urmskfb)/(b/�cor)=
�corurmskf>1, and soG can be neglected[148] (but see below). We then get

�b

�t
= ∇ × (u× B) . (6.14)

To calculateE, we integrate�b/�t to getb, take the cross product withu, and average, i.e.

E = u(t) ×
∫ t

0
∇ × [

u(t ′) × B(t ′)
]

dt ′ . (6.15)

For clarity, we have suppressed the commonx dependence of all variables. Using index notation, we have

Ei(t) =
∫ t

0
[�̂ip(t, t ′)Bp(t

′) + �̂ilp(t, t
′)Bp,l(t

′)] dt ′ , (6.16)

with �̂ip(t, t
′)= εijkuj (t)uk,p(t ′) and�̂ilp(t, t

′)= εijpuj (t)ul(t ′), where we have usedBl,l =0=ul,l , and
commas denote partial differentiation. In the statistically steady state, we can assume that�̂ip and �̂ilp
depend only on the time difference,t − t ′. Assuming isotropy (again only for simplicity), these tensors
must be proportional to the isotropic tensors�ip andεilp, respectively, so we have

E(t) =
∫ t

0
[�̂(t − t ′)B(t ′) − �̂t(t − t ′)J(t ′)] dt ′ , (6.17)

where�̂(t − t ′) = −1
3u(t) · �(t ′) and�̂t(t − t ′) = 1

3u(t) · u(t ′) are integral kernels, and� = ∇ × u is the
vorticity of the velocity fluctuation.

If we assume the integral kernels to be proportional to the delta function,�(t − t ′), or, equivalently, if
B can be considered a slowly varying function of time, one arrives at

E = �B− �tJ (6.18)
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with

� = −1
3

∫ t

0
u(t) · �(t ′)dt ′ ≈ −1

3�coru · � , (6.19)

�t = 1
3

∫ t

0
u(t) · u(t ′)dt ′ ≈ 1

3�coru2 , (6.20)

where�cor is the correlation time. Whent becomes large, the main contribution to these two expressions
comes only from late times,t ′ close tot, because the contributions from early times are no longer strongly
correlated withu(t). By using FOSA we have thus solved the problem of expressingE in terms of the
mean field. The turbulent transport coefficients� and�t depend, respectively, on the helicity and the
energy density of the turbulence.

One must however point out the following caveat to the applicability of FOSA in case of largeRm.
First, note that even if�corurmskf>1, one can haveRm = (�corurmskf )/(��cork

2
f )?1, because the diffusion

time (��cork
2
f )

−1 can be much larger than the correlation time of the turbulence. As we have already
discussed in Section 5.2, whenRm >Rcrit ∼ 30, small scale dynamo action may take place (depending
on the value ofPm) to produce exponentially growing fluctuating fields, independent of the mean field.
So the basic assumption of FOSA of smallb relative toB will be rapidly violated and theu × b term
in Eq. (6.12) cannot be neglected. Nevertheless, the functional form of the expressions for the turbulent
transport coefficients obtained using FOSA seem to be not too different from that found in simulations.
For example, it is likely that strong fluctuations produced by small scale dynamo action do not cor-
relate well withu in u× b, so they would not contribute toE. This interpretation will be developed
further in Section 6.3.2 on the� approximation, which works specifically only with those parts that do
correlate.

6.3.2. MTA — the ‘minimal’� approximation
The ‘minimal’� approximation is a simplified version of the� approximation as it has been introduced

by Orszag[325] and used by Pouquet, Frisch and Léorat[304] in the context of the eddy damped
quasi-normal markovian (EDQNM) approximation. In that case a damping term is introduced in order
to express fourth order moments in terms of third order moments. In the� approximation, as introduced
by Vainshtein and Kitchatinov[317] and Kleeorin and Rogachevskii[318,319], one approximates triple
moments in terms of quadratic moments via a wavenumber-dependent relaxation time�(k). The ‘minimal’
� approximation (MTA), as it is introduced by Blackman and Field[8], is applied in real space in the
two-scale approximation. We will refer to both the above types of closures (where triple moments are
approximated in terms of quadratic moments and a relaxation time�) as the ‘minimal’� approximation
or MTA.

There are some technical similarities between FOSA and the minimal� approximation. The main
advantage of the� approximation is that the fluctuations donot need to be small and so the triple
correlations are no longer neglected. Instead, it is assumed (and this can be and has been tested using
simulations) that the one-point triple correlations are proportional to the quadratic correlations, and that
the proportionality coefficient is an inverse relaxation time that can in principle be scale (or wavenumber)
dependent.
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In this approach, one begins by considering the time derivative ofE [8,320],

�E

�t
= u× ḃ+ u̇× b , (6.21)

where a dot denotes a time derivative. Forḃ, we substitute Eq. (6.12) and foru̇, we use the Euler equation
for the fluctuating velocity field,

�u

�t
= − 1

�0
∇p + f + Fvis + H , (6.22)

whereH = −u · ∇u+ u · ∇u is the nonlinear term,f is a stochastic forcing term (with zero divergence),
andFvis is the viscous force. We have also assumed for the present that there is no mean flow (U=0), and
have considered the kinematic regime where the Lorentz force is set to zero (the latter assumption will be
relaxed in Section 9.2). All these restrictions can in principle be lifted (see below). For an incompressible
flow, the pressure term can be eliminated in the standard fashion in terms of the projection operator. In
practicef correlates only weakly withb and may therefore be neglected, as can be the small viscous
term. The only contribution tȯu× b comes from the triple correlation involvingb andH. Theu× ḃ term
however has non-trivial contributions. We get

�E

�t
= �̃B− �̃t J− E

�
, (6.23)

where the last term subsumes the effects of all triple correlations, and

�̃ = −1
3u · � and �̃t = 1

3u
2 (kinematic theory) (6.24)

are coefficients that are closely related to the usual� and�t coefficients in Eq. (6.18). We recall that in
this kinematiccalculation the Lorentz force has been ignored. Its inclusion (Section 9.2) turns out to be
extremely important: it leads to the emergence of a small scale magnetic correction term in the expression
for �̃; see Eq. (9.5) below.

One normally neglects the explicit time derivative ofE [319,320], and arrives then at almost the
same expression as Eq. (6.18). The explicit time derivative can in principle be kept[8], although it
becomes unimportant on time scales long compared with�; see also Refs.[316,321]for applications to
the passive scalar problem and numerical tests. In comparison with Eq. (6.17), we note that if one assumes
�̂(t − t ′) and�̂t(t − t ′) to be proportional to exp[−(t − t ′)/�] for t > t ′ (and zero otherwise), one recovers
Eq. (6.23) with the relaxation time� playing now the role of a correlation time.

Recently, Rädler and Rheinhardt[326]have pointed out that MTA does not reduce to FOSA even when
FOSA is applicable, i.e. when either the magnetic diffusivity is large or the correlation time small. This
conflict becomes particularly apparent when considering the high conductivity limit (so the correlation
time should be short for FOSA to be valid). In this case FOSA predicts that� and�t depend on the time
integral over temporal two-point correlation functions[301], while the MTA results depend on the spatial
two-point correlation function at a single time, multiplied by a relaxation time. Only in some special cases
can these two quantities be shown to be equivalent. On the other hand, when the viscosity is large, MTA
predicts an explicit dependence on viscosity that is not recovered under FOSA. However, in the momentum
equation there is also the forcing term whose correlation with the magnetic field may balance that with the
viscous term[326]. Nevertheless, in general one cannot regard MTA as an ‘approximation’, but rather as
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a closure hypothesis that captures in a conceptually straightforward way a number of turbulence effects,
leaving the relaxation time� (or the Strouhal number, which is� normalized by the turnover time) as a free
parameter. The strongest support for MTA comes from turbulence simulations that confirm the assumed
relation between quadratic and triple correlations and that show Strouhal numbers of the order of unity
for a range of applications[316,327].

We will return to the� approximation further below (Section 9.2) in connection with calculating
nonlinear effects of the Lorentz force and with numerical verifications using turbulence simulations.

6.4. Transport coefficients from simulations

The main advantage of using simulations is that no approximations need to be made other than the
restriction to only moderate values of the magnetic Reynolds number. Most notably, this approach allows
the determination of transport coefficients in inhomogeneous systems in the presence of boundaries. This
is important in the case of the sun, where there is a relatively sharp transition from the convection zone
to the neighboring overshoot layers.

6.4.1. Measuring the� tensor
As a preliminary step, it is useful to restrict oneself to the assumption of an isotropic�, ignoring also

turbulent diffusion. In that case one hasE = �B, and so one can calculate� = E · B/B2 as a function
of position and time. Next, one can allow for a contribution of the formE = · · · + � × B, which is also
called a pumping term, because it describes the advection of mean field with the effective velocity�. It
is long known that this effect expels mean magnetic field from regions of strong turbulence[328,329],
which is also the reason why this effect is sometimes referred to as turbulent diamagnetic effect. The
components of� are related to the antisymmetric part of the� tensor via�i =−1

2εijk�jk. Computationally,

these components can be extracted fromE×B as�i =M−1
ij (E×B)j ,where the matrixMij =BiBj −�ijB

2

has to be inverted at each meshpoint.
Alternatively, one can assume that the� tensor is dominated by certain components, e.g. its diagonal

components. For example in connection with a local cartesian model of accretion disc turbulence the
toroidal (ory) component�yy = Ey/By has been calculated[201]. We return to this in Section 11.4.1.

In the cases discussed so far, we have to rely on the successful operation of what corresponds to a mean
field dynamo, as was indeed the case in the accretion disc calculations. However, another obvious method
for calculating the� effect is to use a simulation with an imposed magnetic field,B0, and to determine
numerically the resulting electromotive force,E. Here it is natural to define the average as a full volume
average. For a periodic box,B=B0. Since such averages no longer depend on the space coordinate, there
is no mean current, i.e.J= ∇ × B= 0.

The main conclusions obtained from this approach applied to stratified convection is that the functional
form of Eq. (6.11) is basically verified. In particular,� has a positive maximum in the upper part of the
convection zone (in the northern hemisphere), changes sign with depth[307,308], varies with latitude
as expected from this equation, and is largest at high latitudes[308]. The simulations also confirm the
presence of downward turbulent pumping. Indeed, animations show that flux tubes are regularly being
entrained by strong downdrafts, then pushed downward and amplified as the result of stretching and
compression[203,253,330]. The end result is a strong magnetic field at the bottom of the convection zone
where the field is expected to undergo further stretching by differential rotation[331]. Recent studies
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Fig. 6.4. Vertical and horizontal components of the� effect. The gray lines represent different times, the thick line is the time
average, and the surrounding thin curves indicate the error of the mean. The simulation is carried out on the southern hemisphere.
The convection zone proper is in the range 0<z<1, wherez denotes depth. The lower overshoot layer is inz>1 and the top
overshoot layer is inz<0. In the upper parts of the convection zone (0<z<0.6) the vertical component of�V ≡ �zz is positive
(upper panels) while the horizontal components,�H ≡ �xx = �yy are negative (lower panels). The left and right hand columns
are for simulations with different angular velocity: slower on the left (the Taylor number is 2× 103) and faster on the right
(the Taylor number is 104). Courtesy Ossendrijver[308].

have allowed a more quantitative description of the pumping effect and the associated pump velocity
[332,333].

Two surprising results emerged from the simulations. In convection the� effect is extremely anisotropic
with respect to the vertical direction such that the diagonal components of�ij can even change sign. While
the horizontal components,�xx and�yy , show the expected sign and are roughly a negative multiple of the
kinetic helicity, the vertical component,�zz, shows invariably the opposite sign[307,308]; seeFig. 6.4.
This peculiar result can be understood by noting that vertical field lines are wrapped around each other
by individual downdrafts, which leads to field line loops oppositely oriented than if they were caused by
an expanding updraft.

In Fig. 6.5we show the field line topology relevant to the situation in the southern hemisphere. The
degree of stratification is weak, so the downdrafts at the top look similar to the updrafts at the bottom
(both are indicated by two swirling lines). (i) At the top and bottom boundaries the magnetic field is
concentrated in the intergranular lanes which correspond to downdrafts at the top and updrafts at the
bottom. (ii) This leads to a clockwise swirl both at the top and at the bottom (but counter-clockwise in
the northern hemisphere); see the second panel. (iii) This in turn causes left-handed current helicity in
the upper parts and right-handed current helicity in the lower parts, so one might expect that� is negative
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Fig. 6.5. Sketch showing the twisting of vertical magnetic field lines by downdrafts. The resulting electromotive force,E=u×b,
points in the direction of the mean field, giving a positive�V in the southern hemisphere and a negative�V in the northern
hemisphere. Adapted from Ref.[307].

in the upper parts and positive in the lower parts. This is however not the case. Instead, what really
matters isE = u× b, whereu is dominated by converging motions (both at the top and the bottom). This,
together withb winding in the counter-clockwise direction around the downdraft and in the clockwise
direction in the updraft, causesu × b to point in the direction ofB at the top (so�zz is positive) and
in the opposite direction at the bottom (so�zz is negative). Originally, this result was only obtained for
weak stratification[307], but meanwhile it has also been confirmed for strong stratification[308]. We
reiterate that a qualitatively similar result has also been obtained in analytic calculations of the� effect
from supernova-driven expanding shells in the stratified galactic disc[309] and in FOSA calculations of
stratified turbulence[310].

The other surprising result is that the turbulent pumping is not necessarily restricted to the vertical
direction, but it can occur in the other two directions as well. In general one can split the�ij tensor into

symmetric and antisymmetric components, i.e.�ij = �(S)ij + �(A)ij , where the antisymmetric components
can be expressed in the form

�(A)ij = −εijk�k , (6.25)
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Fig. 6.6. The latitudinal dependence of the three components of the pumping velocity (� = 0 corresponds to the south pole and
� = 90 to the equator). The vertical pumping velocity (�z, right-most panel) is positive, corresponding to downward pumping,
and almost independent of latitude. The two horizontal components of� vanish at the poles. The longitudinal pumping velocity
(�y , middle panel) is negative, corresponding to retrograde pumping, and the latitudinal pumping velocity (�x , left panel) is
positive, corresponding to equatorward pumping. Adapted from Ref.[334].

where� is the pumping velocity. We recall that�(A)ij Bj = (� × B)i , which looks like the induction term

U × B, so � acts like an advection velocity. Simulations show that� has a component pointing in the
retrograde direction; seeFig. 6.6and Ref.[334]. We shall return to the theory of this term in Section 10.3;
see Eq. (10.64).

The latitudinal component of the pumping velocity points toward the equator and has been invoked
to explain the equatorward migration seen in the butterfly diagram[335]. The equatorward pumping
was found to act mostly on the toroidal component of the mean field while the poloidal field was found
to experience a predominantly poleward pumping velocity. This result has also been confirmed using
simulations of turbulent convection[334].

A general problem with all these calculations is that, as the Reynolds number is increased, the fluctu-
ations inE become large and long integration times are necessary[311]. This is related to the problem
that for large values ofRm, small scale dynamo action becomes possible and, unless the imposed field is
strong enough, the resulting values ofE are only weakly linked toB0. Indeed,E will be dominated by
a rather strong noise component, making it necessary to calculate long time averages to extract a small
average from the strongly fluctuating component.

6.4.2. Test field procedure with finite gradients
A general procedure for determining the full�ij and�ijk tensors from a simulation is to calculate the

electromotive force after applying test fields of different directions and with different gradients[336].
There are altogether 9+27 unknowns, if the mean field can vary in all three directions, or 9+18 unknowns,
if it can vary only in two directions (as is the case for toroidal ory averages, for example). The idea is to
calculate the emf,

E
(q) = u× b(q) , (6.26)
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for the excess magnetic fluctuations,b(q), that are due to a given test fieldB(q). This requires solving
simultaneously a set of equations of the form

�b(q)

�t
= ∇ × [(U+ u) × B

(q)] + �∇2b(q) + G (6.27)

for each test fieldB(q). Here, the mean flowU has been retained andG=∇×[u×b(q)−u× b(q)] is a term
nonlinear in the fluctuation. This term would be ignored in the first order smoothing approximation, but
it can be kept in a simulation if desired. For two-dimensional averages, for example, one has 9+ 18= 27
unknowns, so one needs 9 test fieldsB

(q) to calculate 9 vectorsE
(q)

. ExpressingE(q)i in the form

E
(q) = �ijB

(q)

j + �ijkB
(q)

j,k , (6.28)

one arrives at a system of 27 equations for the 27 unknowns.
By choosing 3 of the test fields to be constants, one can first solve for the 9 unknowns�ij . The remaining

coefficients in�ijk can then be obtained by choosing test fields that vary linearly as a function of space.This
type of analysis has been applied successfully to laminar stationary convection in a sphere exhibiting a
dynamo effect[336]. In this special case no matrix inversion is necessary. However, in addition to problems
with boundary conditions, there is the difficulty that�ij and�ijk may be wavenumber dependent, so it
may be better to choose only test fields with similar spatial variation (or wavenumber). In that case one
needs to invert simple 2× 2 matrices with coefficients that depend on the test fields and their gradients.

Another remotely related method is to use a time-dependent magnetic field in a successful turbulent
(nonstationary) dynamo simulation. The hope is here that the resulting mean magnetic field covers a
substantial fraction of the parameter space allowing one to calculate meaningful moments of the form
〈EiBj 〉 and〈EiBj,k〉. Using a general representation ofE of the form Eq. (6.9) allows one to calculate
the transport coefficients�ij and�ijk by inverting suitable correlation matrices. This method has been
applied with modest success to the problem of large scale field generation in a local model of accretion
disc turbulence[337,338].

6.4.3. Comparison of simulations with theory
Whenever a meaningful comparison between simulations and theory (FOSA) is possible, the agreement

can be quite remarkable. An example where this is the case is laminar convection in a rotating spherical
shell, where the velocity field from the simulation has been inserted into the corresponding mean-field
expressions[336].

In the case of turbulent convection, where only the turbulent rms velocity is used to scale theory to
simulations, the agreement is merely on a qualitative level. One obvious property of simulated values of
� is the high degree of fluctuations[311]. This is because here mean fields are defined as spatial averages.
Fluctuations of the turbulent transport coefficients are normally ignored when ensemble averages are
used[339]. As a general trend one can note that theory tends to overestimate the magnitudes of�, �,
and�t. This can partly be explained as a consequence of catastrophic (i.e. magnetic Reynolds number
dependent) quenching[308]. This will be discussed in detail later in this review; see Section 9.3. For
now, let us note that the catastrophic quenching became particularly obvious in simulations of isotropic
homogeneous turbulence in a fully periodic box[340]. Agreement between theory and simulations was
only achieved when the dynamical quenching formalism was used[6]. Historically, of course, neither
the dynamical quenching nor the corresponding helicity fluxes were known. Therefore, any agreement
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Fig. 6.7. Mutual regeneration of poloidal and toroidal fields in the case of the�� dynamo (left) and the�2 dynamo (right).

between simulations and theory was only a consequence of having adopted sufficiently small a magnetic
Reynolds number or, possibly, of magnetic or current helicity fluxes having been quite efficient, so that
the effect of dynamical quenching became less restrictive.

An outstanding question where much more work needs to be done is indeed the issue of current helicity
fluxes. They will be discussed in more detail below (Sections 8.11, 9.6, 9.7, 10.4). Their calculation is just
as important as that of the other transport coefficients, because these fluxes help alleviating the otherwise
catastrophic quenching.

6.5. �2 and�� dynamos: simple solutions

For astrophysical purposes one is usually interested in solutions in spherical or oblate (disc-like)
geometries. However, in order to make contact with turbulence simulations in a periodic box, solutions
in simpler cartesian geometry can be useful. Cartesian geometry is also useful for illustrative purposes.
In this subsection we review some simple cases.

Mean field dynamos are traditionally divided into two groups;�� and�2 dynamos. The� effect refers to
the amplification of the toroidal field by shear (i.e.differentialrotation) and its importance for the sun was
recognized very early on. Such shear also naturally occurs in disk galaxies, since they are differentially
rotating systems[210]. However, it is still necessary to regenerate the poloidal field. In both stars and
galaxies the� effect is the prime candidate. This explains the name�� dynamo; see the left hand panel
of Fig. 6.7. However, large scale magnetic fields can also be generated by the� effect alone, so now also
the toroidal field has to be generated by the� effect, in which case one talks about an�2 dynamo; see the
right hand panel ofFig. 6.7. (The term�2� model is discussed at the end of Section 6.5.2.)

6.5.1. �2 dynamo in a periodic box
We assume that there is no mean flow, i.e.U= 0, and that the turbulence is homogeneous, so that� and

�t are constant. The mean field induction equation then reads

�B

�t
= �∇ × B+ �T∇2B, ∇ · B= 0 , (6.29)

where�T = � + �t is the sum of microscopic and turbulent magnetic diffusivity. We can seek solutions of
the form

B(x) = Re[B̂(k)exp(ik · x+ �t)] . (6.30)
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Fig. 6.8. Dispersion relation for�2 dynamo, wherekcrit = �/�T.

This leads to the eigenvalue problem�B̂= �ik× B̂− �Tk
2B̂, which can be written in matrix form as

�B̂=
(−�Tk

2 −i�kz i�ky
i�kz −�Tk

2 −i�kx
−i�ky i�kx −�Tk

2

)
B̂ . (6.31)

This leads to the dispersion relation,� = �(k), given by

(� + �Tk
2)[(� + �Tk

2)2 − �2k2] = 0 , (6.32)

with the three solutions

�0 = −�Tk
2, �± = −�Tk

2 ± |�k| . (6.33)

The eigenfunction corresponding to the eigenvalue�0 = −�Tk
2 is proportional tok, but this solution

is incompatible with solenoidality and has to be dropped. The two remaining branches are shown in
Fig. 6.8.

Unstable solutions (�>0) are possible for 0< �k < �Tk
2. For�>0 this corresponds to the range

0<k< �/�T ≡ kcrit . (6.34)

For �<0, unstable solutions are obtained forkcrit <k<0. The maximum growth rate is at

kmax = 1
2kcrit = �/(2�T) (maximum growth rate) . (6.35)

Such solutions are of some interest, because they have been seen as an additional hump in the magnetic
energy spectra from fully three-dimensional turbulence simulations (Sections 8.4 and 8.6).

Linear theory is only applicable as long as the magnetic field is weak, but qualitatively one may expect
that in the nonlinear regime� becomes reduced (quenched), sokcrit decreases and only larger scale
magnetic fields can be maintained. This is indeed seen in numerical simulations[4]; see also Section 8.

6.5.2. �� dynamo in a periodic box
Next, we consider the case with linear shear, and assumeU= (0, Sx,0), whereS = const. This model

can be applied as a local model to both accretion discs (x is radius,y is longitude, andz is the height above
the midplane) and to stars (x is latitude,y is longitude, andz is radius). For keplerian discs, the shear is
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Fig. 6.9. Dispersion relation for�2� dynamo with�kcrit/S = 0.35. The dotted line gives the result for the�� approximation
Eqs. (6.39) and (6.40). The axes are normalized usingkcrit for the full �2� dynamo equations.

S = −3
2�, while for the sun (taking here only radial differential rotation into account)S = r��/�r ≈

+0.1�� near the equator.
For simplicity we consider axisymmetric solutions, i.e.ky = 0. The eigenvalue problem takes then the

form

�B̂=
( −�Tk

2 −i�kz 0
i�kz + S −�Tk

2 −i�kx
0 i�kx −�Tk

2

)
B̂ , (6.36)

where�T = � + �t andk2 = k2
x + k2

z . The dispersion relation is now

(� + �Tk
2)[(� + �Tk

2)2 + i�Skz − �2k2] = 0 , (6.37)

with the solutions

�± = −�Tk
2 ± (�2k2 − i�Skz)

1/2 . (6.38)

Again, the eigenfunction corresponding to the eigenvalue�0=−�Tk
2 is not compatible with solenoidality

and has to be dropped. The two remaining branches are shown inFig. 6.9, together with theapproximate
solutions (valid for�kz/S>1)

Re�± ≈ −�Tk
2 ± |1

2�Skz|1/2 , (6.39)

Im �± ≡ −�cyc ≈ ±|1
2�Skz|1/2 , (6.40)

where we have made use of the fact that i1/2 = (1 + i)/
√

2.
Sometimes the term�2� dynamo is used to emphasize that the� effect is not neglected in the generation

of the toroidal field. This approximation, which is sometimes also referred to as the�� approximation, is
generally quite good provided�kz/S>1. However, it is important to realize that this approximation can
only be applied to axisymmetric solutions[341].

6.5.3. Eigenfunctions, wave speed, and phase relations
We now make the�� approximation and consider the marginally excited solution (Re� = 0), which

can be written as

Bx = B0 sinkz(z − ct), By = √
2B0

∣∣∣c
�

∣∣∣ sin[kz(z − ct) + �] , (6.41)
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Table 3
Summary of propagation directions and phase relation for�� dynamos

Object � S � c Wave propagation |�cyc|�t
Disc − − −3	/4 + Away from midplane −3	/4
Disc/star? + − +3	/4 − Equatorward −3	/4
Star? − + −	/4 − Equatorward +	/4
Star + + +	/4 + Poleward +	/4

whereB0 is the amplitude (undetermined in linear theory), andc = �cyc/kz is the phase speed of the
dynamo wave, which is given by

c = �S

|2�Skz|1/2 = ±�Tkz , (6.42)

where the upper (lower) sign applies when�S is positive (negative). The sign ofc gives the direction of
propagation of the dynamo wave; seeTable 3for a summary of the propagation directions in different
settings.

An important property of the�� dynamo solutions that can be read off from the plane wave solutions
is the phase shift of±3

4	 (for S <0) and±	/4 (for S >0) between the poloidal and toroidal fields. It
is customary[342,343]to quote instead the normalized time delay|�cyc|�t = � sgn(c), by which the
toroidal field lags behind the radial field. These values are given in the last column ofTable 3. Note that
the temporal phase shift only depends on the sign of the shearSand not on�.

6.5.4. Excitation conditions in a sphere
For applications to stars it is essential to employ spherical geometry. Over the past three decades,

a number of two-dimensional and three-dimensional models have been presented[298,344–346]. The
dynamo is generally characterized by two dynamo numbers,

C� = �0R/�T, C� = ��R2/�T , (6.43)

where�0 and�� are typical values of� and angular velocity difference across the sphere, andR is the
outer radius of the sphere. InFig. 6.10we show the critical values ofC� (above which dynamo action is
possible) for different values ofC� using error function profiles,

f±(r; r0, d) = 1
2{1 ± erf[(r − r0)/d]} , (6.44)

for �(r, �) = �0f+(r; r�, d�) cos� and�(r) = ��f−(r; r�, d�), just as in the early work of Steenbeck
and Krause[298], who usedr� = 0.9, r� = 0.7, andd� = d� = 0.075. Onr = R the field is matched
to a potential field. A detailed presentation of the induction equation in spherical harmonics with dif-
ferential rotation, meridional circulation, anisotropic� effect and a number of other effects is given by
Rädler[347].

The solutions are classified by the symmetry properties about the equator (S andA for symmetric
and antisymmetric fields, respectively), supplemented by the spherical harmonic degreemcharacterizing
the number of nodes in the azimuthal direction. Note that for axisymmetric modes (S0 andA0) the
critical value ofC� decreases ifC� increases, while for the nonaxisymmetric modes (e.g.S1 andA1)
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Fig. 6.10. Critical values ofC� versusC� for a dynamo in a spherical shell. Note that nearC� =200 the nonaxisymmetric modes
S1 andA1 are more easily excited than the axisymmetric modesS0 andA0. Here,C� (calledC� in the rest of this review) is
defined such that it is positive when��/�r is negative, and vice versa. Adapted from[346].

C� is asymptotically independent ofC�. This behavior forS0 andA0 is understandable because for
axisymmetric modes the excitation condition only depends on the product of� effect and shear; see
Eq. (6.39). ForS1 andA1, on the other hand, differential rotation either makes the dynamo harder to
excite (ifC� is small) or it does not affect the dynamo at all (largerC�). This is because when differential
rotation winds up a nonaxisymmetric field, anti-aligned field lines are brought close together[341]. For
sufficiently large values ofC� the field is expelled into regions with no differential rotation (�2 dynamo)
where the dynamo is essentially independent ofC�.

Generally, axisymmetric modes are easier to excite than nonaxisymmetric modes. There can be excep-
tions to this just at the junction between�2 and�� dynamo behavior. This is seen nearC� = 300; see
Fig. 6.10. Such behavior was first reported by Robert and Stix[344], and may be important for under-
standing the occurrence of nonaxisymmetric fields in active stars; see Section 11.3. Other potential agents
facilitating nonaxisymmetric fields include anisotropic[348,349]and nonaxisymmetric[350,351]forms
of � effect and turbulent diffusivity.

Finally, we note that for strong shear (large values of|C�|), and�>0 in the northern hemisphere, the
most easily excited modes areA0 (when��/�r is negative, i.e.C� >0 in Fig. 6.10), andS0 (when��/�r
is positive). This behavior changes the other way around, however, when the dynamo operates in a shell
whose ratio of inner to outer shell radius exceeds a value of about 0.7[352,353]. This is approximately
the appropriate value for the sun, and it has indeed long been recognized that the negative parity of the
solar dynamo is not always obtained from model calculations[354–356].

6.5.5. Excitation conditions in disc-like geometries
Another important class of astrophysical bodies are galactic discs as well as discs around young stars,

compact objects, or supermassive black holes in the nuclei of active galaxies; see Section 2.3. We consider
the simplest form of the axisymmetric mean field dynamo equations appropriate for a thin disc[77],

ḂR = −(�B�)
′ + �TB

′′
R, Ḃ� = SBR + �TB

′′
� . (6.45)

Here, radial derivatives have been neglected, so the problem has become one-dimensional and can be
solved separately at each radius. Primes and dots denotez and t derivatives, respectively,� = �0f�(z)
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is a profile for� (asymmetric with respect toz = 0) with typical value�0, S = R d�/dR is the radial
shear in the disc, and(BR, B�, Bz) are the components of the mean fieldB in cylindrical coordinates.
On z = ±H one assumes vacuum boundary conditions which, in this one-dimensional problem, reduce
toBR = B� = 0. One can also impose boundary conditions on the mid-plane,z = 0, by selecting either

symmetric (quadrupolar) fields,BR =B
′
� = 0, or antisymmetric (dipolar) fields,B ′

R =B� = 0. One can
again define two dimensionless control parameters,

C� = Sh2/�T, C� = �0h/�T , (6.46)

which measure the strengths of shear and� effects, respectively, whereh is a measure of the disc scale
height. (Note thatC� andC� used here are akin to those defined in Section 6.5.4 and are identical to the
symbolsR� andR� commonly used in galactic dynamo literature.) In spiral galaxies, the typical values
areC� ≈ −10 andC� ≈ 1, and so|C�|?C�.

Since|C�|?C�, dynamo generation of axisymmetric solutions is controlled by the dynamo number
D=C�C�. Exponential growth of the fields is possible in the kinematic stage provided|D|>Dcrit. Here
the critical dynamo numberDcrit ∼ 6–10, depending on the exact profile adopted for the�(z). Here we
assumef�(z)= z/H , whereH is the disc scale height. For negative��/�R and positive values of� in the
upper disc plane (northern ‘hemisphere’), the most easily excited modes are no longerA0, butS0 [222].
This case is believed to be relevant to galaxies and one expects that the most easily excited solutions for
galaxies, are modes with steady quadrupole (S0 st) symmetry in the meridional (Rz) plane[77]. For these
modes, the growth rate in the kinematic regime can be approximated by

� ≈ �T

h2

(√|D| − √
Dcrit

)
. (6.47)

In most spiral galaxies the dynamo is supercritical for a large range of radii, and so galactic fields can
indeed grow exponentially from small seed values. A detailed discussion of the properties of solutions in
the galactic context is given in Ref.[77].

Further, as discussed in Section 6.5.4, axisymmetric modes are easier to excite than nonaxisymmetric
ones. Although, the observed nonaxisymmetric large scale mean field structures in some galaxies, can
also be explained by invoking nonaxisymmetric forms of� effect[350], turbulent diffusivity, or streaming
motions[357–359].

For accretion discs,� might be negative in the northern hemisphere[201] and one therefore expects
oscillatory quadrupoles (S0 osc)[360]. In Fig. 6.11we show the growth rate of different modes, obtained
by solving Eq. (6.45) for both signs of the dynamo number[360]. In order to find all the modes, even the
unstable ones, one can easily solve Eq. (6.45) numerically as an eigenvalue problem,�q=Mq, where the
complex growth rate� is the eigenvalue with the largest real part.

For illustrative purposes, we discuss the numerical technique in detail. We introduce mesh points,
zi = i�z (excluding the boundaries atz= 0 andz=H ), where�z=H/(N + 1) is the mesh spacing, and
i = 1,2, . . . , N denotes the position on the mesh. The discretized eigenvector is

q= (BR1, B�1, BR2, B�2, . . . , BRN,B�N)
T . (6.48)

It is convenient to introduce the abbreviationsai =−�i/(2�z) andb= �T/(�z)
2, so then the second-order

accurate discretized form of Eq. (6.45) reads

ḂRi = ai+1B�i+1 − ai−1B�i−1 + b(BRi+1 − 2BRi + BRi−1) , (6.49)
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Fig. 6.11. Eigenvalues of the dynamo equations with shear in slab geometry with radial shear. The dynamo number, in this figure,
is defined positive when the shear in negative and� positive (opposite in sign to that in the text). Note that for�>0 the solution
that is most easily excited is nonoscillatory (‘steady’) and has even parity (referred to asS st) whilst for�<0 it is oscillatory
(S osc). Adapted from[360].

Ḃ�i = SBRi + b(B�i+1 − 2B�i + B�i−1) , (6.50)

where�1, �2, . . . , are the values of� at the different mesh points. Using symmetric boundary conditions
onz=0, we haveBR0=0 andB ′

�0=(−3B�0+4B�1−B�2)/(2�z)=0, which is just the second order one-

sided first derivative formula[272]. With this we can eliminate the boundary pointB�0= 1
3(4B�1−B�2),

and have, in matrix form,

M =




−2b −4
3a0 b 1

3a0 + a2 0 0 0 0 · · ·
S −2

3b 0 2
3b 0 0 0 0 · · ·

b a1 −2b 0 b a3 0 0 · · ·
0 b S −2b 0 b 0 0 · · ·
0 0 b a2 −2b 0 b a4 · · ·
0 0 0 b S −2b 0 b · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·




. (6.51)

In the lower right corner, no modification has to be applied, which then corresponds to the vacuum
boundary conditionBR =B� =0 onz=±H . For the results shown inFig. 6.11we have simply assumed
a linear profile, i.e.� = �0z/H , and�T andSare constant. The eigenvalues of the matrixM can be found
using standard library routines.

6.6. Rädler effect and shear-current effect

An important additional contribution to the EMF is a term of the formE = · · · + � × J. This term
was first derived and identified as a possible dynamo generating term by Rädler[328], who found that
in a rotating system with nonhelical turbulence� is proportional to�. Even in a non-rotating system
with linear shear alone, large scale dynamo action is possible due to the so-called shear-current effect
[322–324], where� is proportional to the vorticityW of the mean flow.
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Fig. 6.12. Dispersion relation for the�2S dynamo with�k2
crit/S=0.2. The dotted line gives the result for the “�S” approximation

Eq. (6.54). The axes are normalized usingkcrit as given by Eq. (6.53). Note the similarity to the dispersion relation for the�2

dynamo; cf.Fig. 6.8.

Numerous models with this effect have been considered in the early 1970ies[344,348,352]. Since this
term does not give a contribution toJ ·E, it cannot provide energy to the system. However, the presence of
shear suffices to allow injection of energy into the system to offset resistive losses and hence to produce
sustained large scale dynamo action. The dispersion relation for such an axisymmetric “�S” dynamo can
easily be obtained from Eqs. (6.36) and (6.37) by replacing i� → k · �, and its solution is

�± = −�Tk
2 ± [−(k · �)2k2 − (k · �)Skz]1/2 . (6.52)

Evidently, a necessary condition for growing solutions is that the term in square brackets is positive, and
hence that−Skz/(k · �)> k2. We refer to such solutions as “�2S” dynamos, so as to emphasize that the�

effect enters the regeneration of both poloidal and toroidal field. We use here the symbolS instead of�
to emphasize that angular velocity is unnecessary and that only shear is needed.

In the one-dimensional case withk=(0,0, kz) and�=(0,0, �), the necessary condition is−�k2
z /S >0.

Thus, for positive shear, growing solutions are only possible for negative values of�, and vice versa. The
critical kz may then be obtained from Eq. (6.52) in the form

kcrit = [−S�/(�2 + �2
T)]1/2 . (6.53)

The two solution branches are shown inFig. 6.12, together with the solutions of the approximate dispersion
relation, obtained by ignoring the(k · �)2k2 term inside the squared brackets of Eq. (6.52), i.e.

�± ≈ −�Tk
2 ± | − �Sk2

z |1/2 (for 1?− �k2
z /S >0) . (6.54)

Note first of all that the approximate dispersion relation is fairly good even when�k2
crit/S is not very

small. Second, the approximation is formally equivalent to the dispersion relation for the�2 dynamo after
replacing|�| → | − �S|1/2.

7. Magnetic helicity conservation and inverse cascade

The mean field approach in terms of� effect and other turbulent transport coefficients has been quite
popular in modeling the magnetic fields in various astrophysical bodies. Its main shortcoming is the rather
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simplistic treatment of turbulence. A very different approach has been pioneered by Frisch and coworkers
[361] and explored quantitatively in terms of the eddy damped quasi-normal Markovian (EDQNM)
closure approximation[304], which will be reviewed briefly below. In this approach, the main mechanism
producing large scale fields is the inverse cascade of magnetic helicity toward larger scales. The� effect
emerges in a self-consistent manner and, more importantly, the� effect is amended by a correction term
proportional to the small scale current helicity which plays a crucial role in modern mean field theory
(Section 9). We begin with an illustration of the inverse cascade mechanism using a simple 3-mode
interaction model.

7.1. Inverse cascade in 3-mode interactions

The occurrence of an inverse cascade can be understood as the result of two waves (wavenumbers
p andq) interacting with each other to produce a wave of wavenumberk. The following argument is
due to Frisch et al.[361]. Assuming that during this process magnetic energy is conserved together with
magnetic helicity, we have

Mp + Mq = Mk , (7.1)

|Hp| + |Hq | = |Hk| , (7.2)

where we are assuming that only helicity of one sign is involved. Suppose the initial field is fully helical
and has the same sign of magnetic helicity at all scales, we have

2Mp = p|Hp| and 2Mq = q|Hq | , (7.3)

and so Eq. (7.1) yields

p|Hp| + q|Hq | = 2Mk�k|Hk| , (7.4)

where the last inequality is just the realizability condition (3.59) applied to the target wavenumberk after
the interaction. Using Eq. (7.2) in Eq. (7.4) we have

p|Hp| + q|Hq |�k(|Hp| + |Hq |) . (7.5)

In other words, the target wavevectork after the interaction of wavenumbersp andq satisfies

k�
p|Hp| + q|Hq |
|Hp| + |Hq | . (7.6)

The expression on the right hand side of Eq. (7.6) is a weighted mean ofp andq and thus satisfies

min(p, q)�
p|Hp| + q|Hq |
|Hp| + |Hq | � max(p, q) , (7.7)

and therefore

k� max(p, q) . (7.8)

In the special case wherep=q, we havek�p=q, so the target wavenumber after interaction is always less
or equal to the initial wavenumbers. In other words, wave interactions tend to transfer magnetic energy
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to smaller wavenumbers, i.e. to larger scale. This corresponds to an inverse cascade. The realizability
condition, 1

2k|Hk|�Mk, was the most important ingredient in this argument. An important assumption
that we made in the beginning was that the initial field be fully helical; see Ref.[159,362]for the case of
fractional helicity.

7.2. The EDQNM closure model

One of the earliest closure schemes applied to the MHD dynamo problem was the eddy-damped
quasi-normal Markovian (EDQNM) approximation. This was worked out in detail by Pouquet, Frisch
and Léorat (PFL)[304]. EDQNM has been used frequently when dealing with fluid turbulence and is
described, for example, in Refs.[325,363]. We do not describe it in great detail. Instead, we outline just
the basic philosophy, and the crucial insights gained from this closure. PFL assumed that thebandu fields
were homogeneous, isotropic (but helical) random fields. This is similar to the unified treatment presented
in Section 5.6. The large and small scale fields would again be distinguished by whether the wavenumber
k is smaller or greater than the wavenumber of the forcing. It was also assumed that the initialb field is
statistically invariant under sign reversal (b→ −b); the MHD equations then preserve this property and
the cross helicity〈u ·b〉 is then always zero. Now suppose the MHD equations for the fluctuating fields are
written symbolically aṡu= uu, whereu stands for some component ofu or b and〈u〉 = 0. This notation
is used only to illustrate the effects of the quadratic nonlinearity; the linear dissipative and forcing terms
have been dropped since they do not pose any specific closure problem and can be re-introduced at the
end. Then we obtain for the second and third moments, again in symbolic form,

d〈uu〉
dt

= 〈uuu〉, d〈uuu〉
dt

= 〈uuuu〉 . (7.9)

The quasi-normal approximation consists of replacing the fourth moment〈uuuu〉 by its Gaussian value,
that is the sum of products of second order moments.6 It turns out that such an approximation leads
to problems associated with unlimited growth of the third moment, and the violation of the positivity
constraint for the energy spectra. This is cured by assuming that the neglected irreducible part of the
fourth moment in (7.9) is in the form of a damping term, which is a suitable linear relaxation operator
of the triple correlations (a procedure called eddy-damping). One also carries out ‘Markovianization’,
by assuming that the third moment responds to the instantaneous product of the second moments. The
resulting third moment is substituted back on the RHS of the equation for second moments in (7.9). This
results in a closed equation for the equal-time second-order moments

d〈uu〉
dt

= �(t)〈uu〉〈uu〉 , (7.10)

where�(t) essentially describes a relaxation time for a given triad of interacting modes. It is given by

�(t) =
∫ t

0
e− ∫ t

� �(s) ds d� . (7.11)

6 Note that the quasi-normal approximation may be more problematic when applied to MHD since the dynamo generated
B-field could initially be much more intermittent than the velocity field (see for example the discussion of the kinematic small
scale dynamo in Section 5). Therefore the validity of EDQNM applied to MHD is somewhat more questionable than when
applied to pure hydrodynamic turbulence.
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Here�(s) is the eddy damping operator and was written down in Ref.[304] using phenomenological
considerations. It depends on the kinetic and magnetic spectrum and incorporates the damping effects on
any mode due to nonlinear interactions, Alfven effect and microscopic diffusion. (In the stationary case,
where� = constant,� → �−1.) The derived evolution equations for the energy and helicity spectra of the
random velocity and magnetic fields, are shown to preserve the quadratic invariants of total energy and
magnetic helicity, just as in full MHD. The complete spectral equations under the EDQNM approximation
are give in Table I of Ref.[304], and will not be reproduced here (see also the Appendix in Ref.[364]).

However several crucial insights resulted from this work about how the Lorentz force affects the large
scale dynamo. From the EDQNM evolution equations for the kinetic and magnetic spectra, PFL identified
three important effects, all of which involve the coupling between widely separated scales. SupposeMk

andHk are the magnetic energy and helicity spectra andEk, Fk the corresponding kinetic energy and
helicity spectra. And suppose we are interested in the dynamics of the magnetic energy at wavenumberk
due to velocity and magnetic fields at much larger scales (wavenumbers�a0k) and much smaller scales
(wavenumber�k/a0), wherea0>1. Then, in concrete terms, PFL found that the nonlocal contributions
to the evolution are

˙(Mk)NLoc = k�k(Ek − Mk) + �Rk2Hk − 2�Vk k
2Mk + · · · , (7.12)

˙(Hk)NLoc = (�k/k)(Fk − k2Hk) + �RMk − 2�Vk k
2Hk + · · · , (7.13)

˙(Ek)NLoc = −k�k(Ek − Mk) − 2(2
5�Vk + �Mk + �Rk )k

2Ek + · · · , (7.14)

˙(Fk)NLoc = −k�k(Fk − k2Hk) − 2(2
5�Vk + �Mk + �Rk )k

2Fk + · · · , (7.15)

where

�k = 4
3k

∫ a0k

0
�kkqMq dq , (7.16)

�Rk = −4
3

∫ ∞

k/a0

�kqq[Fk − k2Hk] dq, �Vk = 2
3

∫ ∞

k/a0

�kqqEq dq . (7.17)

�Mk = 2
3

∫ ∞

k/a0

�kqqMq dq, �Rk = 2
15

∫ ∞

k/a0

�kqqq
��q

�q
(Eq − Mq)dq . (7.18)

The first term on the RHS of (7.12), referred to by PFL as the Alfvén effect, leads to equipartition of the
kinetic and magnetic energies, at any scale due to magnetic energy at larger scales. This happens on the
Alfvén crossing time of the larger scale field. The second term, very important for what follows, shows
that the growth of large scale magnetic energy is induced by the small scale ‘residual’ helicity, which
is the difference between the kinetic helicity and a current helicity contribution, due to the small scale
magnetic field. The part of�Rk depending on the kinetic helicity corresponds closely to the usual� effect,
once one realizes that� is like a correlation time. Over and above this term PFL discovered for the first
time the current helicity contribution, thek2Hk term in�Rk . The third term gives the turbulent diffusion
of the large scale magnetic field. Surprisingly, this term does not get affected, to the leading order, by
nonlinear effects of the Lorentz force (although the small scale magnetic field does affect the diffusion
of the large scale velocity field). PFL also gave a heuristic derivation of the last two results, because of
their potential importance. This derivation, has since been reproduced in various forms by several authors
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Fig. 7.1. Inverse cascade in a numerical solution of the EDQNM equations showing the magnetic energy spectrum (here called
EM
k

) at two different times. Kinetic energy and helicity are injected at wavenumberk = 1. Note the peak of magnetic energy
propagating toward smaller values ofk. Adapted from[304].

[222,365,366]and has also been extended to include higher order corrections[258]. We outline it in
Appendix D and use it to discuss the nonlinear saturation of the large scale dynamo in Section 9.3.

The EDQNM equations were numerically integrated by PFL to study the dynamo growth of magnetic
energy. Most important in the present context is the case when both kinetic energy and helicity are
continuously injected. In this case PFL found what they described as an inverse cascade of magnetic
helicity, which led to the appearance of magnetic energy and helicity in ever increasing scales (limited
only by the size of the system).Fig. 7.1shows the resulting magnetic energy spectrum at two times. One
can see the build up of large scale magnetic energy on scales much larger than the injection scale (k= 1).
PFL have also argued that this inverse cascade of magnetic energy resulted from a competition between
the helicity (residual�) and the Alfvén effect. We shall return to this question in subsequent sections.
Numerical solutions to the EDQNM closure equations also reproduce small scale dynamo action in the
absence of helicity[367]. However, the decisive terms describing small scale dynamo action do not seem
to appear in the nonlocal interaction terms extracted in Eqs. (7.12)–(7.15).

8. Simulations of large scale dynamos

For astrophysical applications, the inverse cascade approach using the PFL model seemed too idealized
compared to the�2 and�� dynamo models that have been studied intensively in those years when the PFL
model was proposed. Furthermore, there seems little scope for generalizing EDQNM to inhomogeneous
systems with rotation. Nevertheless, the basic idea of an inverse cascade was well established and verified
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by several groups[4,262,368–370]. Only recently, however, there have been serious attempts to bridge
the gap between the PFL approach and mean field models. In this section we review recent efforts[4] to
study helically driven hydromagnetic turbulence and to compare with the associated�2 dynamo model
that is applicable in the equivalent situation, i.e. also with fully periodic boundary conditions. After that,
in Section 9, we consider in detail the implications of the conservation of magnetic helicity to mean
field models.

8.1. The basic equations

In order to simulate the effect of cyclonic turbulence without actually including the physical effects
that contribute to cyclonic turbulence one can substitute the buoyancy term by an explicit body force. The
effects of stratification and rotation are therefore neglected.

A compressible isothermal gas with constant sound speedcs, constant dynamical viscosity�, and
constant magnetic diffusivity� is considered. To make sure the magnetic field stays solenoidal, i.e.
∇ · B= 0,B is expressed in terms of the magnetic vector potentialA, so the field is written asB= ∇ ×A.
The governing equations for density�, velocityu, and magnetic vector potentialA, are given by

D ln �

Dt
= −∇ · u , (8.1)

Du

Dt
= −c2

s∇ ln � + J× B

�
+ �

�
(∇2u+ 1

3∇∇ · u) + f , (8.2)

�A

�t
= u× B+ �∇2A , (8.3)

where D/Dt = �/�t + u · ∇ is the advective derivative. The current density,J = ∇ × B/�0, is obtained
in the form�0J = −∇2A + ∇∇ · A. The gauge� = −�∇ · A for the electrostatic potential is used, and
� = constant is assumed, so the magnetic diffusion term is just�∇2A. Details regarding the numerical
solution of these equations are analogous to the nonhelical case and are discussed elsewhere[272]. Many
of the simulations presented here have been done using the PENCIL CODE [271], mentioned already in
Section 5.4.

For the following it is useful to recall that each vector field can be decomposed into a solenoidal
and two vortical parts with positive and negative helicity, respectively. These are also referred to as
Chandrasekhar–Kendall functions (cf. Section 3.7). It is often useful to decompose the magnetic field
into positively and negatively helical parts. Here, we use eigenfunctions with positive eigenvalues (i.e.
with positive helicity) as forcing functionf of the flow. We restrict ourselves to functions selected from a
finite band of wavenumbers around the wavenumberkf , but direction and amplitude are chosen randomly
at each timestep. Further details can be found in Ref.[4]. Similar work was first carried out by Meneguzzi
et al. [262], but at the time one was barely able to run even until saturation. Since the nineties, a lot
of work has been done on turbulent dynamos with ABC flow-type forcing[226,227,229,370]. In none
of these investigations, however, the saturation behavior has been studied and so the issue of resistively
slow magnetic helicity evolution past initial saturation remained unnoticed. It is exactly this aspect that
has now become so crucial in understanding the saturation behavior of nonlinear dynamos. We begin by
discussing first the linear (kinematic) evolution of the magnetic field.
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8.2. Linear behavior

Dynamo action occurs once the magnetic Reynolds number exceeds a certain critical value,Rcrit. For
helical flows,Rcrit is between 1 and 2. Note that the values given inTable 1of Ref.[4] need to be divided
by 2	 in order to conform with the definition of the magnetic Reynolds number,Rm = urms/(�kf ), used
throughout most of this review. In the supercritical case,Rm >Rcrit, the field grows exponentially with the
growth rate�, which is proportional to the inverse turnover time,urmskf . The resistively limited saturation
behavior that will be discussed below in full detail has no obvious correspondence in the kinematic stage
when the field is too weak to affect the motions by the Lorentz force[223]. Nevertheless, there is actually a
subtle effect on the shape of the magnetic energy spectrum asRm increases: the magnetic energy spectrum
has two bumps, each being governed by opposite magnetic helicity. We will explain this in more detail
below, where we also show the evolution of the two bumps (Fig.8.2). For now we just note that, while in
the weakly supercritical case the two bumps can be far apart from each other. However, asRm is increased
the two bumps in the spectra move closer together while maintaining a similar height, decreasing thus the
net magnetic helicity, as imposed by magnetic helicity conservation. But before we can fully appreciate
this phenomenon, we need to discuss the effect the kinetic helicity has on the magnetic field.

A helical velocity field tends to drive helicity in the magnetic field as well, but in the nonresistive limit
magnetic helicity conservation dictates that〈A ·B〉=const=0 if the initial field (or at least its helicity) was
infinitesimally weak. (Here and elsewhere, angular brackets denote volume averages.) Thus, there must
be some kind of magnetic helicity cancelation. Under homogeneous isotropic conditions there cannot be
a spatial segregation in positive and negative helical parts. Instead, there is a spectral segregation: there
is a bump at the forcing wavenumber and another ‘secondary’ bump at somewhat smaller wavenumber.
The two bumps have opposite sign of magnetic helicity such that the net magnetic helicity is close to zero
(and it would be exactly zero in the limitRm → ∞). At the forcing wavenumber, the sign of magnetic
helicity agrees with that of the kinetic helicity, but at smaller wavenumbers the sign of magnetic helicity
is opposite. At small values ofRm, this secondary peak can be identified with the wavenumber where the
corresponding�2 dynamo has maximum growth rate; see Section 6.5.1. Simulations seem to confirm that,
asRm increases,kmaxapproaches12kf [159], as one would expect from�2 dynamo theory. Since these two
peaks have opposite magnetic helicity, their moving together in the high-Rm limit tends to lower the net
magnetic helicity, thus confirming earlier results[223,224]that suggest that the total magnetic helicity
approaches zero in the high-Rm limit.

8.3. Nonlinear behavior

Eventually, the magnetic energy stops increasing exponentially. This is due to the nonlinear terms, in
particular the Lorentz forceJ × B in Eq. (8.2), which begins to affect the velocity field. The temporal
growth of the power spectra becomes stagnant, but the spectra saturate only partially; seeFig. 8.1, where
we show data from a run with forcing at wavenumberkf = 5. In the left hand panel we see that, by
the timet = 600, the power spectra have saturated at larger wavenumbers,k�3. However, it takes until
t # 1600 for the power spectra to be saturated also atk = 1 (right hand panel ofFig. 8.1). In order
to see more clearly the behavior at large scales, we show inFig. 8.2data from a run withkf = 27 and
compare spectra in the linear and nonlinear regimes. In order to clarify the different roles played by the
positively and negatively polarized components of the turbulence, we decompose the magnetic power
spectra as explained in Section 3.7. The forcing has positive helicity, giving rise to a peak ofM+

k at small
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Fig. 8.1. Power spectra of magnetic energy of Run 3 of Ref.[4]. During the initial growth phase the field saturates at small scales
first and only later at large scales (left hand panel). Later, when also the large scale field saturates, the field at intermediate scales
(k = 2, 3, and 4) becomes suppressed. In the second panel, intermediate times are shown as dotted lines,t = 700 is shown in
solid andt = 1600 is shown as a thick solid line. The forcing wavenumber iskf = 5. Adapted from Ref.[371].

Fig. 8.2. Power spectra of magnetic energy of positively and negatively polarized parts (M+
k

andM−
k

) in the linear and nonlinear
regimes. The spectra in the linear regime have been compensated by the exponential growth factor to make them collapse on top
of each other. Here the forcing wavenumber is in the dissipative subrange,kf = 27, but this allows enough scale separation to
see the inverse transfer of magnetic energy to smallerk. The data are from Run B of Ref.[337].

scales. Magnetic helicity conservation requires there to be energy in oppositely polarized components,
M−

k . Again, because of magnetic helicity conservation (Section 7.1), the bump ofM−
k can only propagate

to the left, i.e. to larger scales.
In the linear regime, all spectra are just shifted along the ordinate, so the spectra have been compensated

by the factorMini exp(2�t), where� is the growth rate of the rms field andMini is the initial magnetic
energy. In the nonlinear regime the bump on the right stays at approximately the same wavenumber (the
forcing wavenumber), while the bump on the left propagates gradually further to the left. As it does so,
and since, in addition, the amplitude of the secondary peak increases slightly, the net magnetic helicity
inevitably increases (or rather becomes more negative in the present case). But, because of the asymptotic
magnetic helicity conservation, this can only happen on a slow resistive time scale. This leads to the
appearance of a (resistively) slow saturation phase past the initial saturation; seeFig. 8.3.
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Fig. 8.3. The three stages of helical magnetic field growth: exponential growth until initial saturation (when〈B2〉/�0 = 〈�u2〉),
followed by a (resistively) slow saturation phase. In this plot we have used�0 = 1. The energy of the large scale magnetic field,

〈B2〉, is shown for comparison. The data are from Run 3 of Ref.[4].

8.4. Emergence of a large scale field

In the simulations of Ref.[4] the flow was forced at an intermediate wavenumber,k≈ kf = 5, while
the smallest wavenumber in the computational domain corresponds tok = k1 = 1. The kinetic en-
ergy spectrum peaks atk≈ kf , which is therefore also the wavenumber of the energy carrying
scale. The turbulence is nearly fully helical with〈� · u〉/(kf 〈u2〉)≈ 0.7 . . .0.9. The initial field
is random, but as time goes on it develops a large scale component at wavenumberk≈ k1 = 1;
seeFig. 8.4.

The large scale field seen inFig. 8.4has only one preferred direction, which is the wavevectork1 of
B. Different initial conditions can produce different directions ofk1; see Fig. 6 of Ref.[4]. A suitable
definition of the mean field is a two-dimensional average over the two directions perpendicular tok1. (The
most useful choice among the three possibilities can only be taken a posteriori when we know the direction
k1 in which the large scale field varies. So, in practice, one has to calculate all three possibilities and
select the right one in the end.) The resulting large scale field is one of the following three eigenfunctions
of the curl operator whose wavevectors point along a coordinate direction, i.e.

B(x) =
(coskmz

sinkmz

0

)
,

( 0
coskmx

sinkmx

)
, or

( sinkmy

0
coskmy

)
, (8.4)

wherekm = k1 = 1. These fields are force-free and are also referred to as Beltrami fields. The large scale
field is fully helical, but with opposite (here negative) current helicity relative to the small scale field, i.e.
J · B= −kmB

2
<0. This property alone allows us to estimate the saturation amplitude of the dynamo, as

will be done in the next section.
It is also interesting to note that the one point probability density functions (PDF) of the three magnetic

field components are, to a good approximation, Gaussian. This is shown in the left hand panel ofFig. 8.5
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Fig. 8.4. Cross-sections ofBx(0, y, z) for Run 3 of Ref.[4] at different times showing the gradual build-up of the large scale
magnetic field aftert = 300. Dark (light) corresponds to negative (positive) values. Each image is scaled with respect to its
min and max values. The final state corresponds to the second eigenfunction given in Eq. (8.4), but with some smaller scale
turbulence superimposed.

Fig. 8.5. Probability density functions ofBx/Brms andBy/Brms for Run 3 of Ref.[4] at the time of saturation (left). For
comparison, the PDFs are also shown for nonhelically forced turbulence (right). In the left hand plot, the dotted lines give
Gaussian fits with a width of 0.27.By/Brms is fitted by a single Gaussian around zero, whileBx/Brms is fitted by a superposition
of three Gaussians (one around zero with weight 0.26, and two with weight 0.37 shifted by±0.76 away from zero).

where we plot one point PDFs ofBx andBy for Run 3 of Ref.[4] at the time of saturation. (The PDF of
Bz looks similar to that ofBx and is not shown.)

We recall that, in this particular simulation, thex andz components of the magnetic field show large
scale variation in they direction. One therefore sees two marked humps in the PDFs ofBx andBz, which
can be fitted by a superposition of two Gaussians shifted away from zero, together with another Gaussian
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of lower weight around zero. (Note that even though there is a meanBx field, the presence of the random
fluctuating component makes the notion of a PDF meaningful. Indeed it is the presence of a mean field
that distorts the one point PDF to a double humped form, rather than a Gaussian centered at the origin).
The y component of the field does not show a large scale field and can be fitted by a single Gaussian
of the same width. (In the absence oflarge scaledynamo action the three components of the magnetic
field would not be Gaussians but stretched exponentials; see Ref.[203] for such results in the context of
convection, where there is only small scale dynamo action.) In that case, themodulusof the field (i.e. not
its individual components) tends to have a log-normal probability density function. For comparison we
show in the right hand panel ofFig. 8.5the corresponding PDFs for nonhelically forced turbulence.

8.5. Importance of magnetic helicity

In the following we show that for strongly helical dynamos the saturation amplitude and the saturation
time can accurately be estimated from magnetic helicity considerations alone—without actually solving
the induction equation explicitly. The argument is similar in nature to the way how the descent speed of
a free-falling body can be calculated based on the consideration of kinetic and potential energies alone,
without considering the equation of motion. A more accurate treatment of the saturation behavior of
helical dynamos will be presented in Sections 9.3 and 9.4.3.

8.5.1. Saturation amplitude
Even though the current helicity of the large and small scale fields are finite, the current helicity of the

total (small scale plus large scale) field must approach zero in the long time limit. This is evident from
the magnetic helicity equation (3.34) which, for a closed or periodic domain, is simply

d

dt
〈A · B〉 = −2�〈J · B〉 . (8.5)

Thus, in the steady state (d/dt = 0) one has〈J · B〉 = 0. However, the time scale on which this can be
achieved is the resistive one, as will be discussed in the following.

Splitting the magnetic field and current density into mean and fluctuating components, similar to
Eq. (6.4), we have

J · B= J · B+ j · b , (8.6)

and therefore also〈J · B〉 = 〈J · B〉 + 〈 j · b〉. In the steady state we have

−〈J · B〉 = 〈 j · b〉 (steady state) . (8.7)

Here, overbars denote suitably defined two-dimensional averages (Section 8.4) and angular brackets
denote volume averages. The helical forcing tends to produce finite current helicity at small scales. This,
in turn, tends to induce finite current helicity of opposite sign at large scales. Depending on the degree of
helicity in the forcing, the small scale field will be more or less strongly helical. The degree of helicity
of the large scale fields depends also on other factors such as boundary conditions and the presence of
shear which produces toroidal field quite independently of helicity.

The case of fractional helicities can be dealt with by introducing efficiency factors[6,159,362], but in
order to explain the basic point we just assume that both mean and fluctuating fields are fully helical.
(This is also likely to be more fully the case when the small scale field arises predominantly due to
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Fig. 8.6. Late saturation phase of fully helical turbulent dynamos for three different values of the magnetic Reynolds number:
Rm ≡ urms/�kf = 2.4, 6, and 18 for Runs 1, 2, and 3 respectively; see Ref.[4]. The mean magnetic field,B, is normalized with
respect to the equipartition value,Beq = √

�0�0urms, and time is normalized with respect to the kinematic growth rate,�. The
dotted lines represent the formula (8.13) which tracks the simulation results rather well.

the tangling of the large scale field by the helical turbulence rather than the small scale dynamo.) So,
in the fully helical case we have〈J · B〉 ≈ ∓km〈B2〉 and 〈 j · b〉 ≈ ±kf 〈b2〉, wherekf is the typical
wavenumber of the fluctuating field (which is close to the wavenumber of the energy carrying scale). This
yieldskm〈B2〉 = kf 〈b2〉, and if the small scale field is in equipartition with the turbulent motions, i.e. if
〈b2〉 ≈ 〈�0�u

2〉 ≡ B2
eq, we have[4]

〈B2〉 = kf

km
〈b2〉 ≈ kf

km
B2

eq>B2
eq (steady state) . (8.8)

We see that for a fully helical dynamo the large scale field atk = km is in general in super-equipartition
with the kinetic energy of the turbulence. This fact is indeed confirmed by simulations which also show
strong large scale fields in super-equipartition; seeFig. 8.6.

Obviously, the simulated values of〈B2〉/B2
eq fall somewhat short of this simplistic estimate, although

the estimate becomes more accurate in the case of larger magnetic Reynolds number (Run 3 hasRe=Rm ≡
urms/�kf ≈ 18, Run 2 hasRe= Rm ≈ 6, and Run 1 hasRe= Rm ≈ 2.4).

8.5.2. Saturation time
It turns out that the time dependence inFig. 8.6can be well described by a fit formula that can be

derived from the magnetic helicity equation. In the following we define the current helicities at large and
small scales as

C1 = 〈J · B〉 and Cf = 〈 j · b〉 , (8.9)
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respectively, and the magnetic helicities at large and small scales as

H1 = 〈A · B〉 and Hf = 〈a · b〉 , (8.10)

respectively. Near saturation we have|C1| ≈ |Cf |, but becauseC1 = k2
1H1 andCf = k2

f Hf together with
k1/kf>1, we have

|H1|?|Hf | (near saturation) . (8.11)

Furthermore, as will be shown more convincingly in Section 9.4.2, the small scale field tends to saturate
on a dynamical time scale. At late times we can therefore, to a good approximation, neglect the time
derivative ofHf relative to the time derivative ofH1 in Eq. (8.5), so

Ḣ1 = −2�k2
1H1 − 2�k2

f Hf . (8.12)

Solving Eq. (8.12) forH1(t), using a given value ofHf = const, we find

H1(t) = Hf
k2

f

k2
1

[1 − e−2�k2
1(t−tsat)] . (8.13)

The timetsat is determined by the strength of the initial seed magnetic field,Bini ; for weaker fields it takes
somewhat longer to reach saturation. Since the growth is exponential, the dependence is only logarithmic,
sotsat= �−1 ln(Beq/Bini), where� is the growth rate of the rms field strength of the total field. Eq. (8.13)
describes the evolution ofB quite well, as is shown inFig. 8.6.

Clearly, Eq. (8.13) is not applicable too close tot= tsat. This is also evident fromFig. 8.6, which shows
that in the simulations (solid lines) there is a finite mean field already att = tsat. In order to describe this
phase correctly, one has to retain the time derivative ofHf , as will be done in Sections 9.3 and 9.4 in the
framework of the dynamical quenching model. At early times resistive effects have not yet played a role,
so the total magnetic helicity must be approximately zero, and this means that a helical large scale field
must be smaller thanBeq; see Section 9.4.2 for details.

8.6. Alpha effect versus inverse cascade

The process outlined above can be interpreted in two different ways: inverse cascade of magnetic
helicity and/or� effect. The two are similar in that they tend to produce magnetic energy at scales larger
than the energy-carrying scale of the turbulence. As can be seen from Figs.8.1 and 8.2, the present
simulations support the notion ofnonlocal inverse transfer[4]. However, this is not really an inverse
cascade in the usual sense, because there is no sustained flux of energy through wavenumber space, as
in the direct Kolmogorov cascade. Instead, there is just a bump traveling in wavenumber space from ak
that is already smaller thankf to even smaller values ofk. In that respect, the present simulations seem to
differ from the interpretation of PFL based on the EDQNM closure approximation[304].

The other interpretation is in terms of the� effect. We recall that for�2 dynamos there is a wavenumber
kmax where the growth of the large scale field is fastest; see Section 6.5.1. For reasonable estimates,
kmax coincides with the position of the secondary bump in the spectrum; see Ref.[4, Section 3.5].
This can be taken as evidence in favor of the� effect. In the nonlinear regime, the secondary bump
travels to the left in the spectrum (i.e. toward smallerk). In the EDQNM picture this has to do with the
equilibration of kinetic and current helicities at progressively smaller wavenumbers, which then leads
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to saturation at that wavenumber, but permits further growth at smaller wavenumbers until equilibration
occurs, and so forth. Another interpretation is simply that, after� is quenched to a smaller value, the
magnetic spectrum now peaks atkmax = �/(2�T), which is now also smaller. At this lower wavenumber
the spectrum is still not fully saturated; the field continues to grow here until equilibration is attained also at
that scale.

8.7. Nonlinear� effect

It is quite clear that� must somehow depend on the strength of the mean field,B. By considering the
effect ofB on the correlation tensor of the turbulence it has been possible to derive a correction to� of
the form[329,372,373]

� = �K(1 − B
2
/B2

eq) (for |B|>Beq) . (8.14)

For practical applications, to make sure that|�| decreases with increasing field strength and to prevent�
from changing sign, Eq. (8.14) is often replaced by the fit formula[374]

� = �K

1 + B
2
/B2

eq

(conventional quenching) . (8.15)

It should also be noted that fully nonlinear expressions exist; see, e.g., Ref.[310]. However, it has long
been noted that in the astrophysically relevant case,Rm?1, the magnitude of the fluctuating field is likely

to exceed that of the mean field, i.e.b2/B
2
?1. Indeed, a naive application ofkinematicmean field theory

suggests that[301,375,376]

〈b2〉/〈B2〉 = Rm (kinematic theory) . (8.16)

This result is a direct consequence of flux freezing (Section 3.3) during the compression of a uniform
field of strengthB and scaleL into a sheet of ‘skin’ thicknessd = LR

1/2
m . It can also be derived under

more general assumptions, but then only in the two-dimensional case[377]; see Appendix C. Further in
the three dimensional case, the small scale field dynamo can also generateb at a rate much faster thanB,
and unrelated to the strength of the mean field[378].

Nevertheless, the above argument has been used to suggest that the quenching formula (8.15) should
take the small scale field, obeying the relation in Eq. (8.16), into account. Using Eq. (8.16), this then
leads to

� = �K

1 + RmB
2
/B2

eq

(catastrophic quenching) . (8.17)

This formula was first suggested by Vainshtein and Cattaneo[340]. Only recently it has become clear
that, even though Eq. (8.16) is actually no longer valid in the nonlinear regime, Eq. (8.17) can indeed
emerge in a more rigorous analysis under certain circumstances[6].

The problem with Eq. (8.17) is that� becomes strongly suppressed already forB
2
/B2

eq>1. Conversely,

for the sun whereB2
/B2

eq ≈ 1, this means that� would be negligibly small. Eq. (8.17) is therefore
sometimes referred to as catastrophic quenching formula.

Given the potentially catastrophic outcome of mean field theory when applying Eq. (8.17) to astro-
physically relevant situations, the problem of� quenching has begun to attract significant attention in
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the last few years. Considerable progress has recently been made by restricting attention to the simplest
possible system that still displays an� effect, but that is otherwise fully nonlinear.

8.8. Determining alpha quenching from isotropic box simulations

The issue of (catastrophic)� quenching was preceded by the related issue of�t quenching. Indeed,
already 30 years ago concerns have been expressed[379] that turbulent diffusion might not work when
the magnitude of the field is strong. A serious argument against catastrophic�t quenching came from
the measurements of decay times of sunspots where the magnetic field is strong and yet able to decay
almost on a dynamical time scale. Estimates for the turbulent magnetic diffusivity in sunspots suggest
�t ≈ 1011cm2 s−1 [380–383].

Quantitatively, catastrophic (i.e.Rm-dependent)�t quenching was first suggested based on two-
dimensional simulations with an initially sinusoidally modulated large scale magnetic field in the plane
of the motions[384]. However, these results have to be taken with caution, because constraining the
field to be in the plane of the motions is artificial in that the interchange of field lines is then impossible.
Field lines that undergo interchanging motions can remain nearly straight, so not much work is involved
and one would therefore not necessarily expect catastrophic quenching if the flow were allowed to be
fully three-dimensional. This has been confirmed using both closure models[302] and three-dimensional
simulations[385]. Nevertheless, the possibility of catastrophic quenching of�t is not completely ruled
out. Simulations are not yet conclusive, as discussed below in Section 9.4.3. However, unlike the case of
catastrophic� quenching, which can be explained as a consequence of magnetic helicity conservation,
there is no similar argument for anRm dependent quenching of�t.

The issue of catastrophic� quenching was originally motivated by analogy with catastrophic�t quench-
ing in two dimensions[340], but then backed up by simulations with an imposed field[311], so � is
calculated as the ratio of the resulting electromotive force and the imposed magnetic field; cf. Section 6.4.
Another technique to measure� is to modify or remove a component of the mean field in an otherwise
self-consistent simulation and to describe the response of the system in terms of� effect and turbulent
diffusion [4]. This technique is easily explained by looking, for example, at thex-component of the�2

dynamo equation (Section 6.5.1),

�Bx

�t
= −�

�By

�z
+ (� + �t)

�2Bx

�z2 . (8.18)

If, at some point in time, thex component of the mean field is removed, i.e.Bx → Bx − Bx , then
Eq. (8.18) describes the immediate recovery ofBx . The recovery is described by the first term on the
RHS of Eq. (8.18), and the rate of recovery is proportional to�. This method allows an estimate not only
of �, but also of�t by measuring the simultaneous temporary reduction ofBy . It turns out[4] that both
methods give comparable results and confirm the catastrophic quenching results (8.17). This result will
later be understood as a special case of the dynamical quenching formula in the nearly steady limit for
fully force-free (force-free) fields; see Eq. (9.19).

Yet another method is to impose a nonuniform field that is a solution of the mean field dynamo
equations—for example a Beltrami field in the case of periodic box. By changing the wavelength of the
Beltrami field, one can determine both� and�t simultaneously. This method has been used in connection
with the underlying flow field of the Karlsruhe dynamo experiment[218,219].
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Fig. 8.7. Space–time diagram of the mean toroidal field atx = −	 (negative local shear) andx = 0 (positive local shear).
Dark (light) shadings refer to negative (positive) values. Note the presence of dynamo waves traveling in the positive (negative)
z-direction for negative (positive) local shear (from Ref.[386]).

8.9. Dynamo waves in simulations with shear

The fact that dynamos exhibit cyclic behavior when there is shear is not surprising if one recalls the
type of solutions that are possible for�� dynamos (Section 6.5.2). On the other hand, until only a few
years ago the concept of mean field theory was only poorly tested and there was enough reason to doubt
its validity especially in the nonlinear regime. Even in the linear regime the relevance of mean field theory
has been doubtful because the mean field can be much weaker than the fluctuating field[143,339].

Given all these reservations about the credibility of mean field theory it was a surprise to see that cyclic
dynamo action does actually work[386]. As in the simulations without shear, the emergence of a large
scale field is best seen in the nonlinear regime; seeFig. 8.7. The reason is that prior to saturation several
different modes may be excited, while in the nonlinear regime most of the modes are suppressed by the
most dominant mode. Nonlinearity therefore has a ‘self-cleaning’ effect[4,286].

The dynamo exhibits a certain phase relation between poloidal and toroidal fields (seeFig. 8.8). This
phase relation is quite similar to what is expected from a corresponding mean field model (see Section
6.5.3). Comparison with� quenching models in the same geometry (see Fig. 9 of Ref.[386]) produces
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Fig. 8.8. Evolution ofBx andBy atx = −	 andz= 0. Note thatBx has been scaled by a factor−100. Here the overbars denote
only a one-dimensional average over the direction of shear,y. (Adapted from Ref.[386].)

similarly anharmonic oscillations, as seen inFig. 8.8. This strongly suggests that the simulation results
can basically be described in terms of the mean field concept.

An important question for astrophysical applications is which of the properties of the dynamo depend
on resistivity. Certainly the late saturation behavior of the field does depend on resistivity and satisfies the
‘magnetic helicity constraint’ embodied by Eq. (8.13); see Fig. 8 of Ref.[386]. Subsequent simulations
for different values of the magnetic Reynolds number also seem to confirm that the cycle frequency,�cyc,
scales resistively and that�cyc/(�k

2
1) ≈ const=O(10) for urms/(�k1) ranging from 30 to 200; seeTable 5

of Ref.[159]. On the other hand, in all cases the large scale magnetic energy exceeds the kinetic energy by
a factor that is between 20 (for smallerRm) and 60 (for largerRm). It is therefore clear that these models
are in a very different parameter regime than the solar dynamo where the energy of the mean field is at
most comparable to the kinetic energy of the turbulence. Furthermore, all turbulent transport coefficients
are necessarily strongly suppressed by such strong fields even if the actual suppression is not explicitly
dependent on the magnetic Reynolds number. A more detailed interpretation of these simulation data has
been possible by using a dynamical quenching model that will be discussed in Section 9.4.3.

8.10. The magnetic helicity constraint in a closure model

The magnetic helicity constraint is quite general and independent of any mean field or other model
assumptions. All that matters is that the flow possesses kinetic helicity. The generality of the magnetic he-
licity constraint allows one to eliminate models that are incompatible with magnetic helicity conservation.
In previous sections we discussed a simple unified model of large and small scale dynamo, generalizing
the Kazantsev model to include helical velocity correlations. In[236,257]this model was further extended
to include ambipolar diffusion as a model nonlinearity. This is a useful toy model since the magnetic field
still obeys helicity conservation even after adding ambipolar drift. So it is interesting to see how in this
model the� effect is being regulated by the change in magnetic helicity, and whether there are similarities
to the dynamical quenching model under full MHD.

This issue was examined in Ref.[286] by solving the moment equations derived in[236,257]nu-
merically. We have given in the Appendix A the derivation of the moment equations for the magnetic
correlations in the presence of ambipolar drift. In deriving the moment equations with ambipolar drift
nonlinearity, one encounters again a closure problem. The equations for the second moment, fortunately,
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contains only a fourth order correlator of the magnetic field. This was closed in[236,257]assuming that
the fourth moment can be written as a product of second moments. The equations for the longitudinal
correlation functionML(r, t) and the correlation function for magnetic helicity density,H(r, t), then are
the same as Eqs. (5.26) and (5.27), except for additions to the coefficients�T (r) and�(r). We have

�ML

�t
= 2

r4

�

�r

(
r4�N(r)

�ML

�r

)
+ GML + 4�N(r)C , (8.19)

�H

�t
= −2�NC + �NML , (8.20)

where

�N = �(r) + 4aC(0, t), �N = �T (r) + 2aM(0, t) . (8.21)

Note that at large scales

�∞ ≡ �N(r → ∞) = −1
3�〈� · u〉 + 1

3�AD〈J · B〉/�0 , (8.22)

�∞ ≡ �N(r → ∞) = 1
3�〈u2〉 + 1

3�AD〈B2〉/�0�0 , (8.23)

where�AD = 2a�0. Here, angular brackets denote volume averages over all space. This makes sense
because the system is homogeneous. Expression (8.22) for�∞ is very similar to the� suppression formula
due to the current helicity contribution first found in the EDQNM treatment by[304] (see Section 7.2).
The expression for�∞ has the nonlinear addition due to ambipolar diffusion.7 It is important to point
out that the closure model, even including the above nonlinear modifications, explicitly satisfies helicity
conservation. This can be seen by takingr → 0 in (8.20). We get

Ḣ (0, t) = −2�C(0, t), d〈A · B〉/dt = −2�〈J · B〉 , (8.24)

where we have used the fact that〈A · B〉 = 6H(0, t), and〈J · B〉 = 6C(0, t). It is this fact that makes it
such a useful toy model for full MHD (see below).

Adopting functional forms ofTL(r) andF(r) constructed from the energy and helicity spectra re-
sembling Run 3 of Ref.[4], Eqs. (8.19) and (8.20) were solved numerically[286]. In the absence of
kinetic helicity,F = 0, and without nonlinearity,a = 0, the standard small scale dynamo solutions are
recovered. The critical magnetic Reynolds number based on the forcing scale is around 60 (here we have
not converted the scale into a wavenumber). In the presence of kinetic helicity this critical Reynolds
number decreases, confirming the general result that kinetic helicity promotes dynamo action[257,287].
In the presence of nonlinearity the exponential growth of the magnetic field terminates when the magnetic
energy becomes large. After that point the magnetic energy continues however to increase nearly linearly.
Unlike the case of the periodic box the magnetic field can here extend to larger and larger scales; see
Fig. 8.9. The corresponding magnetic energy spectra,

EM(k, t) = 1

	

∫ L

0
(kr)3ML(r, t)j1(kr)dk , (8.25)

are shown inFig. 8.10.

7A corresponding term from the small scale magnetic field drops out as a consequence of the requirement that the turbulent
velocity be solenoidal. By contrast, the ambipolar drift velocity does not obey this restriction.
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Fig. 8.9. Evolution of magnetic correlation functionML (denoted byM(r, t) in this figure) for different times, for� = 10−3.
The correlation function of the magnetic helicity (denoted in this figure byN(r, t)), is shown in the inset.� = 10−3.

Fig. 8.10. Evolution of magnetic energy spectra. Note the propagation of magnetic helicity and energy to progressively larger
scales. Thek−2 slope is given for orientation. Note the similarities with Figs.7.1and8.2.

The resulting magnetic field is strongly helical and the magnetic helicity spectra (not shown) satisfy
|HM(k, t)|�(2/k)EM(k, t). One sees inFig. 8.10the development of a helicity wave traveling toward
smaller and smallerk. This is just as in the EDQNM closure model[304] (seeFig. 7.1) and in the
simulations of the full MHD[4,300](seeFig. 8.2).

In the following, we address the question of whether or not the growth of this large scale field depends
on the magnetic Reynolds number (as in[4]). To a good approximation the wavenumber of the peak is
given by

kpeak(t) ≈ �∞(t)/�∞(t) . (8.26)

This result is familiar from mean field dynamo theory (see also Ref.[257]), where the marginal state with
zero growth rate, hask = �/�t , while the fastest growing mode hask = �/2�t ; see Section 6.5.1. In our
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Fig. 8.11. (a) Evolution of〈J ·B〉 for different values of�. The corresponding value of�∞ is shown on the right hand side of the
plot. (b) The evolution of magnetic energy for the same values of�.

model problem, the large scale field, seems to go to a quasi-static state (which has no 1/2 factor) rather
than the fastest growing mode, and then evolve slowly (on the resistive time scale), through a sequence
of such states. This evolution to smaller and smaller wavenumbers is also consistent with simulations
([4, Section 3.5]). Note that herekpeak decreases with time because�∞ tends to a finite limit and�∞
increases; see Section 6.5.1. (This is not the case in the box calculations wherekpeak�2	/L.)

As we saw from Eq. (8.24) the magnetic helicity,〈A · B〉 = 6H(0, t), can only change if there is
microscopic magnetic diffusion and finite current helicity,〈J · B〉 = 6C(0, t). In Fig. 8.11we show that,
after some timet = ts, the current helicity〈J ·B〉 reaches a finite value. This value increases somewhat as
� is decreased. In all cases, however,�AD〈J · B〉/�0 stays below�〈� · u〉, so that|�∞| remains finite; see
(8.22).A constant〈J·B〉 implies from (8.24) that〈A·B〉 grows linearly at a rate proportional to�. However,
since the large scale field is helical, and since most of the magnetic energy is by now (aftert = ts) in the
large scales, the magnetic energy is proportional to〈B2〉 ≈ kpeak〈A · B〉, and can therefore only continue
to grow at a resistively limited rate, seeFig. 8.11. It is to be emphasized that this explanation is analogous
to that given in Ref.[4] and Section 8.3 for the full MHD case; the helicity constraint is independent of
the nature of the feedback!

These results show that ambipolar diffusion (AD) provides a useful model for nonlinearity, enabling
analytic (or semi-analytic) progress to be made in understanding nonlinear dynamos. There are two key
features that are shared both by this model and by the full MHD equations: (i) large scale fields are the
result of anonlocalinverse cascade as described by the� effect, and (ii) after some initial saturation phase
the large scale field continues to grow at a rate limited by magnetic diffusion. This model also illustrates
that it is helicity conservation that is at the heart of the nonlinear behavior of large scale dynamos;
qualitatively similar restrictions arise even for very different nonlinear feedback provided the feedback
obeys helicity conservation.



110 A. Brandenburg, K. Subramanian / Physics Reports 417 (2005) 1–209

Fig. 8.12. Evolution of the energies of the total field〈B2〉 and of the mean field〈B2〉, in units ofB2
eq, for runs with nonhelical

forcing and open or closed boundaries; see the solid and dotted lines, respectively. The inset shows a comparison of the ratio

〈B2〉/〈B2〉 for nonhelical (� = 0) and helical (�>0) runs. For the nonhelical case the run with closed boundaries is also shown

(dotted line near〈B2〉/〈B2〉 ≈ 0.07). Note that saturation of the large scale field occurs on a dynamical time scale; the resistive
time scale is given on the upper abscissa. Adapted from Ref.[55].

8.11. Nonhelical large scale turbulent dynamos with shear

Much of the discussion on large scale dynamos has focused on the� effect. In recent years attention
has been drawn to the possibility of producing large scale fields by other effects such as the shear-current
orW × J effect [322–324]. As remarked in Section 6.6 (where this new term was denoted by�) this
effect is related to Rädler’s[328] � × J effect in that it has the same functional form. At least two
more possibilities have been offered for explaining large scale fields in shearing environments with-
out invoking kinetic helicity. One is the incoherent� effect [387] and the other one is the Vishniac
and Cho flux[388]. Both effects are related to the� effect, but there is no kinetic helicity, so there
can only be helicity fluctuations (former case) or there can be a magnetic contribution to the� effect
(latter case).

In simulations of realistic systems it is easily possible that a number of effects operate simultaneously,
so one cannot be sure that the� effect is not also contributing. This is different in systems where turbulence
and shear are driven by body forces such as those discussed in Section 8.9.

Meanwhile, using a modified toroidal shear profile of the form[389]

U ≈ (0, cosk1x cosk1z,0) , (8.27)

it has been possible to produce strong mean fields[55,390]. Here, mean fields are defined as toroidal
averages. InFig. 8.12we show the evolution of the normalized magnetic energy of the total field〈B2〉/B2

eq,

and of the mean field〈B2〉/B2
eq. Both components increase first exponentially until saturation sets in.

However, the ratio between the two,〈B2〉/〈B2〉, which is shown in the inset ofFig. 8.12, is rather small
(≈ 0.07) during the early kinematic phase, but then it increases to values of around 0.7. In the inset,
comparison is made with the case where the turbulence is driven with negative kinetic helicity, giving
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rise to a positive� effect (the graph is therefore denoted by “�>0”). It turns out that in both cases
(with and without helicity) the energy in the mean field is comparable.

A more dramatic difference is seen in the case of closed (perfectly conducting) outer boundaries.
Although the initial exponential increase is almost equally fast, the field now saturates at a much lower
level and it completely lacks a mean field, i.e.〈B2〉/〈B2〉 ≈ 0.07 even during the saturated state. This is a
striking demonstration of the importance of allowing for magnetic helicity fluxes out of the domain. It is
important that, due to the presence of shear, such fluxes can already be driven inside the domain by the
Vishniac and Cho flux, as was demonstrated earlier[389,391]. Without internal helicity transport, e.g. in
the absence of shear, open boundaries alone are not sufficient to alleviate the magnetic helicity constraint
[392]. We return to this issue in Section 9.6.

9. Magnetic helicity in mean field models

9.1. General remarks

We have seen from both numerical simulations and closure models that magnetic helicity conservation
strongly constrains the evolution of large scale fields. Due to helicity conservation, large scale fields are
able to grow eventually only on the resistive time scale. Note that the magnetic helicity evolution does
not explicitly depend on the nonlinear backreaction due to the Lorentz force. It merely depends on the
induction equation. It therefore provides a strong constraint on the nonlinear evolution of the large scale
field. The effects of this constraint need to be incorporated into any treatment of mean field dynamos.
This will be the aim of the present section, where we solve simultaneously the mean field dynamo
equation (with the turbulent coefficients determined by the nonlinear backreaction) together with helicity
conservation equations.

We will see that the magnetic helicity conservation equations for the mean and the turbulent fields, as
well as of course the mean field dynamo equation, involve understanding the mean turbulent EMF,E, in
the nonlinear regime. So we will need to model the nonlinear effects onE, taking into account nonlinear
backreaction effects of the Lorentz force due to both mean and fluctuating fields.

There are two quite different forms of feedback that can arise. One is the effect of the dynamo-
generated mean field on the correlation tensor of the turbulence,uiuj . The growing mean field could
cause the suppression of the� effect and turbulent diffusion. Such modifications of the turbulent transport
coefficients have been calculated since the early seventies[372,373], adopting usually an approximation
(random waves or FOSA), which linearizes the relevant equations in the fluctuations.This approach missed
an important additional ingredient in the nonlinear backreaction due to Lorentz forces: modifications to
E that involve the fluctuating fields themselves. These arise in calculatingu× b from terms involving the
correlation ofb and the Lorentz force in the momentum equation (see below). In particular, the� effect
gets renormalized in the nonlinear regime by the addition of a term proportional to the current helicity of
the fluctuating field. This is an important effect which is crucial for the correct description of the dynamo
saturation, but one which has been missed in much of the earlier work. The renormalization of the� effect
is quite general and can occur even when the large scale dynamo effect does not involve an� effect in the
kinematic regime. Examples are the� × J andW× J (or shear current) effects discussed in Section 6.6.

The full problem of solving the induction equation and the momentum (Navier–Stokes) equation
including the Lorentz force simultaneously, is a formidable one. One either takes recourse to numerical
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simulations or uses rather more uncertain analytic approximations in numerical mean field models. The
analytic treatments of the backreaction typically involve the quasilinear approximation or a closure
scheme to derive corrections to the mean field dynamo coefficients. For example the EDQNM closure
suggests that the� effect is renormalized by the addition a term proportional to the current helicity of the
small scale fieldj · b, while the turbulent diffusion is left unchanged. It would be useful to understand
this result in a simpler context. For this purpose it can be illuminating to examine a simple heuristic
treatment of the effects of the backreaction. However, since such a treatment is not rigorous, we defer the
discussion toAppendix D and move straight to the more convincing derivation in terms of the minimal tau
approximation.

9.2. The minimal tau approximation: nonlinear effects

In this section we discuss the main aspects of the minimal tau approximation (MTA). Again, for the
purpose of clarity, we restrict ourselves to the assumption of isotropy[8,316,321], but the method can
readily be and has been applied to the anisotropic case[320,393]. A full treatment of inhomogeneous and
anisotropic turbulence is given in Section 10.

In order to incorporate the evolution equations for the fluctuating parts in the expression forE one can
just calculate its time derivative, rather than calculatingE itself [8]. This way one avoids the approximate
integration in Eqs. (6.19) and (6.20). Thus, one calculates

�E

�t
= u̇× b+ u× ḃ , (9.1)

where dots denote partial differentiation with respect tot. The dominant contributions in these two terms
are (using�0 = �0 = 1)

u̇× b= 1
3 j · bB+ (j × b) × b− (� × u) × b− ∇p × b+ · · · , (9.2)

u× ḃ= −1
3� · uB− 1

3u
2J+ u× ∇ × (u× b) + · · · , (9.3)

where the first term on the RHS of Eq. (9.2) and the first two terms on the RHS of Eq. (9.3) are the usual
quadratic correlation terms; all other terms are triple correlations. (For a detailed derivation see Section
10 below.) Thus, we can write

�E

�t
= �̃B− �̃tJ+ T , (9.4)

whereT are the triple correlation terms, and

�̃ = −1
3(� · u− j · b) and �̃t = 1

3u
2 , (9.5)

are turbulent transport coefficients that are related to� and�t, as used in Eq. (6.18), via�= ��̃ and�t = ��̃t.
Note that, at this level of approximation, there are no free parameters in the expression for�̃, neither in
front of� · u nor in front of j · b. However, for strong magnetic fields, there could be quenching functions,
gK(B) andgM(B), in front of both terms[394]. We should also point out that in the above derivation,u
andb refer to theactualsmall scale velocity and magnetic fields, and not to any perturbed field. (This
could also include any ‘nonhelical’ SSD generatedb, although we see that this does not renormalize�t
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Fig. 9.1. Comparison of the spatial dependence of two components of the mean magnetic field and the triple correlation in Run
3 of Ref.[4]. The magnetic field is normalized by the equipartition field strength,Beq, and the triple correlation is normalized
by k1B

3
eq, but scaled by a factor of 2.5 make it have a similar amplitude as the mean field. Note thatBx (solid line) correlates

with Tx (filled dots) andBz (dashed line) correlates withTz (open dots). Adapted from Ref.[327].

and may not contribute to the current helicity term at leading order.) The full derivation for the more
general case of slow rotation, weak stratification and for general magnetic and kinetic spectra (possibly
with ak-dependent�), is given the Section 10.

As we have already emphasized earlier, the crucial step is that now, unlike the case of FOSA or the
heuristic treatment, the triple correlators arenot neglected, but their sum is assumed to be a negative
multiple of the second order correlator, i.e.T = −E/�. This assumption has been checked numerically
(see below), and a similar assumption has recently been verified for the case of passive scalar diffusion
[316,321]. Using MTA, one arrives then at an explicitly time-dependent equation forE,

�E

�t
= �̃B− �̃tJ− E

�
, (9.6)

where the last term subsumes the effects of all triple correlations.
In order to show that the assumption of a correlation between quadratic and triple moments is actually

justified we compare, using data from Run 3 of Ref.[4], the spatial dependence of the triple moments
and the mean field on position. The triple correlation is calculated as

T= ( j × b− � × u− ∇p) × b+ u× ∇ × (u× b) . (9.7)

We note that in Run 3 of Ref.[4] the mean field varied in they direction with components pointing in the
x andz directions [third example in Eq. (8.4)]. Thus,Bx(y) andBz(y) exhibit a sinusoidal variation as
shown inFig. 9.1by the solid and dashed lines, respectively. (Note thatE itself has a negative correlation
with B, for a negative�.) Since�̃ is negative (i.e. opposite to the helicity of the forcing, which is positive),
we expect a positive correlation betweenT andB. This is indeed the case, as shown by the full and open
symbols inFig. 9.1. This demonstrates that the triple correlations are important and cannot be neglected,
as is done in FOSA. Furthermore, since the correlation betweenT andB is positive, and̃�<0, this implies
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that�>0, which is necessary for� to be interpreted as a relaxation time. To demonstrate thatT orB also
correlate withE requires long time averaging[311,334], whereas here we have only considered a single
snapshot, so no time averaging was involved.

In order to determine a meaningful value of�, it is important to get rid of the fluctuations ofE, so time
averaging is now necessary. The procedure is equivalent to that used in the passive scalar case[316],
where a mean concentration gradient is imposed. Here, instead of imposing a gradient of the passive
scalar concentration, one imposes a gradient in one component of the magnetic vector potential or, what
is equivalent, a uniform magnetic fieldB0; see Ref.[327]. The deviations from the imposed field are
treated as fully periodic in all three directions.

The simulations produce average values for the three quantities,

� = 〈E · B〉t /〈B2〉t , �̃K = −1
3〈� · u〉t , �̃M = 1

3〈 j · b〉t , (9.8)

where〈. . . 〉t denotes combined time and volume averages. According to MTA, these three quantities are
connected to each other via

� = �(gK �̃K + gM �̃M) , (9.9)

where we have allowed for the presence of additional quenching factors,gK(B) andgM(B), in front
of the �̃K and �̃M factors, respectively[394]. It turns out that for finite field strength the quenching
factors,gK andgM, are less than unity and, more importantly, they are slightly different from each other
[394]. Using a combination of kinetically and magnetically forced turbulence simulations, it has been
possible to calculate separately these two quenching functions multiplied by the normalized correction
time, combined with the corresponding quenching functions, StgK and StgM, respectively. Here we have
defined

St= �urmskf (9.10)

as a nondimensional measure of the relaxation time[232,301]. The result is shown inFig. 9.2as a function
of the magnetic Reynolds number.

We recall that in the passive scalar case, St was found to converge to a value of about 3 in the limit of large
Reynolds number and small values ofkf [316]. For the present case one finds that St is approximately unity
for small field strengths, but may decrease likeB−3

0 , onceB0 becomes comparable with the equipartition
field strength,Beq; seeFig. 9.3.

To summarize, the effect of the Lorentz forces is, to leading order, the addition of a current helicity
contribution to�̃ and hence to�. There is an additional suppression effect which corresponds effectively
to a dependence of� on the strength of the mean field. This suppression seems however to be independent
of or weakly dependent on the magnetic Reynolds number and is hence not the main limiting factor for
the growth of large scale fields when the magnetic Reynolds number is large. (The last data point for
Rm >100 in the left hand panel ofFig. 9.2seems to suggest a sudden decline, but it is not clear how
reliable both this data point and the corresponding error estimate are.)

An immediate difficulty with having a small scale current helicity contribution to� in Eq. (9.5) is that
one cannot directly incorporate this correction in a mean field model, because one only has information
about the mean fields,J andB, and not their fluctuations,j andb. The solution to this problem is to
invoke the magnetic helicity equation as an auxiliary equation to couplej · b to the mean field equations.
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Fig. 9.2. Magnetic and kinetic Strouhal numbers as a function ofRm for different values ofB0 andkf . Here, kinetically and
magnetically forced runs have been used to calculate separatelygK �= gM. Adapted from Ref.[327].

Fig. 9.3. Magnetic and kinetic Strouhal numbers as a function ofB0/Beq for � = 2 × 10−3 andkf = 1.5. Kinetically and
magnetically forced runs have been used to calculate separatelygK �= gM. Adapted from Ref.[327].

In other words, one has to solve both the mean field dynamo equation and the magnetic helicity equation
simultaneously. We turn to this issue in the next section.

9.3. The dynamical quenching model

While conventional mean field theory is suitable to capture the structure of the mean field correctly, it
has become clear that simple quenching expressions of the form (8.15) or (8.17) are unable to reproduce
correctly the resistively limited saturation phase. Instead, they would predict saturation on a dynamical
time scale, which is not only in contradiction with simulations[4], but it would also violate magnetic
helicity conservation. The key to modeling the late saturation behavior correctly is to ensure that the
magnetic helicity equation Eq. (8.5) is satisfied exactly at all times.
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We begin with the usual mean field equation (6.7), which has to be solved for a given form ofE. For
� effect and possibly other mean field dynamos, theE term produces magnetic helicity of the large scale
field. The evolution equation of magnetic helicity of the mean fieldB can be obtained in the usual fashion
from the mean field induction equation. We restrict ourselves here to the case of a closed domain. In that
case one obtains

d

dt
〈A · B〉 = 2〈E · B〉 − 2�〈J · B〉 , (9.11)

which is independent ofU. [Here, as earlier, angular brackets denote averaging over all space, while over-
bars denote suitably defined averages that could be two-dimensional (cf. Section 8.4) or one-dimensional
if there is shear (cf. Section 8.9).] One sees that there is a source term for the mean field helicity〈A · B〉,
due to the presence ofE. The〈J ·B〉 term can be approximated byk2

1〈A ·B〉 and corresponds to a damping
term. This merely reflects the fact that the operation of a mean field dynamo automatically leads to the
growth of linkages between the toroidal and poloidal mean fields. Such linkages measure the helicity
associated with the mean field. One then wonders how this mean field helicity arises? To understand this,
we need to consider also the evolution of the small scale helicity〈a · b〉. Since the Reynolds rules apply,
we have〈A · B〉 = 〈A · B〉 + 〈a · b〉, so the evolution equation for〈a · b〉 can be deduced by subtracting
Eq. (9.11) from the evolution equation (8.5) for the total helicity. The fluctuating field then obeys the
equation

d

dt
〈a · b〉 = −2〈E · B〉 − 2�〈 j · b〉 , (9.12)

so the sum of Eqs. (9.11) and (9.12) gives Eq. (8.5) without any involvement of theE term. We see
therefore that the term〈E · B〉 merely transfers magnetic helicity between mean and fluctuating fields
while conserving the total helicity!

In order to guarantee that the total helicity evolution equation (8.5) is always obeyed, Eq. (9.12) has to
be solved as an auxiliary equation along with the mean field dynamo equation (6.7). From the previous
two sections we have seen thatE is now determined by replacing the kinematic� effect by the residual�
effect,

� = −1
3�〈� · u〉 + 1

3�〈 j · b〉 ≡ �K + �M , (9.13)

and with no immediate modifications to�t. As mentioned before, subsequent modifications (i.e. quench-
ing) of �K and�t occur as a direct consequence of the decrease of turbulence intensity (which includes
a decrease of the turbulent kinetic helicity) and/or the relaxation time (seeFig. 9.3) [148,329,373], but
this is not a particularly dramatic effect, because it does not depend onRm. More important is the〈 j · b〉
term in �M; see Eq. (9.13). This term can be related to〈a · b〉 in Eq. (9.12) for a given spectrum of
magnetic helicity. For a triply-periodic domain, using isotropy, we can write〈 j · b〉 = k2

f 〈a · b〉, provided
the averages involvinga, b, and j are governed by components with wavenumberkf , wherekf is the
approximate wavenumber of the energy-carrying scale. As mentioned earlier[6], thekf factor may be
attenuated by aR1/4

m factor to account for the fact that for ak−5/3 energy spectrum the〈 j · b〉 term will
pick up contributions from smaller scales. However, as described in Section 10, for such spectra, one has
to retain ak-dependent�(k) ∝ k−2/3; this decreases for smaller scales making�M (or �K) still dominated
by contributions at the forcing scale, and so�M (or �K) would be independent ofRm and Re. Also, new
simulations[327] suggest that at scales smaller than the energy-carrying scale the field is no longer fully
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helical, and hence we do not expect there to be aR
1/4
m factor on the effective value ofkf . The relaxation

time � can be expressed in terms ofB2
eq = u2

rms using�t = 1
3�u2

rms. Furthermore,�, and therefore also
�t, may still depend on|B| in a way as shown inFig. 9.3. (We recall that we have used�0 = �0 = 1
throughout.)

Under the assumption�K = const, the final set of equations can be summarized in the more compact
form [6,7]

�B

�t
= ∇ × [U× B+ �B− (� + �t)J] , (9.14)

d�

dt
= −2�tk

2
f

(
�〈B2〉 − �t〈J · B〉

B2
eq

+ � − �K

R̃m

)
, (9.15)

whereR̃m = �t/� is a modified definition of themicroscopicmagnetic Reynolds number; cf. Eq. (3.18).
Simulations of forced turbulence with a decaying large scale magnetic field suggest�t ≈ (0.8 . . .0.9)×
urms/kf [395]. Thus,R̃m = (0.8 . . .0.9)×Rm, but for all practical purposes the two are so close together
that we assume from now oñRm =Rm. (As discussed in Section 3.4,� cannot be replaced by a turbulent
value, soRm is in practice really very large!) We can now apply these equations to discuss various issues
about the dynamical quenching of mean field dynamos.

9.3.1. Comparison with algebraic� quenching
In order to appreciate the nature of the solutions implied by Eqs. (9.14) and (9.15), consider first the

long-time limit of a nonoscillatory dynamo. In this case the explicit time dependence in Eq. (9.15) may
be neglected (adiabatic approximation[6]). Solving the resulting equation for� yields[9,302]

� = �K + �tRm〈J · B〉/B2
eq

1 + Rm〈B2〉/B2
eq

(for d�/dt = 0) . (9.16)

Curiously enough, for the numerical experiments with an imposed large scale field over the scale of the
box [311], whereB is spatially uniform and thereforeJ = 0, one recovers the ‘catastrophic’ quenching
formula (8.17),

� = �K

1 + Rm〈B2〉/B2
eq

(for J= 0) , (9.17)

which implies that� becomes quenched when〈B2〉/B2
eq=R−1

m ≈ 10−8 for the sun, and for even smaller
fields for galaxies.

On the other hand, if the mean field is not imposed but maintained by dynamo action,B cannot be
spatially uniform and thenJ is finite. In the case of a Beltrami field[4], 〈J · B〉/〈B2〉 ≡ k̃m is some
effective wavenumber of the large scale field withk̃m�km. SinceRm enters both the numerator and the
denominator,� tends to�tk̃m, i.e.

� → �tk̃m (for J �= 0 andJ‖B) . (9.18)

Compared with the kinematic estimate,�K ≈ �tk̃f , � is only quenched by the scale separation ratiok̃m/k̃f .
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It remains possible, however, that�t is suppressed via a quenching of� (seeFig. 9.3). Thus, the
question of how strongly� is quenched in the sun or the galaxy, has been diverted to the question of
how strongly�t is quenched[6]. Note that quasilinear treatments or MTA do not predict�t quench-
ing at the lowest order and for weak mean fields[396,397]. One way to determine�t and its possible
quenching is by looking at numerical solutions of cyclic dynamos with shear (��-type dynamos), be-
cause in the saturated state the cycle frequency is equal to�tk̃

2
m. The best agreement between models and

simulations is achieved when�t begins to be quenched when〈B2〉/B2
eq is around 0.3; see Ref.[6] for

details. This means that�t is only quenched non-catastrophically. This is consistent with the quenching
of �; seeFigs. 9.2and9.3. However, more detailed work at larger magnetic Reynolds numbers needs
to be done—preferentially in more realistic geometries that could be more readily applied to stars and
galaxies.

9.3.2. �2 dynamos
For �2 dynamos in a periodic box a special situation arises, because then the solutions are degenerate

in the sense thatJ andB are parallel to each other. Therefore, the term〈J ·B〉B is the same as〈B2〉J, which
means that in the mean EMF the term�B, where� is given by Eq. (9.16), has a component that can be
expressed as being parallel toJ. In other words, the roles of turbulent diffusion (proportional toJ) and�
effect (proportional toB) cannot be disentangled. This is theforce-free degeneracyof �2 dynamos in a
periodic box[6]. This degeneracy is also the reason why for�2 dynamos the late saturation behavior can
also be described by an algebraic (non-dynamical, but catastrophic) quenching formula proportional to
1/(1+Rm〈B2〉) for both� and�t, as was done in Ref.[4]. To see this, substitute the steady state quenching
expression for�, from Eq. (9.16), into the expression forE.We find

E = �B− (� + �t)J= �K + Rm�t〈J · B〉/B2
eq

1 + Rm〈B2〉/B2
eq

B− �tJ

= �KB

1 + Rm〈B2〉/B2
eq

− �tJ

1 + Rm〈B2〉/B2
eq

, (9.19)

which shows that in the force-free case the adiabatic approximation, together with constant (unquenched)
turbulent magnetic diffusivity, becomes equal to the pair of expressions where both� and�t are catas-
trophically quenched. This force-free degeneracy is lifted in cases with shear or when the large scale
field is no longer fully helical (e.g. in a nonperiodic domain, and in particular in the presence of open
boundaries).

The dynamical quenching approach seems to be quite promising given that it describes correctly the�2

dynamo found in the simulations. There are however severe limitations that have to be overcome before it
can be used in more realistic mean field models. Most importantly, the case of an inhomogeneous system,
possibly one with boundaries, is not solved rigorously, although several promising approaches have been
suggested[388,394,398–401]. The difficulty is to generalize Eq. (9.12) to the nonhomogeneous case of
a mean magnetic helicity density, in a gauge-invariant manner. Only recently has this been attempted
[154] by defining the magnetic helicity density of random fields as the density of correlated links. An
alternate possibility is to consider directly the evolution equation ofj · b instead (as we do below). The
other problem with boundaries is that one still requires a microscopic theory for the small scale losses
of magnetic helicity through the boundaries[388,394,398]. In any case, a more sophisticated theory
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should still reproduce the homogeneous case, for which we now have now a fairly accurate quantitative
understanding.

9.4. Saturation behavior of�2 and�� dynamos

In the case of homogeneous�� dynamos, a major fraction of the toroidal field can be generated by
shear—independently of helicity. Therefore,〈B2〉 can be enhanced without producing much〈J · B〉. We
discuss below the strength of the fields, both when the final resistive saturation limit has been reached
and the case whenRm is so large that a quasi-static, non-resistive limit is more relevant (for example in
galaxies).

9.4.1. Final field strength
In case one waits long enough, i.e. longer than the resistive time scale, we noted that the final field

strength is determined by the condition〈J · B〉 = 0; or

〈J · B〉 = −〈 j · b〉 . (9.20)

In order to connect the current helicities with magnetic energies, we proceed as follows. First, one can
quite generally relate the current and magnetic helicities by defining characteristic wavenumbers,km and
kf , for the mean and fluctuating fields via

k2
m = 〈J · B〉/〈A · B〉 , (9.21)

k2
f = 〈 j · b〉/〈a · b〉 . (9.22)

For a fully helical field, the same wavenumbers will also relate the current helicity and energy in the
field. On the other hand, if the field is not fully helical, one can introduce efficiency factorsεm andεf that
characterize the helicity fractions of the mean and fluctuating fields, respectively, so we write

〈J · B〉/〈B2〉 = kmεm ≡ k̃m , (9.23)

〈 j · b〉/〈b2〉 = −kf εf ≡ −k̃f . (9.24)

Here,k̃m andk̃f are ‘effective wavenumbers’ for mean and fluctuating fields, respectively. In the final state,
km will be close to the smallest wavenumber in the computational domain,k1. In the absence of shear,
εm is of order unity, but it can be less if there is shear or if the boundary conditions do not permit fully
helical large scale fields (see below). In the presence of shear,εm turns out to be inversely proportional
to the magnitude of the shear. The value ofεf and k̃f , on the other hand, is determined by small scale
properties of the turbulence and is assumed known.

Both km andkf are defined positive. However,εm can be negative which is typically the case when
�K <0. The sign ofεf is defined such that it agrees with the sign ofεm, i.e. both change sign simultaneously
and hencẽkmk̃f �0. In more general situations,km can be different fromk1. Using Eqs. (9.23) and (9.24)
together with Eq. (8.7) we have

k̃m〈B2〉 = 〈J · B〉 = −〈 j · b〉 = k̃f 〈b2〉 , (9.25)

and so in the final saturated state,

〈B2〉/〈b2〉 = 
̃f /
̃m , (9.26)



120 A. Brandenburg, K. Subramanian / Physics Reports 417 (2005) 1–209

which generalizes Eq. (8.8) to the case with fractional helicities; see also Eq. (79) of Ref.[159]. Of course,
this analysis only applies to flows with helicity. In the nonhelical case,k̃m = k̃f = 0, so Eqs. (9.25) and
(9.26) do not apply.

In the helical (or partially helical) case we can determine the final field strength of the mean and
fluctuating fields. This is possible because in periodic geometry with homogeneous� effect the amplitude
and energy of the dynamo wave is in general constant in time and does not vary with the cycle. We now
use the mean field dynamo equation (9.14) to derive the evolution equation for the magnetic helicity of
the large scale field, and apply it to the saturated state, so

0 = �〈B2〉 − (� + �t)〈J · B〉 . (9.27)

We also use the evolution equation (9.15) for the magnetic contribution to the� effect, applied again to
the saturated state,

0 = �〈B2〉 − �t〈J · B〉
B2

eq
+ � − �K

Rm
. (9.28)

Note both equations apply also whenU �= 0, because theU×B term has dropped out after taking the dot
product withB. We now eliminate� from Eqs. (9.27) and (9.28) and thus derive expressions for the final
steady state values of〈B2〉 ≡ B2

fin in terms ofB2
eq and〈b2〉 ≡ b2

fin, using Eq. (9.26). We get[6],

B2
fin

B2
eq

= �K − �Tk̃m

�tk̃m
,

b2
fin

B2
eq

= �K − �Tk̃m

�tk̃f
. (9.29)

In models where�t is also quenched, both small scale and large scale field strengths increase as�t is more
strongly quenched. (Of course, regardless of how strongly�t may be quenched, we always have from
(9.26),B2

fin/b
2
fin = 
̃f /
̃m in the final state.)

One can writeBfin in an instructive way, using the relevant dynamo control parameters for�2 and��
dynamos, defined in Section 6.5.3. We generalize these for the present purpose and define

C� = �K/(�Tkm), C� = S/(�Tk
2
m) , (9.30)

where�K is the initial value of� due to the kinetic helicity andS = �� is a typical value of the shear in
an�� dynamo. From Eq. (9.27), the final steady state occurs when� = �Tk̃m ≡ �crit or a critical value of
the dynamo parameterC�,crit = �crit/�Tkm. One can then write, using (9.29),

Bfin =
(

C�

C�,crit
− 1

)1/2

(1 + R−1
m )1/2Beq . (9.31)

For an�� dynamo, the relevant dynamo number is given byD0 = C�C� initially and in the final steady
state, byDcrit = C�,critC�, since the shear does not get affected by the nonlinear effects we consider. In
this case the final mean field strength can be written as

Bfin =
(

D0

Dcrit
− 1

)1/2

(1 + R−1
m )1/2Beq . (9.32)

Note once again that the above analysis only applies to flows with helicity. In the nonhelical case we
have�K = k̃m = k̃f = 0, so Eq. (9.29) cannot be used. Nevertheless, without kinetic helicity one would
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still expect a finite value of〈b2〉 because of small scale dynamo action. Furthermore, even in the fully
helical case there can be substantial small scale contributions. Closer inspection of the runs of Ref.[4]
reveals, however, that such contributions are particularly important only in the early kinematic phase of
the dynamo.

In summary, the saturation field strength depends only on the scale separation ratio, see Eq. (9.26), and
not, for example, on the intensity of the turbulence.

9.4.2. Early time evolution
During the early growth phase the magnetic helicity varies on time scales shorter than the resistive

time, so the last term in the dynamical� quenching equation (9.15), which is proportional toR−1
m → 0,

can be neglected and so� evolves then approximately according to

d�

dt
≈ −2�tk

2
f (� − �tk̃m)

〈B2〉
B2

eq
. (9.33)

This equation can be used to describe the end of the kinematic time evolution when〈B2〉 grows exponen-
tially. (We refer to this phase as late ‘kinematic’ because the slow resistive saturation has not yet set in,
although of course� is already becoming suppressed due to growth of the current helicity.) We see from
(9.33) that the−2�tk

2
f � term leads to a reduction of�. This leads to a dynamical reduction of� until it

becomes comparable to�tk̃m, shutting off any further reduction. Therefore, the early time evolution leads
to a nearlyRm-independent growth phase. At the end of this growth phase a fairly significant large scale
field should be possible[5–7]. The basic physical reason is that the suppression of� occurs due to the
growth of small scale current helicity which, in turn, is the result of a growth of the small scale magnetic
helicity. Since magnetic helicity is nearly conserved forRm?1, this implies a corresponding growth of
oppositely signed large scale magnetic helicity and hence the large scale field. We mention, however,
that numerical simulations[402] have not been able to confirm a sharp transition from exponential to
linear (resistively limited) growth, as seen inFig. 9.4, which shows a numerical solution of Eqs. (9.14)
and (9.15); see Refs.[6,403]. The absence of a sharp cross-over from exponential to linear growth in the
turbulence simulations could be related to the fact that several large scale modes are competing, causing
an extra delay in the selection of the final mode.

In the following discussion we restrict ourselves to the case where� is small orRm?1. Magnetic
helicity is then well conserved and this conservation requires that

〈A · B〉 ≈ −〈a · b〉 (for t� tkin) . (9.34)

Here the timet = tkin marks the end of the exponential growth phase (and thus the ‘initial’ saturation time
tsat used in Ref.[4]). This time is determined by the condition that the term in parenthesis in Eq. (9.33)
becomes significantly reduced, i.e.� becomes comparable to�tk̃m. We would like to estimate the field
strengths of the large and small scale fields by this time. The helicity conservation constraint (9.34), and
the definitions in (9.21)–(9.23), give

�M = 1
3�〈 j · b〉 = 1

3�k2
f 〈a · b〉 = −1

3�k2
f 〈A · B〉 = −�t

k2
f

k2
m

k̃m〈B2〉
B2

eq
. (9.35)



122 A. Brandenburg, K. Subramanian / Physics Reports 417 (2005) 1–209

Fig. 9.4. Evolution of〈B2〉 and〈b2〉 (solid and dashed lines, respectively) in a doubly-logarithmic plot for an�2 dynamo with
�t = const for a case withkf /k1 = 10. Note the abrupt initial saturation after the end of the kinematic exponential growth phase

with 〈B2〉/〈b2〉 ∼ 0.1, followed by a slow saturation phase during which the field increases to its final super-equipartition value

with 〈B2〉/〈b2〉 ∼ 10 [403].

We use this in Eq. (9.13) for� and demand that�, as governed by the dynamical quenching equation
(9.15), settles down to a quasi-steady state byt = tkin. We then get for the mean squared strength of the
large scale field att = tkin,

B2
kin

B2
eq

= �K − �tk̃m

�tk̃m

k2
m

k2
f

− R−1
M ≈ �K − �tk̃m

�̃�tk̃m

k2
m

k2
f

, (9.36)

where the effect of a finiteRm has been included through an approximate correction factor[6]

�̃ = 1 + R−1
m

kf /εf

km/εm
. (9.37)

The strength of the small scale field att = tkin is given by using (9.34),

b2
kin = kf /εf

km/εm
B2

kin = �K − �tk̃m

�̃�tk̃f
B2

eq . (9.38)

Not surprisingly, at the end of the kinematic phase the small scale magnetic energy is almost the same
as in the final state; see Eq. (9.29). However, the large scale magnetic energy is still by a factork2

m/k
2
f

smaller than in the final state (εm may be somewhat different in the two stages). This result was also
obtained by Subramanian[7] using a similar approach.

These expressions can be further clarified by noting that the fractional helicity of the small scale field
is likely to be similar to that of the forcing velocity field. We can then write〈� · u〉 ≈ εf kf 〈u2〉; so
�K ≈ �tεf kf , and one arrives at[6]

B2
kin

B2
eq

= km/εm

�̃kf /εf

(
1 − 
̃m


̃f

)
, (9.39)
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which shows thatBkin can be comparable to and even in excess ofBeq, especially whenεm is small
(i.e. for strong shear). This is of interest in connection with the question of why the magnetic field in so
many young galaxies can already have equipartition field strengths.

As emphasized in Ref.[5], even for an�2 dynamo, the initial evolution toBkin is significantly more
optimistic an estimate than what could have been expected based on lorentzian� quenching. In the case
of an�� dynamo[6,7], one could havẽkm>km, and soBkin can be correspondingly larger. In fact, for

εm/εf �km/kf , (9.40)

the large scale field begins to be of orderBeqand exceeds the small scale field already during the kinematic
growth phase.

It is once again instructive to expressBkin in terms of the dynamo control parameters,C� andC�. Note
that for small�, orRm?1, �crit = �Tk̃m ≈ �tk̃m and�̃ ≈ 1. One can then write

Bkin = km

kf

[
C�

C�,crit
− 1

]1/2

Beq . (9.41)

For an�� dynamo with dynamo numberD0 = C�C� and a critical valueDcrit = C�,critC�, we have
(assuming shear does not get affected)[7]

Bkin = km

kf

[
D0

Dcrit
− 1

]1/2

Beq . (9.42)

We can estimate how strong the shear has to be for the large scale field to be comparable toBeq. Since
�K ≈ �tεf kf , C� ≈ εf (kf /km), or km/kf ≈ εf /C�. UsingD0 = C�C�, we can rewrite (9.42) as

Bkin =
[

C�ε2
f

C�Dcrit
− k2

m

k2
f

]1/2

Beq . (9.43)

Now km/kf>1 in general. SoBkin can become comparable toBeq provided the shear is strong enough
thatC�ε2

f >C�Dcrit. For dynamo action to be possible, one also requiresC�C� >Dcrit orC� >Dcrit/C�.
Combining these two inequalities, we see that large scale fields can become comparable to the equipartition
fields if C��Dcrit/εf . The critical dynamo numberDcrit will depend on the physical situation at hand;
Dcrit = 2 for a one-dimensional�� dynamo with periodic boundary conditions and homogeneous�K.
Further, in simulations of rotating convection,εf ≈ 0.03 [203]; assuming that this relatively low value
of εf is valid in more realistic simulations, we haveC��2/εf ≈ 60 as the condition for which the large
scale field becomes comparable toBeq. (Note that when the large scale field becomes comparable toBeq,
quenching due to the large scale field itself will become important, a process we have so far ignored.)
This condition on the shear, could be satisfied for stellar dynamos but it is not likely to be satisfied for
galactic dynamos, where typicallyD0/Dcrit ∼ 2 (cf. Section 11.5).

During the subsequent resistively limited saturation phase the energy of the large scale field grows first
linearly, i.e.

〈B2〉 ≈ B2
kin + 2�k2

m(t − tkin) (for t > tkin) , (9.44)

and saturates later in a resistively limited fashion; see Eq. (8.13).
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9.4.3. Comparison with simulations
In order to compare the dynamical quenching model with simulations of turbulent oscillatory dynamos

with shear[386], it is important to consider the same geometry and shear profile, i.e. sinusoidal shear,
U= (0, Sk−1

1 cosk1x,0), and a mean fieldB= B(x, z, t). We discuss here the results of Ref.[6], where
simulations of Ref.[386] are compared with dynamical quenching models using either a fixed value of
�t or, following earlier suggestions[4,5], a turbulent diffusivity that is quenched in the same way as�,
i.e. �t ∝ �.

Both simulation and model show dynamo waves traveling in the positivez-direction atx = ±	 and
in the negativez-direction atx = 0, which is consistent with the three-dimensional simulations using
negative values of�K, which affects the direction of propagation of the dynamo waves.

It turns out that in all models the values ofb2
fin are smaller than in the simulations. This is readily

explained by the fact that the model does not take into account small scale dynamo action resulting
from the nonhelical component of the flow. Comparing simulations with different values ofRm, the
cycle frequency changes by a factor compatible with the ratio of the two magnetic Reynolds numbers.
This is not well reproduced by a quenching expression for�t that is independent ofRm. On the other
hand, if�t is assumed to be proportional to�, then�cyc becomes far smaller than what is seen in the
simulations. A possible remedy would be to have some intermediate quenching expression for�t. We
should bear in mind, however, that the present model ignores the feedback from the large scale fields.
Such feedback is indeed present in the simulations, which also show much more chaotic behavior than the
model[6].

In conclusion, the dynamical quenching model predicts saturation amplitudes of the large scale field
that are smaller than the equipartition field strength by a factor that is equal to the ratio of the turbulent eddy
size to the system size, and hence independent of the magnetic Reynolds number. The field strengths can
be much larger if the dynamo involves shear and is highly supercritical. This may be relevant to explaining
the amplitudes of fields in stars, but in galaxies the effect of shear is not likely to be strong enough to
explain large scale galactic fields without additional effects such as a small scale helicity flux (see below
and Section 11.5). One the other hand, for the sun and sun-like stars, the main issue is the cycle period. No
conclusive answer can be given until there is definitive knowledge about the quenching of the turbulent
magnetic diffusivity,�t and the effect of current helicity fluxes out of the domain. The more�t is quenched,
the longer the cycle period can become, unless there are significant losses of magnetic helicity through
the open boundaries that all these bodies must have. Before discussing this in Section 9.6 we first make
a few historical remarks and also address the question of how close to being resistively limited the solar
cycle might be. The answer is somewhat surprising: not much!

9.4.4. Historical remarks
The explicit time dependence of the� quenching equation (9.15) was first proposed by Kleeorin and

Ruzmaikin[9] in an early paper of 1982; see also the book by Zeldovich et al.[222] and a later paper by
Kleeorin et al.[404]. For a long time the true significance of the long time scale introduced by Eq. (9.15)
remained unclear. It was therefore not surprising that early work focused exclusively on explaining the
chaotic nature of the solar cycle[10–12].

The steady state limit (9.16) of Eq. (9.15) was first analyzed by Gruzinov and Diamond[302] and
Bhattacharjee and Yuan[303] and so the connection with catastrophic quenching was established. When
the issue of a resistively limited saturation of�2 dynamos in periodic boxes was raised[4], the possible
connection with Eq. (9.15) was blurred by the fact that the simulation data could well be described by
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simultaneous and catastrophic quenching of� and�t. In the paper by Field and Blackman[5] it was
first proposed and quantitatively demonstrated that resistively slow saturation can be explained in terms
of mean field theory with a current helicity correction to the� effect, as calculated by Pouquet et al.
[304] already in 1976. This result was then recast to take the form of Eq. (9.15), which has to be solved
simultaneously with the dynamo equation Eq. (9.14), and the connection with simultaneous catastrophic
quenching of� and�t was understood as a special case that applies only to�2 dynamos[6]. Eqs. (9.14) and
(9.15) were also used to estimate the minimal mean magnetic fields which could be obtained in galaxies,
in spite of the helicity constraint[7], ignoring however the effects of magnetic and current helicity fluxes.
Blackman and Field[48,405]proposed that such helicity fluxes could alleviate catastrophic� quenching.
Kleeorin and coworkers[394,398,399]found that helicity fluxes are indeed likely to lead to substantially
increased saturation field strengths, while Vishniac and Cho[388] suggested that helicity fluxes could
even drive a dynamo effect ofits own.

The generalization of Eq. (9.15) to spatially non-uniform systems is nontrivial, since one has to define a
gauge invariant magnetic helicity even for systems with boundaries. This concept is helpful in simple cases
of homogeneous turbulence, but it needs to be generalized to the more interesting inhomogeneous case,
which has only been attempted recently[154]. This is why we have shifted the attention to considering
the evolution of current helicity instead[391]; see Section 10.4. The current helicity is gauge invariant,
directly observable and appears explicitly in the back reaction term in�.

Initial attempts to verify the importance of helicity fluxes in open box simulations failed[392], and
it was only in the presence of shear that evidence for accelerated field saturation emerged[55]. The
agreement between simulations and mean field theory with helicity fluxes is still not fully satisfactory. In
particular, with moderately strong helicity fluxes the solutions of the mean field model predict saturation
energies that decrease inversely proportional with magnetic Reynolds number, unless the magnitude of
the helicity flux exceeds a certain threshold[406].

It should also be pointed out that the explanation of catastrophic quenching in terms of magnetic helicity
conservation is not generally accepted; see Refs.[377,407]for recent reviews. An alternative explanation
for the catastrophic quenching phenomenon is in terms of a suppression of chaos[408]. Unfortunately,
at the moment there is no quantitative theory that explains the magnetic Reynolds number dependence
of this suppression.

9.5. How close to being resistively limited is the 11 year cycle?

In this section we present an estimate of the amount of magnetic helicity,H, that is expected to be
produced and destroyed during the 11 year cycle[159].We also need to know what fraction of the magnetic
field takes part in the 11-year cycle. Here we are only interested in the relative magnetic helicity in one
hemisphere. Following an approach similar to that of Berger[151], one can bound the rate of change of
magnetic helicity, as given by Eq. (8.5), in terms of the rate of Joule dissipation,QJoule, and magnetic
energy,M, i.e.∣∣∣∣dHdt

∣∣∣∣ �2�〈J · B〉V �2�

√
〈J2〉〈B2〉V ≡ 2

√
2�QJouleM , (9.45)

whereV is the volume,〈� J2〉V = QJoule the Joule heat, and〈1
2B

2〉V = M the magnetic energy. For
an oscillatory dynamo, all three variables,H, M, andQJoule vary in an oscillatory fashion with a cycle
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frequency�cyc of magnetic energy (corresponding to 11 years for the sun—not 22 years), so we estimate
|dH/dt |��cyc|H | and|dM/dt |�QJoule��cycM, and obtain

�cyc|H |�2
√

2��cycM . (9.46)

This leads to the inequality[159,300]

|H |/(2M)�
skin , (9.47)

where
skin = √
2�/�cyc is the skin depth, here associated with the 11 year frequency�cyc. Thus, the

maximum magnetic helicity that can be generated and dissipated during one cycle is characterized by the
length scale|H |/(2M), which has to be less than the skin depth
skin.

For � we have to use the Spitzer resistivity [see Eq. (3.14)], so� increases from about 104 cm2/s at
the base of the convection zone to about 107 cm2/ s near the surface layers and decreases again in the
solar atmosphere, see Eq. (3.14). Using�cyc = 2	/(11 yr) = 2 × 10−8 s−1 for the relevant frequency at
whichH andM vary, we have
skin ≈ 10 km at the bottom of the convection zone and
skin ≈ 300 km at
the top.

The value of
skin should be compared with the value|H |/(2M) that can be obtained from dynamo
models[159]. For a sphere (or rather a half-sphere) with open boundary conditions and volumeV (for
example the northern hemisphere), one has to use the gauge-invariant relative magnetic helicity of Berger
and Field[150]; see Eq. (3.35) and Section 3.4. We assume that the dynamo saturates such that most of
the magnetic helicity is already in the large scales [cf. Eq. (8.11)], soH can be estimated from a mean
field model. We also assume that magnetic helicity is not continuously being pumped back and forth
between large and small scales. While this remains a hypothetic possibility, it should be noted that this
has never been seen in simulations. With these reservations in mind, we now employ an axisymmetric
mean field, which can be written asB = b�̂ + ∇ × (a�̂), it turns out that the relative magnetic helicity
integral is simply[159]

H = 2
∫
V

ab dV (axisymmetry) . (9.48)

The results of model calculations show that[159], when the ratio of poloidal field at thepoleto the max-
imum toroidal field inside the convection zone,Bpole/Bbelt, is in the range consistent with observations,
Bpole/Bbelt = (1...3) × 10−4, then the ratioHN/(2MNR) is around(2 − 5) × 10−4 for models with
latitudinal shear. (Here, the subscript ‘N’ refers to the northern hemisphere.) This confirms the scaling
with the poloidal to toroidal field ratio[386],

HN/(2MNR) = O(Bpol/Btor)�Bpole/Bbelt . (9.49)

Given thatR = 700 Mm this means thatHN/(2MN) ≈ 70.200 km, which would be comparable to the
value of
skin near the upper parts of the solar convection zone.

The surprising conclusion is that the amount of mean field helicity that needs to be generated in order to
explain the large scale solar magnetic fields is actually so small, that it may be plausible that microscopic
magnetic diffusion could still play a role in the solar dynamo. In other words, although open boundary
effects may well be important for understanding the time scale of the dynamo, the effect does not need
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to be extremely strong. Of course, no quantitatively accurate predictions can be made, because the result
depends on the model.

9.6. Open boundaries

In the preceding sections we made the assumption that no magnetic helicity flows through the bound-
aries. This is of course unrealistic, and on the sun magnetic helicity losses are indeed observed; see
Section 2.1.2. In the presence of open boundaries one has to use the relative magnetic helicity, as defined
in Eq. (3.38). In this equation there emerges a surface term, 2

∮
(E × Aref) · dS, which is due to helicity

fluxes. The importance of helicity fluxes was already demonstrated in Section 8.11. The question is how
important is this effect and can it possibly alleviate the magnetic helicity constraint by allowing the�
effect to be less strongly quenched[405].

9.6.1. Historical remarks
The question of how magnetic helicity losses could alleviate the problem of catastrophic quenching

and resistively limited saturation and perhaps cycle periods remained at first unclear when this idea was
originally proposed[398,405]. Simulations of helically forced turbulence in an open domain, using a
vertical field boundary condition (B × n̂ = 0), showed a shorter saturation time. However, this was at
the expense of a reduced saturation amplitude[392]. This somewhat frustrating result raised concerns
whether magnetic helicity losses could even help in principle. This was then the reason for performing
the co-called vacuum cleaner experiment where small scale magnetic fields were artificially removed in
regular intervals via Fourier filtering[159]. The main insight came when it was realized that it is not
so much the boundary conditions as such that have a positive effect in alleviating the magnetic helicity
constraint, but the fact that there is a magnetic helicity flux alsoinsidethe domain, such that magnetic
helicity can actually be transported toward the boundaries. A leading candidate for this flux is the flux
derived by Vishniac and Cho[388]. This flux will be derived and discussed further in Section 10.4.2.

There is another complication that led to considerable confusion. Magnetic helicity is defined as a
volume integral (Section 3.4), and, because of the gauge problem, the concept of a magnetic helicity
density does not exist. This has actually changed and a magnetic helicity density can actually be defined
(for small scale fields) in terms of a density of linkages if there exists a meaningful separation into large
scale and small scale fields[154]. Another important aspect was the realization that the quantity that
we are primarily interested in, and that directly enters the magnetic� effect, isj · b. In working directly
with j · b there is of course no longer the comfort of dealing with a conserved quantity. Thus, the proper
evolution equation forj · b can no longer be inferred from total magnetic helicity conservation together
with the evolution equation for the large scale field. Instead,j · b has to be calculated directly using
standard closure procedures[391]. There are now strong indications that an important prerequisite for
obtaining a strong helicity flux is shear. However, shear has only recently been included in simulations
with open boundaries; see Section 8.11 and Ref.[55]. Therefore, not too much analysis has been done
on this type of problem yet.

In the following we present first a phenomenological model that explains the relative significance of
large scale and small scale magnetic helicity losses. We then turn to speculative consequences for the
observed solar field and demonstrate that small scale losses can alleviate the quenching problem—at least
in principle.
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9.6.2. A phenomenological model of magnetic helicity losses
It is instructive to discuss first a phenomenological description of magnetic helicity losses. We imagine

that the loss of magnetic helicity across the boundary is accomplished by the turbulent exchange of eddies
across the boundary. The rate of magnetic helicity loss is then proportional to some turbulent diffusivity
coefficient,�m or �f , for the losses from mean and fluctuating parts, respectively. Again, we assume that
the small and large scale fields are maximally helical (or have known helicity fractionsεm andεf ) and have
opposite signs of magnetic helicity at small and large scales. The details can be found in Refs.[49,159].
The strength of this approach is that it is quite independent of mean field theory.

We proceed analogously to Section 8.5.2 where we used the magnetic helicity equation (8.5) for a
closed domain to estimate the time derivative of the magnetic helicity of the mean field,H1 (or Hm,
which is here the same), by neglecting the time derivative of the fluctuating field,Hf . This is a good
approximation after the fluctuating field has reached saturation, i.e.t > tsat. Thus, we have

dHm

dt
+ dHf

dt︸︷︷︸
neglected

= − 2�mk
2
mHm − 2�f k

2
f Hf , (9.50)

where�m = �f = � corresponds to the case of a closed domain; see Eq. (8.12) in Section 8.5.2. Assuming
that surface losses can be modeled as turbulent diffusion terms, we expect the values of�m and�f to be
enhanced, corresponding to losses from mean and fluctuating parts, respectively.

The phenomenological evolution equations are then written in terms of the large and small scale
magnetic energies,Mm andMf , respectively, where we assumeMm = ±1

2kmHm andMf = ∓1
2kfHf for

fully helical fields (upper/lower signs apply to northern/southern hemispheres). The phenomenological
evolution equation for the energy of the large scale magnetic field then takes the form

k−1
m

dMm

dt
= −2�mkmMm + 2�f kfMf . (9.51)

The positive sign of the term involvingMf reflects the generation of large scale field by allowing small
scale field to be removed. After the time when the small scale magnetic field saturates, i.e. whent > tsat,
we haveMf ≈ constant, and Eq. (9.51) can be solved to give

Mm = Mf
�f kf

�mkm
[1 − e−2�mk

2
m(t−tsat)] for t > tsat . (9.52)

This equation highlights three important aspects:

• The time scale on which the large scale magnetic energy evolves depends only on�m, not on�f (time
scale is shorter when�m is increased).

• The saturation amplitude diminishes as�m is increased, which compensates the accelerated growth
just pasttsat [392], so the slope dMm/dt is unchanged.

• The reduction of the saturation amplitude due to�m can be offset by having�m ≈ �f ≈ �t, i.e. by
having losses of small and large scale fields that are about equally important.

The overall conclusions that emerge are: first,�m > � is required if the large scale field is to evolve on
a time scale other than the resistive one and, second,�m ≈ �f is required if the saturation amplitude is
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not to be catastrophically diminished. These requirements are perfectly reasonable, but so far we are only
beginning to see this being also borne out by simulations[55,389,390].

An important limitation of the analysis above has been the neglect of dHf /dt , precluding any application
to early times. Alternatively, one may directly use Eqs. (9.11) and (9.12) and turn them into evolution
equations forMm andMf , respectively,

k−1
m

dMm

dt
= 2(� − km�t)Mm − 2�mkmMm , (9.53)

k−1
f

dMf

dt
= 2(� − km�t)Mm − 2�f kfMf , (9.54)

where,� = �K + �M is the total� effect and�M the contribution from the small scale current helicity;
see Eq. (9.13). As in Eq. (9.15), we can express the coefficient1

3� in terms of�t/B
2
eq, and have in terms

of energies,�M = ±�tkfMf /Ef whereEf = 1
2B

2
eqV is the kinetic energy. Eqs. (9.53) and (9.54) can be

applied at all times, but they reduce to Eq. (9.51) in the limit of late times whenMf = const.
Another caveat of the phenomenological approach is that we have modeled the helicity fluxes with

�m and�f as parameters which we can fix freely. The physical mechanism which causes these fluxes
may not allow such a situation. For example, if initiallyHm = −Hf so that total helicity is zero, and the
helicity fluxes involved mass fluxes which carried both small and large scale fields (cf. Section 11.2.2
below), then the flux of small and large scale helicity could always be the same for all times. But from
magnetic helicity conservation (neglecting microscopic diffusion), one will always haveHm =−Hf , and
soMm/km = Mf /kf .

9.6.3. The vacuum cleaner experiment
The possible significance of open boundary conditions can be explained as follows. We have seen that,

at the end of the kinematic evolution, the magnetic field can only change on a resistive time scale if
magnetic helicity conservation is obeyed. The large scale field can therefore only increase if this does
not involve the generation of magnetic helicity (for example via differential rotation). Any increase due
to the� effect automatically implies an increase of small scale magnetic helicity, and hence also small
scale field. However, once the small scale field has reached equipartition with the kinetic energy, it cannot
increase much further. Any preferential loss of small scale magnetic energy would immediately alleviate
this constraint, as has been demonstrated in a numerical experiment where magnetic field at and above
the forcing wavenumber has been removed in regular intervals via Fourier filtering[159].

In the experiment shown inFig. 9.5the flow is forced with helical waves at wavenumberk= 5, giving
rise to large scale dynamo action with slow saturation at wavenumberk = 1. The magnetic field is then
Fourier filtered in regular intervals (between a tenth and a quarter of thee-folding time of the kinematic
dynamo) and the components abovek = 4 are set to zero, which is why this is called the vacuum cleaner
experiment. Of course, the small scale magnetic energy will quickly recover and reach again equipartition
field strength, but there remains a short time interval during which the small scale magnetic energy is in
sub-equipartition, allowing the magnetic helicity to grow almost kinematically both at smalland large
scales. The effect from each such event is small, but the effect from all events together make up a sizeable
enhancement to the amplitude of the generated large scale field.
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Fig. 9.5. The effect of removing small scale magnetic energy in regular time intervals�t on the evolution of the large scale field

(solid lines). The dashed line gives the evolution of〈B2〉 for Run 3 of Ref.[4], where no such energy removal was included. In

all cases the field is shown in units ofB2
eq=�0〈u2〉. The two solid lines show the evolution of〈B2〉 after restarting the simulation

from Run 3 of Ref.[4] at�t = 20 and�t = 80. Time is scaled with the kinematic growth rate�. The curves labeled (a) give the
result for�t = 0.12�−1 and those labeled (b) for�t = 0.4�−1. The inset shows, for a short time interval, the sudden drop and
subsequent recovery of the total (small and large scale) magnetic energy in regular time intervals. Adapted from[159].

9.6.4. Speculations about boundary conditions
In order for magnetic helicity losses to have an advantageous effect in the sun, or at least in a more

realistic simulation, it is important that the losses of magnetic helicity occur predominantly at small
scales. It is conceivable that preferentially small scale magnetic helicity losses may be possible in the
presence of a more realistic modeling of the surface, where magnetostatic equilibrium configurations
may lose stability, leading to the ejection of plasmoids and possibly magnetic helicity. In this context it
is important to recall that, whenever magnetic eruptions of any form do occur, the field is always found
to be strongly twisted[46,47,49,409,410]. It is therefore plausible that such events are an important part
of the solar dynamo.

A second comment is here in order. Looking at the coronal mass ejections depicted inFig. 2.3it is
clear that fairly large length scales are involved in this phenomenon. This makes the association with the
small scale field dubious. Indeed, the division between large and small scale fields becomes exceedingly
blurred, especially because small and large scale fields are probably associated with one and the same
flux tube structure, as is clear fromFig. 9.6.

The sketch shown inFig. 9.6shows another related aspect. Once a flux tube forms a twisted�-shaped
loop (via thermal or magnetic buoyancy) it develops a self-inflicted internal twist in the opposite sense.
(In the sketch, which applies to the northern hemisphere, the tilt has positive sense, corresponding to
positive writhe helicity, while the internal twist is negative.) These helicities can be associated with the
positiveJ · B and the negativej · b, that has also been confirmed by calculating Fourier spectra from a
buoyant flux tube tilting and twisting under the influence of the Coriolis force and the vertical density
gradient[49,411]; see Fig.9.7. Instead of visualizing the magnetic field strength, which can be strongly
affected by local stretching, we visualize the rising flux tube using a passive scalar field that was initially
concentrated along the flux tube. This is shown inFig. 9.8. This picture illustrates quite clearly that the�
effect cannot operate without (at the same time) twist helicity of the opposite sign.
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Fig. 9.6. Schematic ofkinematichelical�� dynamo in northern hemisphere is shown in (a) and (b), whilst thedynamichelical��
dynamo is shown by analogy in (c) and (d). Note that the mean field is represented as a line in (a) and (b) and as a tube in (c) and
(d). (a) From an initial toroidal loop, the� effect induces a rising loop of right-handed writhe that gives a radial field component.
(b) Differential rotation at the base of the loop shears the radial component, amplifying the toroidal component, and the ejection
of the top part of loop (through coronal mass ejections) allow for a net flux gain through the rectangle. (c) Same as (a) but now
with the field represented as a flux tube. This shows how the right-handed writhe of the large scale loop is accompanied by a
left-handed twist along the tube, thus incorporating magnetic helicity conservation. (d) Same as (b) but with field represented as
ribbon or tube. (e) Top view of the combined twist and writhe that can be compared with observed coronal magnetic structures in
active regions. Note theN shape of the right-handed large scale twist in combination with the left-handed small scale twist along
the tube. The backreaction force that resists the bending of the flux tube is seen to result from the small scale twist. Note that
diffusing the top part of the loops both allows for net flux generation in the rectangles of (a)–(d), and alleviates the backreaction
that could otherwise quench the dynamo. Courtesy Blackman[49].

9.7. Effect of magnetic helicity losses on the� effect

An important problem associated with the dynamical quenching model, as formulated so far, is the fact
that, unlike the volume average〈A · B〉 over a periodic domain, the spatially dependent magnetic helicity
densitya · b is not gauge-invariant. First, it is possible to formulate the theory directly in terms of the small
scale current helicity,j · b. We should note, however, that it is possible to define a gauge invariant magnetic
helicity density for the small scale field as a density of correlated links and the associated flux[154]. We
focus below on the formulation in terms of the current helicity density. Its evolution equation involves an
extra divergence term or a current helicity flux,FC. Using the evolution equation�b/�t = −∇ × e, we
can derive an evolution equation for the small scale current helicity in the form

�

�t
j · b= −2e · c− ∇ · FC , (9.55)
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Fig. 9.7. Magnetic helicity spectra (scaled by wavenumberk to give magnetic helicity per logarithmic interval) taken over the
entire computational domain. The spectrum is dominated by a positive component at large scales (k = 1 . . .5) and a negative
component at small scales (k >5). Adapted from Ref.[49].

Fig. 9.8. Three-dimensional visualization of a rising flux tube in the presence of rotation. The stratification is adiabatic such
that temperature, pressure, and density all vanish at a height that is about 30% above the vertical extent shown. (The actual
computational domain was actually larger in thex andz directions.) Adapted from Ref.[411].

wherec=∇× j is the curl of the small scale current density,j= J− J, e=E−E is the small scale electric
field,E= �J− E is the mean electric field, and

FC = 2e× j + (∇ × e) × b (9.56)

is the mean current helicity flux resulting from the small scale field.
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Mean-field models trying to incorporate such magnetic helicity fluxes have already been studied by
Kleeorin and coworkers[394,398,399]in the context of both galactic and solar magnetic fields. An
interesting flux of helicity which one obtains even in nonhelical but anisotropic turbulence due to the
presence of shear has been pointed out by Vishniac and Cho[388]. The presence of such a flux in non-
helical shearing turbulence has been confirmed numerically[412]. We will examine a general theory of
such fluxes using the MTA in Section 10.4 below.

In the isotropic case,e · c can be approximated byk2
f e · b. (Here we have assumed that the effect of

triple correlation terms like(u× b) · ∇2b in e · c are small.) Using FOSA or MTA, this can be replaced
by k2

f (E · B+ � j · b); see also Eq. (9.15), which then leads to the revised dynamical quenching formula

��

�t
= −2�tk

2
f

(
�B

2 − �tJ · B+ 1
2k

−2
f ∇ · FC

B2
eq

+ � − �K

Rm

)
, (9.57)

where the current helicity flux,FC =2e× j+ (∇ × e) × b, has entered as an extra term in the dynamical
quenching formula (9.15).

Making the adiabatic approximation, i.e. putting the RHS of Eq. (9.57) to zero, one arrives at the
algebraic quenching formula

� = �K + Rm(�tJ · B− 1
2k

−2
f ∇ · FC)/B

2
eq

1 + RmB
2
/B2

eq

(��/�t = 0) . (9.58)

Considering again theRm → ∞ limit, one has now

� → �tk̃m − 1
2k

−2
f (∇ · FC)/B

2 , (9.59)

which shows that losses of negative helicity, as observed in the northern hemisphere of the sun, would
enhance a positive� effect[394,398,399]. Here,k̃m = J · B/B2 is a spatially dependent generalization of
Eq. (9.23) to the inhomogeneous case. If the current helicity flux is approximated by a Fickian diffusive
flux proportional to the gradient of the small scale current helicity, i.e.FC ≈ −2�f ∇j · b, where�f is
an effective turbulent diffusion coefficient for the small scale current helicity (see Section 9.6.2), the
second term of Eq. (9.59) becomes approximately�f k̃m, so� approaches a combination of�tk̃m and�f k̃m,
confirming again that� has increased.

In recent simulations with an imposed magnetic field[389], the dependence of� on the magnetic
Reynolds number has been compared for both open and closed boundary conditions using the geometry
depicted on the right hand panel ofFig. 9.9. As usual,� was determined by measuring the turbulent
electromotive force, and hence�=〈E〉 ·B0/B

2
0. As expected,� is negative when the helicity of the forcing

is positive, and� changes sign when the helicity of the forcing changes sign. The magnitudes of� are
however different in the two cases:|�| is larger when the helicity of the forcing is negative. In the sun,
this corresponds to the sign of helicity in the northern hemisphere in the upper parts of the convection
zone. This is here the relevant case, because the differential rotation pattern of the present model also
corresponds to the northern hemisphere.

There is a striking difference between the cases with open and closed boundaries which becomes
particularly clear when comparing the averaged values of� for different magnetic Reynolds numbers; see
Fig. 9.10. With closed boundaries� tends to zero likeR−1

m , while with open boundaries� shows no such
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Fig. 9.9. Left: a sketch of the solar angular velocity at low latitudes with spoke-like contours in the bulk of the convection zone
merging gradually into uniform rotation in the radiative interior. The low latitude region, modeled in this paper, is indicated by
thick lines. Right: differential rotation in our cartesian model, with the equator being at the bottom, the surface to the right, the
bottom of the convection zone to the left and mid-latitudes at the top. Adapted from Ref.[389].
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Fig. 9.10. Dependence of|〈�〉|/urmsonRm for open and closed boundaries. The case with open boundaries and negative helicity
is shown as a dashed line. Note that forRm ≈ 30 the� effect is about 30 times smaller when the boundaries are closed. The
dotted line gives the result with open boundaries but no shear. The vertical lines indicate the range obtained by calculating�
using only the first and second half of the time interval. Adapted from Ref.[389].

decline. There is also a clear difference between the cases with and without shear, together with open
boundaries in both cases. In the absence of shear (dashed line inFig. 9.10) � declines with increasingRm,
even though for small values ofRm it is larger than with shear.

The difference between open and closed boundaries can be interpreted in terms of a current helicity
flux through the two open boundaries of the domain. Inspections of the actual fluxes suggests that there
is a tendency for the difference between incoming flux at the equator (dotted line) and outgoing fluxes
at outer surface (solid line) to cancel, but the net outgoing flux is negative. The flux for the total field is
approximately four times larger than what is accounted for by the Vishniac–Cho flux. This might indicate
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that there is either another contribution to the current helicity flux, or that the� in the Vishniac–Cho flux
is underestimated.

10. The microscopic theory of turbulent transport coefficients

In this section we describe in full detail the technique to calculate turbulent transport coefficients in
the presence of slow rotation and weak inhomogeneity. The technique to incorporate slow rotation and
weak inhomogeneity is the same as that introduced by Roberts and Soward[329] long ago, except that
here we are using MTA. The present results are basically in full agreement with a recent calculation by
Rädler et al.[320], except that here we retain thej · b correction to� throughout, even when this term was
vanishing initially. Indeed, in the nonlinear regime there is no limit in which this term can be ignored,
because it is self-generated by the� effect. In this section, overbars denote ensemble averages, but for all
practical purposes we may assume them to be equivalent to the spatial averages used before.

As we have emphasized before, the ignorance of thej · b feedback term in much of the mean field
dynamo literature is one of the main reasons why this theory has produced incorrect or unreliable results
and has not been in agreement with numerical simulations of hydromagnetic turbulence[371]. We are
now at a point where a lot of work has to be reconsidered with the correct feedback in place. What needs
to be done now is a careful calculation of the turbulent transport coefficients that include, in particular,
inhomogeneity and losses through boundaries. Here we are only able to present the initial steps in that
direction.

10.1. Transport coefficients in weakly inhomogeneous turbulence

We consider the case when the correlation tensor of fluctuating quantities (u andb) vary slowly on the
system scale, sayR. Consider the equal time, ensemble average of the productf (x1)g(x2). The common
dependence off andg on t is assumed and will not explicitly be stated. We have

f (x1)g(x2) =
∫ ∫

f̂ (k1)ĝ(k2)e
i(k1·x1+k2·x2) d3k1 d3k2 , (10.1)

wheref̂ andĝ are the Fourier transforms off andg, respectively. (In general the Fourier transform of
any function, sayf, will be denoted by the same symbol with a ‘hat’ i.e.f̂ .) We define the difference
r= x1 − x2 and the meanR= 1

2(x1 + x2), keeping in mind that all two point correlations will vary rapidly
with r but slowly withR [329]. We can re-express this correlation as

f (x1)g(x2) =
∫ ∫

f̂ (k+ 1
2K)ĝ(−k+ 1

2K)e
i(K·R+k·r) d3K d3k

≡
∫

�(f̂ , ĝ, k,R)eik·r d3k , (10.2)

where we have defined the new wavevectorsk= 1
2(k1 − k2) andK= k1 + k2. Also for later convenience

we define

�(f̂ , ĝ, k,R) =
∫

f̂ (k+ 1
2K)ĝ(−k+ 1

2K)e
iK·Rd3K . (10.3)
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In what follows we require the correlation tensors of theu andb fields and the cross correlation be-
tween these two fields in Fourier space. The velocity and magnetic correlations, as well as the turbulent
electromotive forceE, are given by

vij (k,R) = �(ûi, ûj , k,R), u2(R) = �ij

∫
vij (k,R)d3k , (10.4)

mij (k,R) = �(b̂i , b̂j , k,R), b2(R) = �ij

∫
mij (k,R)d3k , (10.5)

�jk(k,R) = �(ûj , b̂k, k,R), Ei(R) = εijk

∫
�jk(k,R)d3k . (10.6)

In order to calculate these quantities we first consider the time derivative of�jk,

��jk

�t
= �(ûj ,

˙̂
bk, k,R) + �( ˙̂uj , b̂k, k,R) , (10.7)

where the dots on̂bj andûi denote a partial time derivative. The equation forb is given by Eq. (6.12).
For the present we neglect the mean velocity termU. The Fourier transform of this equation is then,

˙̂
bk(k) = εkpqεqlmikp

∫
ûl(k− k′)B̂m(k

′)d3k′ + Ĝk(k) − �k2b̂k(k) , (10.8)

where we have included the nonlinear term,G= ∇ × (u× b− u× b). (Note that sinceu× b is a mean
field quantity, it will give zero contribution to�jk, when multiplied byû and ensemble averaged.) Using
the momentum equation for the velocity fieldU and splitting the velocity into mean and fluctuating parts,
U= U+ u, and neglecting for simplicity the mean flow,U= 0, we have, in a rotating frame,

�u

�t
= −∇peff + B · ∇b+ b · ∇B− 2� × u+ H + f + �∇2u . (10.9)

Here we have assumed incompressible motions with∇ · u= 0, and a constant density; we have therefore
adopted units such that�0 = �0 = 1. We have defined the effective pressurepeff which contains the
perturbed pressure including the magnetic contribution,f is the random external force, and the terms
nonlinear inu andb are gathered inH = −u · ∇u + u · ∇u + b · ∇b− b · ∇b. In the rotating frame, we
also have a Coriolis force contribution 2� × u. The effective pressure term can be obtained by solving a
Poisson type equation derived by taking the divergence of Eq. (10.9). In Fourier space this corresponds
to multiplying the equation by the projection operator,Pij (k) = �ij − k̂i k̂j , wherek̂ = k/|k| is the unit
vector ofk, so

�ûj

�t
= Pjs[(B̂ · ∇b)s + (b̂ · ∇B)s − 2εslm�l ûm + f̂s + Ĥs − �k2ûs] . (10.10)

Here we have dropped the argumentk on all quantities and, for brevity, we have introduced the notation

(B̂ · ∇b)s =
∫

B̂l(k− k′)(ik′
l) b̂s(k

′)d3k′ , (10.11)

(b̂ · ∇B)s =
∫

b̂l(k− k′)(ik′
l)B̂s(k

′)d3k′ (10.12)
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for the Fourier transforms of the magnetic tension/curvature force. We can simplify the rotational part of
the Coriolis force by using the identity

εijk = k̂i k̂pεpjk + k̂j k̂pεipk + k̂kk̂pεijp , (10.13)

noting thatPij εjkl = k̂kk̂pεipl + k̂l k̂pεikp, and using incompressibilitŷkkûk = 0, to get

Pjs(k) εslm�l ûm = k̂ · � εjpmk̂pûm . (10.14)

We are now in a position to calculate��jk/�t . Using the induction equation for˙̂bgiven by (10.8), the first
term in (10.7) is given by

�(ûj ,
˙̂
bk, k,R) = �̇K

jk + ûj Ĝk − �(k+ 1
2i∇)2�jk , (10.15)

where we have substitutedK by −i∇ and have introduced the abbreviation

�̇K
jk = εkpqεqlm

∫
ûj (k+ 1

2K)ûl(−k+ 1
2K− k′) B̂m(k

′)

× i(−kp + 1
2Kp)d

3k′eiK·Rd3K . (10.16)

Further the triple correlations of the form̂uj Ĝk, will be either ignored (FOSA) or replaced by the
double correlation�jk, divided by a relaxation time (the� approximation). To evaluate the above velocity

correlation in��Kjk/�t , we need to bring thêuj ûl term into a form similar to Eq. (10.4), so that we can

replace it byvjl . Thus, we define new wavevectorsk1 = k+ 1
2K andk2 = −k+ 1

2K+ k′, and transform
to new variables, (k′,K′), whereK′ = k1 + k2 = K− k′. We then have

�̇K
jk = εkpqεqlm

∫
ûj (k+ 1

2k
′ + 1

2K
′) ûl(−(k+ 1

2k
′) + 1

2K
′)B̂m(k

′)

× i(−kp + 1
2k

′
p + 1

2K
′
p) ei(K′+k′)·Rd3K ′ d3k′ . (10.17)

Using the definition of the velocity correlation functionvij in Eqs. (10.3) and (10.4) and carrying out first
the integral overK′, and replace iK ′

p by ∇p ≡ �/�Rp, we can write

�̇K
jk = εkpqεqlm

∫
(−ikp + 1

2ik′
p + 1

2∇p)vjl(k+ 1
2k

′,R)B̂m(k
′)eik′·Rd3k′ . (10.18)

Note that, since the mean fieldB varies only on large scales,B̂(k′) will be nonzero only for small|k′ |.
This suggests expandingvjl above in a Taylor series ink′, i.e.

vjl(k+ 1
2k

′,R) ≈ vjl(k,R) + 1
2k

′
s

�

�ks
vjl(k,R) . (10.19)

We will keep only terms that can contribute derivatives inRno higher than the first derivative. Integrating

overk′, usingεkpqεqlm = �kl�pm − �km�pl , and noting that the inverse Fourier transform of ik′
sB̂m(k′) is

Bm,s ≡ �Bm/�Rs , we get

�̇K
jk = −ik · B vjk + 1

2B · ∇vjk − vjl
�Bk

�Rl

− 1
2km

�vjk

�ks
Bm,s . (10.20)
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Now turn to the second term in (10.7) for��jk/�t . This is given by

�( ˙̂uj , b̂k, k,R) = �̇M
jk + �̇�

jk + Ĥj b̂k − �(k− 1
2i∇)2�jk , (10.21)

where

�̇M
jk =

∫
d3k′ d3KeiK·RPjs(k+ 1

2K)
[
i(kl + 1

2Kl − k′
l)B̂l(k

′)

×b̂s(k+ 1
2K− k′)b̂k(−k+ 1

2K) + (ik′
l)B̂s(k

′)b̂l(k+ 1
2K− k′)b̂k(−k+ 1

2K)
]

, (10.22)

and

�̇�
jk = 2�mεj lt

∫
pmpt

p2 ûl(k+ 1
2K)b̂k(−k+ 1

2K)e
iK·Rd3K . (10.23)

Here we have introducedp= k + 1
2K for brevity. Once again, the triple correlations of the form̂Hj b̂k,

will be either ignored (FOSA) or replaced by the double correlation�jk, divided by a typical correlation

time (the� approximation). Empirically, we know that the termf̂ · b̂ is small. We first simplify thė��
jk

term, keeping only terms that are at most a first derivative inR. For this first expandpmpt/p2 as

(km + 1
2Km)(kt + 1

2Kt)

(k+ 1
2K)

2
= kmkt

k2 + kmKt

2k2 + Kmkt

2k2 − kmktksKs

k4 , (10.24)

keeping terms that are at most linear inK. Then the integral overK can be carried out using the definition
of �ij . We get

�̇�
jk = −Aj l�lk − Bj lm

��lk
�Rm

, (10.25)

where the�lk without superscript is the full�lk, and

Aj l = −2εj lt
k · �

k2 kt , (10.26)

Bj lm = iεj lm
k · �

k2 + iεj lt
kt�m

k2 − 2iεj lt
(k · �)ktkm

k4 . (10.27)

As shown in Appendix E, the simplification of�̇M
jk leads to

�̇M
jk = ik · Bmjk + 1

2B · ∇mjk + Bj,lmlk − 1
2Bm,skm

�mjk

�ks
− 2

kj ks

k2 Bs,lmlk . (10.28)

We can now add all the different contributions to get

��jk

�t
= Ijk − Aj l�lk − Bj lm

��lk
�Rm

+ ûj Ĝk + Ĥj b̂k − (� + �)k2�jk − i(� − �)k · ∇�jk , (10.29)
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where

Ijk = − ik · B (vjk − mjk) + 1
2B · ∇(vjk + mjk) + Bj,lmlk − Bk,lvjl

− 1
2Bm,skm

[
�vjk

�ks
+ �mjk

�ks

]
− 2

kj ks

k2 Bs,lmlk , (10.30)

and we have only kept the terms in the microscopic diffusion and viscosity up to first order in the large
scale derivative.

The first order smoothing approximation can be recovered by neglecting the triple correlation terms
〈ûj Ĝk〉 + 〈Ĥj b̂k〉. Using MTA, one summarily approximates the triple correlations as a damping term,
and takes〈ûj Ĝk〉 + 〈Ĥj b̂k〉 ≈ −�jk/�(k), where in general the parameter� could bek-dependent. (The
microscopic diffusion terms can either be absorbed into the definition of�(k) or neglected for large
Reynolds numbers.) One then has

��jk

�t
= Ijk − Aj l�lk − Bj lm

��lk
�Rm

− �jk

�
, (10.31)

or

��jk

�t
= Ijk − 1

�
Dj l�lk − Bj lm

��lk
�Rm

, (10.32)

whereDj l = �j l + �Aj l . On time scales long compared with�, one can neglect the time derivative of�jk,
so one has[8]

Dj l�lk + �Bj lm

��lk
�Rm

= �Ijk . (10.33)

In the weakly inhomogeneous case that we are considering, this equation can be solved iteratively. To
zeroth order, one neglects the�/�R terms on both sides of Eq. (10.33). This gives a zeroth order estimate

�(0)lk = D−1
lj �I(0)jk , (10.34)

where

I(0)jk = −ik · B (vjk − mjk) . (10.35)

Here the inverse matrixD−1
j l is given by

D−1
j l = (�j l + Cokεj lmk̂m + Co2

kk̂j k̂l)/(1 + Co2
k) , (10.36)

where Cok ≡ 2�� · k̂ is the Coriolis number with respect to the component of� that is aligned withk,
andk̂ ≡ k/k is the unit vector of̂k.

To the next order, we keep first derivative terms and substitute�(0)lk in the��lk/�Rm term. This gives

�jk = D−1
j l �Ilk − �2D−1

jp Bplm

�

�Rm

(D−1
ls I(0)sk ) . (10.37)

Further, in many situations one will be concerned with the slow rotation limit, where��>1. In this
case one needs to keep only terms that are at most linear in��. We do this below; partial results to higher
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order in�� can be found in Ref.[320]. To linear order,D−1
j l = �j l + 2�k̂ · �εj lmk̂m. Substituting this into

Eq. (10.37), and noting that theBplm term is already linear in�, we get

�jk = �Ijk + 2�2k̂ · �εj lmk̂mIlk − �2Bj lm

�I(0)lk

�Rm

. (10.38)

We will work with this expression to evaluateE. The first term in (10.38) contributes toE, even in the
case when� = 0. This contribution is given by

E
(0)
i = εijk

∫
�Ijk d3k

= εijk

∫
�

[
−ik · B(vA

jk − mA
jk) + 1

2B · ∇(vA
jk + mA

jk)

+Bj,lmlk − Bk,lvjl − 1
2kmBm,s

(
�vA

jk

�ks
+ �mA

jk

�ks

)
− 2

kj ks

k2 Bs,lmlk

]
d3k . (10.39)

Note that due to the presence of the antisymmetric tensorεijk only the antisymmetric parts ofvjk and
mjk survive in some of the terms above, and these are denoted byvA

jk andmA
jk, respectively.

To proceed we need the form of the velocity and magnetic correlation tensors. We adopt the form
relevant when these are isotropic and weakly inhomogeneous, as discussed in detail in Refs.[320,329].
We take

vij =
[
Pij (k) + i

2k2 (ki∇j − kj∇i)

]
E(k,R)

− 1

2k2

[
εijkkk

(
2i + k · ∇

k2

)
− (kiεj lm+kj εilm)

kl

k2∇m

]
F(k,R) , (10.40)

mij =
[
Pij (k) + i

2k2 (ki∇j − kj∇i)

]
M(k,R)

− 1

2k2

[
εijkkk

(
2i + k · ∇

k2

)
− (kiεj lm+kj εilm)

kl

k2∇m

]
N(k,R) . (10.41)

Here 4	k2E and 4	k2M are the kinetic and magnetic energy spectra, respectively, and 4	k2F and 4	k2N

are the corresponding helicity spectra. (Note that in this section we use the symbolF(k,R) to denote the
kinetic helicity spectrum; this should not be confused with the coordinate spaceF(r) defined earlier, for
the helical part of the velocity correlation function.) They obey the relations

u2 (R) = 2
∫

E(k,R)d3k, � · u (R) = 2
∫

F(k,R)d3k ,

b2 (R) = 2
∫

M(k,R)d3k, j · b (R) = 2
∫

N(k,R)d3k . (10.42)

Note that, so far, we have also made no assumptions about the origin of the velocity and magnetic
fluctuations, apart from their general form. The fluctuating velocity could be driven by random forcing
and also be responding to the effects of rotation and/or the nonlinear effects of the Lorentz forces. For
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example, suppose one were to assume that the turbulence were originally nonhelical, that isE=E(0) and
F was originally zero. The helical parts of the velocity correlations can still be generated due to rotation
and stratification. In this case the helical part of the velocity correlation will no longer be isotropic, and
will reflect the anisotropy induced by both rotation and stratification. To work out the corresponding
modification tovij one has to take into account the effect of the Coriolis force in some approximate way.
This has been done in Ref.[329]by assuming that the velocity induced by rotation is very small compared
to the original turbulent velocity and using the� approximation in[320]. Interestingly, it turns out that,
to the lowest order inR derivatives, rotation induces a helical part tovij that can be described simply
by adopting an anisotropicF = F�. It is shown in Ref.[320] that, under the� approximation, this is
given by

F�(k,R) = −2�∗[(k̂ · �) (k̂ · ∇) − � · ∇]E(0)(k,R) , (10.43)

where�∗(k) is another correlation time, that could, in principle, be different from�(k). We use this for
F when we discuss the effects of rotation, although one must keep in mind that it is likely to give only a
crude and at most qualitative estimate of the effects of rotation.8

We substitute the velocity and magnetic correlations given in (10.40) and (10.41) into (10.40) forE
(0)

.
Note that the term proportional tovA

jk + mA
jk gives zero contribution, as the antisymmetric parts of the

correlations are odd inki and so integrate to zero, while doing thek-integration. (This continues to hold
even ifF = F�.) Also the terms that havek derivatives, give zero contribution after integrating by parts,
and using∇ · B = 0. Further, in terms which already haveRi derivatives ofB, one need not include the
Ri derivative contributions ofvjk andmjk. The remaining terms can be written as

E
(0)
i = εijk

∫
�
{
k̂ · B

[
1
2(k̂j∇k − k̂k∇j )(E − M) − εjkmk̂m(F − N)

]
+Bj,lPlk(k)M − Bk,lPjl(k)E − 2k̂j k̂sBs,lPlk(k)M

}
d3k , (10.44)

where, as before, commas denote partial differentiation with respect toR, i.e.Bj,l ≡ �Bj/�Rl .

10.2. Isotropic, helical, nonrotating turbulence

In the first instance, suppose we were to assume that the turbulence is driven by isotropic forcing which
is also helical, so that all spectral functions depend only on|k|. One can then do the angular parts of the
k-integral in (10.44), using a relation valid for anyF(k) of the form∫

k̂i k̂jF(k)d3k = 1
3�ij

∫
F(k)d3k . (10.45)

8 We also point out that the velocity and magnetic correlations will become anisotropic when the mean field becomes strong
and begins to influence the turbulence; throughout the discussion below we do not explicitly take this feature into account, since
the major feed back to the� effect due to the current helicity is already important for weak mean fields. Also the anisotropy
induced by rotation is already important, even when the mean field is weak. For a discussion of the effects of anisotropy induced
by strong mean fields, see for example[393].
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We get

E
(0)
i = εijk

[
(Bj∇k − Bk∇j )

Ẽ − M̃

6
− εjkmBm

F̃ − Ñ

3
− 2

3Bk,j Ẽ

]
, (10.46)

where we have defined

Ẽ =
∫

�(k)E(k,R)d3k, M̃ =
∫

�(k)M(k,R)d3k ,

F̃ =
∫

�(k)F (k,R)d3k, Ñ =
∫

�(k)N(k,R)d3k . (10.47)

For a constant�(k)= �0 say, we simply havẽE = 1
2�0u2, M̃ = 1

2�0b2, F̃ = 1
2�0� · u, Ñ = 1

2�0j · b. In this
case we have for the turbulent EMF

E
(0) = �B− �tJ+ � × B , (10.48)

where

� = −1
3�0(� · u− j · b), �t = 1

3�0u2, � = −1
6�0∇(u2 − b2) , (10.49)

and�0 = �0 = 1 is still assumed. We see that the� effect has the advertised current helicity correction,
but the turbulent diffusion is unaffected by the small scale magnetic fluctuations. There is also a turbulent
diamagnetic effect and this is affected by magnetic fluctuations, vanishing for equipartition fields. We
should also point out that the fluctuating velocity and magnetic fields above are the actual fields and not that
of some fiducial ‘original’ turbulence as for example implied in[320]. Of course, we have not calculated
what the values of� · u, j · b, etc. are; one possibility is to take them from a turbulence simulations.

Note also that assuming� independent ofkmay be adequate if the magnetic and kinetic spectra are dom-
inated by a single scale. However, it can be misleading ifF andNare nonzero over a range of scales. In such
a case it is better to adopt a physically motivated�(k). For example if the turbulence is maximally helical
andF(k) ∝ kE(k), with E(k) ∝ k−11/3 as in Kolmogorov turbulence, then�0

∫
F(k)dk ∝ ∫

kk−5/3 dk
would be dominated by the smallest scale and the kinetic and magnetic� effects will be Reynolds number
dependent. However, if one takes for�(k) ∝ k−2/3 the eddy turnover time in Kolmogorov turbulence,
then

∫
�(k)F (k)d3k ∝ k−1/3 and the� effects (both kinetic and magnetic) would be determined by the

kinetic/current helicities at the forcing scale of the turbulence and independent of Reynolds number. It
is important to keep this feature in mind in interpreting expressions with constant�0. (We thank Dmitry
Sokoloff for this suggestion.) We note, however, that recent simulations at higher resolution (up to 5123

meshpoints) indicate that the small scale velocity and magnetic fields are no longer fully helical beyond
the forcing wavenumber[327]. Thus, the spectra of kinetic and current helicities scale approximately
like k−5/3.

10.3. Turbulence with helicity induced by rotation

Now consider the case when helicity in the turbulence is induced by rotation and stratification. For this
case, we adopt a velocity correlation function, whereF is related toE as in (10.43). Formjk, we retain
the expression given by (10.41). Note that in Ref.[320] the current helicity terms have been neglected
in the calculation of the effects of rotation onE. There is no reason to make this assumption, as even if
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such helical magnetic correlations were initially zero, they would be generated dynamically, during the
operation of the large scale dynamo due to magnetic helicity conservation. So we have to keep this term
as well. We will also only keep terms linear in�� and linear in theRi derivative.

The first term in (10.38) also gives now an� dependent contribution toE, instead of just the usual
isotropic � · u term. This contribution, can be calculated by substituting the anisotropicF� from
Eq. (10.43) in place of the isotropicF into Eq. (10.44). We have now

E
(0) = 1

3�0 j · bB− �tJ+ � × B+ E
(�1)

, (10.50)

where

E
(�1)
i = − εijkεjkm

∫
�k̂ · Bk̂mF� d3k

= εijkεjkmBl�t

∫
��∗(k̂l k̂mk̂t k̂n∇n − k̂l k̂m∇t )E

(0)(k,R)d3k

= − 16
15Bi(� · ∇)Ẽ∗ + 4

15 � · B∇i Ẽ
∗ + 4

15 �iB · ∇Ẽ∗ , (10.51)

where we have used the relation valid for anyF(k),∫
k̂l k̂mk̂t k̂nF(k)d3k = 1

15(�lm�tn + �lt�mn + �ln�mt)

∫
F(k)d3k , (10.52)

and defined

Ẽ∗ =
∫

�(k)�∗(k)E(0)(k,R)d3k (=1
2�2

0u
(0)2) , (10.53)

the latter equality being valid for a constant�= �∗ = �0. Note thatE
(�1)

in Eq. (10.51) withẼ∗ = 1
2�2

0u
(0)2

gives a turbulent EMF identical to the� effect derived by Krause[305] for the case when there is no
density stratification; see Eq. (6.10) and Eq. (6.11). It would seem that Krause’s formula has actually
assumed� = �∗ and also missed the two additional contributions (theE

(�2)
and E

(�3)
terms) to be

derived below.
The second and third terms in (10.38) also contribute toE for nonzero�. These contributions toE,

denoted asE
(�2)

andE
(�3)

, respectively, are calculated in Appendix F. In computing these terms we also
need the following integrals:

Ẽ(2) =
∫

�2(k)E(k,R)d3k, M̃(2) =
∫

�2(k)M(k,R)d3k ,

Ẽ(3) =
∫

�2(k)kE′(k,R)d3k, M̃(3) =
∫

�2(k)kM ′(k,R)d3k , (10.54)

where primes denote derivatives with respect tok. For constant�(k) = �0 we have

Ẽ(2) = 1
2�2

0u
(0)2, M̃(2) = 1

2�2
0b

2 , (10.55)

together withẼ(3) = −3Ẽ(2) andM̃(3) = −3M̃(2).
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The net turbulent EMF is obtained by adding all the separate contributions,Ei = E
(0)
i + E

(�2)
i + E

(�3)
i ,

so

Ei = �ijBj − �ij J j + (� × B)i + (� × J)i + 
ijkBj,k , (10.56)

where the turbulent transport coefficients, fork-independent correlation times� = �∗ = �0, are given by

�ij = 1
3�0�ij j · b− 12

15 �2
0

[
�ij� · ∇(u(0)2 − 1

3b
2) − 11

24(�i∇j + �j∇i)(u(0)2 + 3
11b

2)
]

, (10.57)

�ij = 1
3�0�iju(0)2 , (10.58)

� = −1
6�0∇(u(0)2 − b2) − 1

6�2
0� × ∇(u(0)2 + b2) , (10.59)

� = 1
6��2

0(u
(0)2 − b2) , (10.60)


ijk = 1
6�2

0(�j�ik + �k�ij )(u(0)2 + 7
5b

2) . (10.61)

Note that the combination(� × J)i + 
ijkBj,k reduces to

E = · · · + 1
3�2

0(u
(0)2 + 1

5 b
2)∇(� · B) + 2

5 �2
0b

2 � · ∇B , (10.62)

so forb2 = 0 (and constant�) this combination is proportional to∇(� · B), and hence, ifu(0)2 + 1
5b

2 is
constant, it gives no contribution under the curl—in agreement with earlier work[396]. For a comparison
with Ref. [320] see Appendix G.

In general,u(0)2 + 1
5b

2 is not constant, and so the first term in Eq. (10.62) contributes to the� effect.
Instead of Eq. (10.57) we have then

�ij = 1
3�0�ij j · b− 12

15 �2
0�ij� · ∇(u(0)2 − 1

3b
2)

+ 1
5 �2

0(�i∇j + �j∇i)(u(0)2 + 1
3 b

2)

+ 1
6 �2

0(�i∇j − �j∇i)(u(0)2 + 1
5 b

2) . (10.63)

The last term is antisymmetric and can therefore be included in the second term of the expression for�

in Eq. (10.59) which then becomes

� = · · · − 1
3�2

0� × ∇(u(0)2 + 3
5 b

2) . (10.64)

This term corresponds to a longitudinal pumping term of the form discussed in Section 6.4; see the middle
panel ofFig. 6.6. Sinceu(0)2 increases outward, the longitudinal pumping is in the retrograde direction,
which is in agreement with the simulations[334].

As mentioned earlier, even if the original turbulence is nonhelical, one cannot assume the magnetic
part of the correlation functions to be nonhelical (as done in Ref.[320]) since, due to magnetic helicity
conservation, the magnetic helical parts can be generated during the large scale dynamo operation.

So one still has a current helicity contribution to the� effect.
In Ref. [320] the j · b contribution was neglected, because the small scale field was considered to be

completely unaffected by the dynamo. However, such a restriction is not necessary and the approach
presented above is valid even ifb2 and j · b are affected (or even produced) by the resulting dynamo
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action. The velocity term, on the other hand, is not quite as general, which is why we have to keep the
superscript 0 in the termu(0)2.

10.4. Nonlinear helicity fluxes using MTA

As emphasized above, thej · b term gives the most important nonlinear contribution to the� effect. In
this section we present the general theory for this term. One of our aims is also to examine possible fluxes
of helicity that arise when one allows for weak inhomogeneity in the system. Indeed, Vishniac and Cho
[388] derived an interesting flux of helicity, which arises even for nonhelical but anisotropic turbulence.
We derive this flux using MTA, generalizing their original derivation to include also nonlinear effects of
the Lorentz force and helicity in the fluid turbulence[391]. As we shall see, the Vishniac–Cho flux can
also be thought of as a generalized anisotropic turbulent diffusion. Further, due to nonlinear effects, other
helicity flux contributions arise which are due to the anisotropic and antisymmetric part of the magnetic
correlations.

Instead of starting with magnetic helicity, let us start with an equation for the evolution of the small
scale current helicity,j · b= εijkbi�j bk, since this is explicitly gauge invariant. As before we assume that
the correlation tensor ofb varies slowly on the system scaleR. We then have, in terms of the Fourier
componentŝbi ,

j(x) · b(x) = εijk

∫ ∫
b̂i(k+ 1

2K)b̂k(−k+ 1
2K)i(−kj + 1

2Kj)eiK·Rd3K d3k . (10.65)

Here we have used the definition of correlation functions as given by Eq. (10.1), but evaluated atr = 0.
The evolution ofj · b is given by

�

�t
j · b= �1 + �2 , (10.66)

where

�1/2 = εijk

∫ ∫
i(−kj + 1

2Kj)M
(1/2)
ik (k,K)eiK·Rd3K d3k , (10.67)

where

M
(1)
ik = ˙̂

bi(k+ 1
2K)b̂k(−k+ 1

2K) , (10.68)

M
(2)
ik = b̂i(k+ 1

2K)
˙̂
bk(−k+ 1

2K) . (10.69)

As shown in Appendix H, the final result for�1 and�2 is

�1/2 =
∫

{εijkεipqεqlm[kpkj (Bm�lk + 1
2i∇sBm��lk/�ks)

± 1
2ikp∇j (Bm�lk) − 1

2ikj∇p(Bm�lk)] + T 1/2(k)} d3k , (10.70)

where the upper and lower signs apply to�1 and �2, respectively. AlsoT 1 and T 2 represent the
triple correlations of the small scaleu andb fields and the microscopic diffusion terms that one gets
on substituting Eq. (10.8) into Eq. (10.67), respectively (see Appendix H). Adding the�1 and �2
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terms one gets

�

�t
j · b= 2εijkεipqεqlm

∫ [
kpkj

(
Bm�lk + 1

2i∇sBm

��lk
�ks

)
−1

2ikj∇p(Bm�lk)
]

d3k + T C . (10.71)

Here we have defined
∫ [T 1(k)+T 2(k)] d3k=T C. The handling ofT C requires a closure approximation.

But we will not need to evaluate these terms explicitly to identify the helicity fluxes we are interested in, i.e.
those that coupleE andB. So, we continue to write this term asT C. Usingεijkεipqεqlm=εljk�pm−εmjk�pl
to simplify the above expression, and integrating the��lk/�ks term by parts, yields

�

�t
j · b= εljk

∫
[2�lk kj (k · B) − �lk∇j (ik · B)

− ikjB · ∇�lk + 2ikj�pk∇pBl] d3k + T C . (10.72)

Note that only the antisymmetric parts of�lk contribute in the first three terms above due to the presence
of εljk. We can now use Eq. (10.72) combined with our results for�lk derived in the previous subsections
to calculate the current helicity evolution. We concentrate below on nonrotating turbulence. For such
turbulence, using Eq. (10.38), we have�lk = �Ilk, whereIlk is given by Eq. (10.30). We use this in what
follows. Let us denote the four terms in Eq. (10.72) byA1, A2, A3 andA4, respectively, with

A1 = 2εljk

∫
�lkkj (k · B)d3k, A2 = −εljk

∫
�lk∇j (ik · B)d3k , (10.73)

A3 = −εljk

∫
ikjB · ∇�lk d3k, A4 = 2iεljk

∫
kj�pk∇pBl d3k . (10.74)

The first term,A1, is given by

A1 = 2εljk

∫
�kj (k · B)

[
−ik · B(vA

lk − mA
lk) + 1

2B · ∇(vA
lk + mA

lk) + Bl,smsk

−Bk,svls − 1
2kmBm,s

(
�vA

lk

�ks
+ �mA

lk

�ks

)
− 2

klks

k2 Bs,pmpk

]
d3k . (10.75)

Due to the presence ofεljk, only the antisymmetric parts of the tensorsvlk andmlk survive, and these are
denoted byvA

lk andmA
lk, respectively. Also note that the last term above vanishes because it involves the

productεljkklkj = 0.
All the other terms of Eq. (10.72) already have oneR derivative, and so one only needs to retain the

term in�lk = �Ilk which does not containRderivatives. These terms are given by

A2 = −εljk

∫
�∇j (ik · B)[−ik · B(vA

lk − mA
lk)] d3k , (10.76)

A3 = −∇ ·
(

εljk

∫
�ikj [−ik · B(vA

lk − mA
lk)]

)
d3k , (10.77)
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A4 = 2εljk

∫
�ikj∇pBl[−ik · B(vpk − mpk)] d3k , (10.78)

where we have used∇ · B= 0 to writeA3 as a total divergence. We now turn to specific cases.

10.4.1. Isotropic, helical, nonrotating turbulence
Let us first reconsider the simple case of isotropic, helical, nonrotating, and weakly inhomogeneous

turbulence. For such turbulence we can again use Eqs. (10.40) and (10.41) for velocity and magnetic
correlations. Thek derivative terms inA1 in this case involve an integral over an odd number ofki and so
vanishes. Only terms which involve integration over an even number ofki survive. Also, in terms which
already involve oneRi derivative, one needs to keep only the homogeneous terms in Eqs. (10.40) and
(10.41). With these simplifications we have from Eq. (10.75)

A1 = 2εljk

∫
k2k̂j (k̂ · B)�[−εlknk̂nk̂ · B(F − N) + Bl,sPskM − Bk,sPlsE] d3k . (10.79)

Carrying out the angular integrals over the unit vectorsk̂i yields

A1 = 4
3B

2
∫

�k2(F − N)d3k + 2
3B · J

∫
�k2(M + E)d3k . (10.80)

In the case of isotropic turbulence, the second and third terms,A2 andA3, are zero because, to leading
order inRderivatives, the integrands determiningA2 andA3 have an odd number (3) ofk̂i ’s. The fourth
term given by Eq. (10.78) isA4 = 2εljkBs∇pBl

∫
�k2k̂j k̂s[E − M] d3k, or

A4 = 2
3J · B�

∫
k2[E − M] d3k . (10.81)

Adding all the contributions,A1+A2+A3+A4, we get for the isotropic, helical, weakly inhomogeneous
turbulence,

�

�t
j · b= 4

3B
2
∫

�k2(F − N)d3k + 4
3J · B

∫
�k2E d3k + T C . (10.82)

We see that there is a nonlinear correction due to the small scale helical part of the magnetic correla-
tion to the term∝ B

2. But the nonlinear correction to the term∝ J · B has canceled out, just as for
turbulent diffusion. Recall also that for isotropic random fields, the spectraHk of magnetic helicitya · b
andCk of current helicityj · b are related byHk = k−2Ck. So the first two terms of the current helicity
evolution equation Eq. (10.82) give exactly the source term−2E · B for the magnetic helicity evolu-
tion. Also for this isotropic case one sees that there is no flux which explicitly depends on the mean
magnetic field.

10.4.2. Anisotropic turbulence
Let us now consider anisotropic turbulence. InA1 term in Eq. (10.72), given by Eq. (10.75), one

cannot now assume the isotropic form for the velocity and magnetic correlations. But again, due to the
presence ofεljk, only the antisymmetric parts of the tensorsvlk andmlk survive. Also the last term in
Eq. (10.75) vanishes because it involves the productεljkklkj = 0. One can further simplify the term
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involving k derivatives by integrating it by parts. Straightforward algebra, and a judicious combination
of the terms then gives

A1 = 2εljk

∫
2�lkkj (k · B)d3k

= εljk

{
−2iBpBs

∫
�kj kpks(v

A
lk − mA

lk)d3k + 2Bp

∫
�kj kp(Bl,smsk − Bk,svls)d3k

+BpBm,j

∫
�kmkp(v

A
lk + mA

lk)d3k + ∇s

[
BpBs

∫
�kj kp(v

A
lk + mA

lk)

]}
d3k . (10.83)

All the other termsA2, A3 andA4 cannot be further simplified. They are explicitly given by

A2 = −εljkBpBs,j

∫
�kskp(v

A
lk − mA

lk)d3k , (10.84)

A3 = −∇s

[
εljkBpBs

∫
�kj kp(v

A
lk − mA

lk)

]
d3k , (10.85)

A4 = 2εljkBpBl,s

∫
�kj kp(vsk − msk)d3k . (10.86)

Adding all the contributions,A1 + A2 + A3 + A4, we get

�

�t
j · b= 2εj lk

[
BpBs

∫
�ikj kpks(v

A
lk − mA

lk)d3k + 2BpBk,s

∫
�kj kpv

S
ls d3k

−BpBs,j

∫
�kskpm

A
lk d3k − ∇s

(
BpBs

∫
�kj kpm

A
lk

)]
d3k + T C . (10.87)

HerevS
ls = 1

2(vls + vsl) is the symmetric part of the velocity correlation function.
Let us discuss the various effects contained in the above equation for current helicity evolution. The

first term in Eq. (10.87) represents the anisotropic version of helicity generation due to the full nonlinear�
effect. In fact, for isotropic turbulence it exactly will match the first term in Eq. (10.82). The second term
in Eq. (10.87) gives the effects on helicity evolution due to a generalized anisotropic turbulent diffusion.
This is the term which contains the Vishniac–Cho flux. To see this, rewrite this term as

�j · b
�t

∣∣∣∣
VC

= 4εj lkBpBk,s

∫
�kj kpv

S
ls d3k

= − ∇ · F
V + 4BkεkljBp,s

∫
�kj kpv

S
ls d3k . (10.88)

Here the first term is the Vishniac–Cho flux,F
VC
s = �spkBpBk, where�spk is a new turbulent transport

coefficient with

�spk = −4εj lk

∫
�kj kpv

S
ls d3k = −4��k∇pus , (10.89)

the latter equality holding for a� independent ofk. Obviously, only the component of�spk that is symmetric

in its second two components enters inF
VC
s . The second term in Eq. (10.88) is the effect on helicity
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due to ‘anisotropic turbulent diffusion’. (We have not included the large scale derivative ofvls to the
leading order.) If we recall thatHk =k−2Ck for homogeneous turbulence, then Eq. (10.89) forF

VC
leads

to the magnetic helicity flux of the form given in Eqs. (18) and (20) of Vishniac and Cho[388].
This split into helicity flux and anisotropic diffusion may seem arbitrary; some support for its usefulness

comes from the fact that, for isotropic turbulence,F
V

vanishes, while the second term exactly matches
with the corresponding helicity generation due to turbulent diffusion, i.e. theJ · B term in Eq. (10.82).
Of course, we could have just retained the nonsplit expression in Eq. (10.88), which can then be looked
at as an effect of anisotropic turbulent diffusion on helicity evolution. Also, interestingly, there is no
nonlinear correction to this term frommS

ls , just like there is no nonlinear correction to turbulent diffusion in
lowest order!

Finally, Eq. (10.87) also contains terms (the last two) involving only the antisymmetric parts of the
magnetic correlations. These terms vanish for isotropic turbulence, but contribute to helicity evolution
for nonisotropic turbulence. The last term gives a purely magnetic contribution to the helicity flux,
but one that depends only on the antisymmetric part ofmlk. Note that such magnetic correlations,
even if initially small, may spontaneously develop due to the kinetic� effect or anisotropic turbu-
lent diffusion and may again provide a helicity flux. More work is needed to understand this last flux
term better.

The advantage of working directly withj · b evolution is that it is the current helicity density that
appears in the feedback on the� effect. However a disadvantage is the appearance of the triple correlation
termT C as a volume term, which cannot be easily evaluated. However, it has recently been possible to
define, in a gauge invariant manner, the magnetic helicity density of the small scale random field[154].
This can be done even in the inhomogeneous case and it is then also possible to derive its evolution
equation. This generalizes the helicity evolution equation to the inhomogeneous case and contains fluxes
both of theVishniac–Cho type and those phenomenologically invoked by Kleeorin and co-workers. Triple
correlations also do not appear in the volume terms, but only contribute to the flux. This is still very much
work in progress, but it is clear that this approach may prove fruitful in the future.

In summary, MTA allows a conceptually simple and mathematically straightforward, although tech-
nically somewhat involved analytic treatment of the mean field transport coefficients. The calculation
of �ij , �ij , �, �, and
ijk agrees in all important aspects with earlier treatments[320]. The by far most
important new aspect is the inclusion of thej · b feedback term. This must be coupled to a dynamical
calculation ofj · b, which has hitherto been ignored in the vast majority of dynamo models. The nonlinear
feedback in the case of homogeneous dynamos in closed domains is now well understood (Section 9.3).
However, in the case of open domains helicity fluxes need to be calculated. Here, only partial results
are available. Clearly, more work by the various groups is required before we can generate a coherent
picture.

11. Discussion of dynamos in stars and galaxies

The applicability of the full set of mean field transport coefficients to models of stars and galaxies
is limited by various restrictions: analytic approaches allow only weak anisotropies and suffer from
uncertainties by using approximations such as FOSA or MTA, while the results of numerical simulations
to calculate transport coefficients are difficult to parameterize and apply only to low magnetic Reynolds
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Table 4
Summary of angular velocities, estimated turnover times, and the resulting inverse Rossby number for various astrophysical
bodies

� [s−1] � Ro−1 = 2��

Proto–neutron stars 2× 103 10−3 s 2
Discs around neutron stars 10−2 104 s 200
Jupiter 2× 10−4 106 s 200
T Tauri stars 2× 10−5 106 s 40
Solar convection zone (lower part) 3× 10−6 106 s 6
Protostellar discs 2× 10−7 109 s 400
Galaxy 10−15 107 yr 0.6

numbers. This, combined with the general lack of confidence due to a range of different results, has
resulted in a rather fragmentary usage of a selection of various possible terms. Thus, only partial results
can be reported here.

It is clear that all the interesting effects are controlled by the degree of anisotropy in the turbulence.
One of the important ones is rotation, without which there would be no� effect and also no differential
rotation or shear. We begin with a discussion of the relative importance of rotational effects in various
astrophysical bodies and turn then to a somewhat subjective assessment of what is the current consensus
in explaining the nature of magnetic fields in various bodies.

11.1. General considerations

How rapid does the rotation have to be in order that the anisotropy effect on the turbulence becomes
important? A suitable nondimensional measure of� is the inverse Rossby number,Ro−1 = 2��, where�
corresponds to the correlation time if FOSA is used, or to the relaxation time if MTA is used. In practice,
� is often approximated by the turnover time,�turnover. In Table 4we give some estimates forRo−1 for
various astrophysical bodies. For the sun,Ro−1 is around 5 near the bottom of the convection zone (but
goes to zero near the surface layers). In galaxies, and also in proto–neutron stars,Ro−1 is smaller (around
unity). Accretion discs tend to have large values ofRo−1 (around 100). This is directly a consequence
of the fact that here the turbulence is weak, as quantified by a small value of the Shakura–Sunyaev
viscosity parameter (�SS ≈ 0.01 [201,265,413]). Planets also tend to have large values ofRo−1, because
here the turbulence is driven by a weak convective flux, so the turnover time is long compared with the
rotation period.

It may be useful to comment on the relative meanings of ‘large’ and ‘small’. This issue may depend on
the problem; one possibility is to consider the� effect. Both mean field theory[310]and simulations[308]
suggest that� saturates whenRo−1 ≈ 5. This indicates that values ofRo−1 below 5 can be considered
as small. In this context it is worth mentioning that the inverse Rossby number is occasionally defined
as�/Prot, whereProt = 2	/� is the rotation period, so�/Prot = Ro−1/(4	). Thus, in terms of�/Prot the
dividing line between large and small would be around 0.4.

In the following we first discuss some issues connected with understanding and modeling the solar
dynamo, and then turn to dynamos in stars and planets, and their relation to laboratory liquid metal
experiments. Finally, we turn to dynamos in accretion discs, galaxies and galaxy clusters.
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11.2. The solar dynamo problem

There are several serious shortcomings in our understanding of the sun’s magnetic field.Although there
have been many theoretical attempts, there is as yet no solution to the solar dynamo problem. With only
a few exceptions[414,415], all the mean field models presented so far have ignored the magnetic helicity
issue altogether, so it is not clear what significance such models still have. Neglecting magnetic helicity
can only be considered a reasonable approximation if| j · b|>|� · u|, which is probably not valid in the
nonlinear regime. We have seen earlier that an important constraint on the nonlinear dynamo is imposed
by magnetic helicity conservation. The corresponding nonlinearity needs to be properly incorporated into
many of the solar dynamo models.

It should ultimately be possible to simulate the entire sun with its three-dimensional turbulence, the
tachocline (see Section 11.2.6), the resulting differential rotation, and the near-surface shear layer. Several
attempts have been made starting with the early work of Gilman[416]and Glatzmaier[417], and new high
resolution calculations are currently underway[418–420]. All these simulations have been successful in
generating both small scale and large scale magnetic fields, although they have not yet been convincingly
demonstrated cyclic behavior. Nevertheless, there is a tendency for the toroidal field belts to propagate
away from the equator, rather than toward the equator as in the sun. It is tempting to associate this with
a positive sign of the� effect (in the northern hemisphere) that these simulations generate (even though
an explicit� effect is of course not invoked).

It should be emphasized that in none of the convection simulations currently available (neither in
spherical shells nor in cartesian boxes) the magnetic Reynolds numbers are large enough to see the effect
of magnetic helicity conservation (the dynamo growth rate should be much larger than the ohmic decay
rate�k2

1 [4], which is hardly the case in many simulations). We are only now at the threshold where
magnetic helicity effects begin to have a chance to show up in simulations.

11.2.1. Magnetic helicity and cycle period
There is the worry that in large scale simulations magnetic helicity conservation could either prevent

cyclic behavior or it might significantly prolong the cycle period[49,159]. On the other hand, if in the sun
the importance of magnetic helicity conservation is only marginally important (e.g., if magnetic helicity
fluxes dominate over resistive losses), one could imagine a prolongation of the cycle period by a factor of
about ten, which would be needed to improve the results of conventional models, which invariably produce
too short cycle periods if magnetic helicity conservation is ignored[345]. The anticipated prolongation
of the cycle period might therefore be regarded as a step in the right direction. Conventional approaches
to produce the right cycle period is to ‘adjust’ the ill-known parameters�0 and�t [421].

The strength of the magnetic and current helicity fluxes, and hence the degree of magnetic helicity
conservation, is possibly self-regulating via losses through the outer surface, for example such that the
magnetic helicity losses are just as strong as to affect the time scales only slightly. Again, this is at present
quite speculative, and there is no simulation that is able to show this. There are only partial results[389]
suggesting that� might not be quenched catastrophically if there is shear combined with open boundaries.
It seems plausible that a significant portion of the magnetic helicity losses from the sun occurs through
coronal mass ejection (CMEs)[44]. So far, however, no turbulence simulation has realistically been able
to allow for such magnetic helicity losses, nor have simulations to our knowledge been able to produce
phenomena that can even remotely be associated with CMEs. It seems therefore important to study the
large scale dynamo problem in more realistic settings where CMEs are possible.
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11.2.2. Does the sun eject bi-helical fields?
On theoretical grounds, if most of the helicity of the solar magnetic field is produced by the� effect,

one would expect a certain fraction of the solar magnetic field to be bi-helical[48,49,422], in that the field
that is generated by the� effect has positive and negative magnetic helicity at different scales, but hardly
any net magnetic helicity. On the other hand, if most of the sun’s helicity is caused by differential rotation,
the field might equally well not be bi-helical. (We recall that differential rotation causes segregation of
magnetic helicity in physical space, i.e. between north and south, while the� effect causes a segregation of
helicity in wavenumber space; see Section 3.4.) So far, however, the solar magnetic field has not explicitly
been seen to be bi-helical. Indirectly, however, a bi-helical nature of the solar magnetic field is indicated
by the fact that bipolar regions are tilted according to Joy’s law[37,293](see also Section 6.1), suggesting
the presence of positive magnetic helicity in addition to the negative magnetic helicity indicated by the
magnetic twist found in active regions.

What is missing is a quantitative assessment of the relative magnitudes of large and small scale magnetic
helicities. To get an idea about the sign and possibly the magnitude of the relative magnetic helicity of
the longitudinally averaged field (denoted here by overbars), one should ideally calculate 2

∫
A�B� dV ,

which is the gauge-invariant magnetic helicity of Berger and Field for axisymmetric fields in a sphere
(see Section 9.5). As a first step in that direction, one can determineA� at the solar surface from the
observed radial component of the magnetic field,Br , using

Br = 1

r sin�

�

��

(
sin�A�

)
, r = R� . (11.1)

This equation can easily be solved forA� using the modal decomposition in spherical harmonics[411];
the result is shown inFig. 11.1. Empirically, we know thatBr is approximately in antiphase withB�.
Comparison of the two panels ofFig. 11.1suggests thatA�B� was negative just before solar maximum
(t <1982 yr) and positive just after (t >1982 yr). Thus, the present attempt to assess the sign of the
magnetic helicity of the large scale field does not support nor exclude the possibility that the large scale
field has positive magnetic helicity, as suggested by the tilt of bipolar regions.

11.2.3. Migration of activity belts and butterfly diagram
There are still a number of other rather long standing problems. Most important perhaps is the sense

of migration of the magnetic activity belts on either side of the equator. This migration is traditionally
believed to be associated with the phase velocity of the dynamo wave; see Section 6.5.2. However, this
would be in contradiction with�>0 (as expected in the northern hemisphere) and��/�r >0 (known
from helioseismology[423]).

One of the currently favored models is the flux transport model where meridional circulation is assumed
to be oriented such that, at the bottom of the convection zone, meridional circulation would advect
the dynamo wave equatorward[424–428,355,356]. This proposal came originally quite as a surprise,
because meridional circulation was normally always found to make dynamos nonoscillatory well before
the anticipated advection effect could take place[301,344,348].

Whether or not the flux transport proposal is viable cannot be decided at present, because this model
(and essentially all other solar dynamo models available so far) lack consistency with respect to the
conservation of total (small and large scale) magnetic helicity. In addition, there are several other problems.
With realistic profiles of differential rotation it is difficult to produce satisfactory butterfly diagrams[355].
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Fig. 11.1. Mean dipole symmetry radial field,Br , reconstructed from the coefficients of Stenflo[32,33] (upper panel). The
corresponding toroidal component of the mean vector potential,A�, derived fromBr (lower panel). Solid contours denote
positive values, dotted contours negative values. The solar cycle maximum of 1982 is highlighted, as is the latitude of 10◦ where
Br was then strongest. The signs of various quantities at or around this epoch are also shown (see text for more details). Adapted
from Ref.[411].

It is also difficult to produce fields of dipolar rather ran quadrupolar parity[356], although this remains
debatable[429].

Quite a different possibility is to invoke the near-surface shear layer in the outer 35 megameters of
the sun[430,431]. Here the angular velocity gradient is negative, giving rise to equatorward migration.
For this scenario to work, one has to rely on turbulent downward pumping to prevent the magnetic field
from buoyantly escaping through the surface. However, simulations of stratified convection have clearly
demonstrated the dominance of pumping over magnetic buoyancy[203,253,331–333]; see also Section
6.4. There is obviously a lot more to be discussed in connection with this scenario, but the situation is
still premature and it would go beyond the scope of this review. We refer instead to a recent paper[55]
devoted specifically to this discussion.

11.2.4. The phase relation between poloidal and toroidal fields
Even if the problem of the migration direction of the toroidal activity belts was solved (for example

by meridional circulation; see Section 11.2.3), there remains the problem of the phase relation between
poloidal and toroidal field, provided the field was mainly generated at the bottom of the convection zone.
Observations suggest thatBr andB� are in antiphase. For example, whenB� <0 (as seen from the
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orientation of bipolar regions; seeFig. 6.1for Cycle 21 during the year 1982) we haveBr >0 (as seen
from synoptic magnetograms, seeFig. 11.1at t = 1982 yr), and vice versa[342,343]. The basic problem
is actually connected with the sense of the radial differential rotation, i.e. the fact that��/�r >0 in low
solar latitudes. This always turns a positiveBr into a positiveB�, and vice versa, regardless of the sign of
the� effect. No convincing solution to this problem has yet been offered, although it has been suggested
[432] that the problem might disappear in more realistic settings. Of course, in the near-surface shear
layer,��/�r, so the problem with the phase relation would be solved in this scenario where the solar
dynamo works in or is shaped by the near-surface shear layer[55].

11.2.5. The flux storage problem
Since the early 1980s it was realized that flux tubes with a strength similar to or in excess of that in

sunspots would float up to the surface in a time short (∼ 50 days) compared with the dynamo time scale
(∼ 10 yr). Therefore, magnetic buoyancy might act as an efficient sink term of mean toroidal field. This
led to the suggestion[433] that the dynamo may operate in the lower part of the convection zone or just
below it where magnetic flux tubes could stay in equilibrium. Model calculations[434,435]have shown
however that dynamos in thin layers tend to produce too many toroidal flux belts in each hemisphere
[436], and that for an overshoot layer dynamo the layer must therefore not be less than about 30 Mm deep
[354], which is much more than the helioseismologically implied thickness of the solar overshoot layer.

As mentioned above, it is also possible that the dynamo might still work in the convection zone
proper, but that turbulent pumping brings the field continuously to the bottom of the convection zone
[330–332,354], from where strong toroidal flux belts can rise to the surface and form bipolar regions
(Fig. 6.1). The end result might be similar in the sense that in both cases bipolar regions would be
caused by flux tubes anchored mostly in the overshoot layer. It should also be emphasized that magnetic
buoyancy might not only act as a sink in a destructive sense, but it can also contribute to driving an�
effect[437–440]. A conclusive picture cannot be drawn until we have a better understanding about things
like magnetic and current helicity fluxes that now appear quite vital for allowing the solar dynamo to
work on the observed 22 year time scale. Finally, one should bear in mind that it is also possible that the
solar field in sunspots and in active regions does not even come from very deep, and that it originates
primarily from the near-surface shear layer. In that case the actual sunspot formation might be the result
of convective collapse of magnetic fibrils[441,442], possibly facilitated by negative turbulent magnetic
pressure effects[319] or by an instability[443] causing the vertical flux to concentrate into a tube.

11.2.6. Significance of the tachocline and differential rotation
The tachocline is the layer where the latitudinal differential rotation turns into rigid rotation[444]. This

layer is now known to be quite sharp and to coincide with the bottom of the convection zone[430]. The
reason the latitudinal differential rotation does not propagate with time deeper into the radiative interior
is probably connected with the presence of a weak primordial magnetic field[445–447].

The tachocline is likely to be the place where the vertical shear gradient plays an important role in
amplifying the toroidal magnetic field. This is perhaps not so much because the shear gradient is strongest
at and just below the tachocline, but because the turbulent magnetic diffusivity is decreased, and because
the magnetic field is pumped into this layer from above.

In the convection zone proper the differential rotation is in rough approximation spoke-like, i.e. nearly
independent of spherical radius. Simulations, on the other hand, shear a strong tendency to produce
angular velocity contours that are constant on cylinders[448]. This is generally associated with the
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Taylor-Proudman theorem, and is a well recognized difficulty in understanding the solar differential
rotation[449–451]. It is also fairly well understood that solar-like departures from cylindrical contours
could be achieved by the baroclinic term[452], ∇s × ∇T , wheres and T are specific entropy and
temperature, respectively. In the convection zone, where the radial entropy gradient is small, a finite
baroclinic term is mostly due to the latitudinal entropy gradient, so that

�
��2

�z
≈ �̂ · (∇s × ∇T ) ≈ −1

r

�s

��

�T

�r
<0 , (11.2)

where�= r sin� is the cylindrical radius,z= r cos� is the distance from the equatorial plane, and�̂ is the
unit vector in the azimuthal direction. Negative values of��2/�z, in turn, require that the pole is slightly
warmer than the equator (so weak that it cannot at present be observed). Achieving this in a simulation
may require particular care in the treatment of the outer boundary conditions.

In order to understand the computational difficulties in dealing with the overshoot layer, we note that
in and below the tachocline the total relaxation time is governed more strongly by the thermal time scale.
Thus, if the system is slightly thrown out of balance, it will take a thermal time scale to reestablish
a new equilibrium. Furthermore, as long as a new equilibrium state has not yet been reached, fairly
strong amplitudes may develop, making the effective relaxation time even longer. While this will not
be a problem for the sun, it may be a problem for simulations. In practice, this means that one has
to be more careful setting up initial conditions and, perhaps most importantly, one should deliberately
chose parameters whereby the thermal and acoustic time scales are not more disparate than what can
be handled in a simulation. Nevertheless, keeping at least some representation of the tachocline, rather
than neglecting it altogether, may be crucial. Without any representation of a tachocline it may not
be possible to argue conclusively in favor of either the tachocline scenario or the near-surface shear
layer scenario.

11.2.7. Luminosity variations
Cyclic variations of the magnetic field produce cyclic variations of the luminosity through variations of

the superadiabatic gradient[433]. Although this basic picture has been confirmed in mean field dynamo
models, the relative variations obtained are only�L/L ∼ 10−6 [451]. Larger values of a few times 10−3

can be obtained by making the upper boundary “partially reflecting”; see a recent paper by Pipin[453].
This emphasizes again that a realistic representation of the top boundary condition can be very important.
This model also predicts variations of the hydrostatic balance and hence of the star’s quadrupole moment.
This is important for stellar dynamos that are members of a binary system, because such variations can
provide a means of determining the stars’cycle period by measuring variations of the orbital period[454].
In Section 11.3 we discuss stellar dynamos in more detail.

11.2.8. Status of different solar dynamo model scenarios
Before turning attention to stellar dynamos we briefly summarize four different dynamo scenarios that

are currently being discussed in the context of the sun. None of the models appear to be completely
satisfactory, but the topic is advancing rapidly, as indicated at the end of this section.

• Distributed dynamo. An � effect is present throughout the entire convection zone, as described by
Eq. (6.11) and calculated using a solar mixing length model[306]. At the bottom of the convection
zone the sign of� reverses because of the sharp positive gradient of the turbulent rms velocity. Solutions
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have been calculated taking also into account Rädler’s� × J effect and other expressions. The model
produces realistic butterfly diagrams including a solar branch[455]. Unfortunately, the published
models use angular velocity profiles that are no longer compatible with modern helioseismological
inversions.

• Overshoot dynamo. Here,� is only present in the overshoot layer, and it is artificially suppressed at
high latitudes. Its sign in the northern hemisphere is negative because of the sharp positive gradient
of the turbulent rms velocity. The resulting butterfly diagram looks reasonably acceptable, but for the
model to be successful, the thickness of the overshoot layer cannot be less than 30 Mm[354], while
helioseismology is now favoring values as small as 7 Mm[456].

• Interface dynamo. The sudden drop of the turbulent magnetic diffusivity below the overshoot layer is
important. In the northern hemisphere� must be assumed to be negative and finiteabovethe convection
zone. The original model by Parker[457]worked with only radial differential rotation. When latitudinal
differential rotation is included, only nonoscillatory solutions are found[458].

• Flux transport dynamo. Meridional circulation leads to equatorward migration of magnetic activity
during the course of the cycle. The sign of� is positive in the northern hemisphere, and� is concentrated
toward the upper layers of the convection zones. The magnetic diffusivity in the bulk of the convection
zone is small. The resulting butterfly diagram is quite realistic[426], although the parity issue remains
to be clarified[356,429].

The most popular model is currently the flux transport dynamo scenario[355,356,428]. However, there
are a number of reasons why it might still be worthwhile pursuing the distributed dynamo scenario. Most
important is the fact that magnetic tracers have an angular velocity that is close to the maximum angular
velocity in the sun which is, according to helioseismology, only 35 Mm beneath the surface[430,431].
This suggests that magnetic tracers such as sunspots might not be anchored very deeply. There are a
number of other issues that may be more easily resolved within the framework of a distributed dynamo:
instead of requiring a field strength of 100 kG (typical of all dynamos where the toroidal field emerges
from the overshoot layer), only about 300 G may be required if the field is generated locally within the
convection zone. Also, in the upper 35 Mm beneath the surface, the radial angular velocity gradient is
negative, suggesting that a locally produced dynamo wave would migrate equatorward without invoking
meridional circulation. These and a number of other arguments have been collected and discussed in
Ref. [55]. Finally, it should be recalled that dynamos in fully convective spheres without any overshoot
layer also produce magnetic activity. This will be discussed in more detail in the next section.

11.3. Stellar dynamos

Looking at stars other than the sun allows us to test the dependence of the dynamo on radius, on the
thickness of the convection zone and, in particular, on the angular velocity of the star. In this section we
summarize a few such dependencies and discuss whether they can be reproduced by dynamo models.

11.3.1. Fully convective stars
Toward the less massive stars along the main sequence the thickness of the convection zone increases

relative to the stellar radius (although in absolute units the thickness remains around 200 Mm) until the
star becomes fully convective. Such stars would lack a lower overshoot layer which was often thought
to be an important prerequisite of solar-like dynamos. On the other hand, turbulent pumping would in
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Fig. 11.2. Magnetic field lines outside a model of a fully convective M-dwarf. Color coded is the radial field component on the
surface of the star. Courtesy Dobler[463].

any case tend to concentrate the field toward the center of the star, and since the gravitational acceler-
ation vanishes at the center, the magnetic field can probably still be stored for some time (if that was
an issue).

Fig. 11.2shows a visualization of magnetic field lines of a self-consistent turbulence simulation of
a fully convective spherical dynamo. In this simulation the dynamo is weakly supercritical. Following
similar approaches by other groups[459–463], the star is embedded in a sphere, which avoids compu-
tational difficulties associated with coordinate singularities in explicit finite difference methods using
spherical coordinates. The star’s radius is 27% of the solar radius and the mass is 21% of the mass of
the sun.

Another class of fully convective stars are the T Tauri stars, i.e. stars that have not yet settled on the
main sequence. These stars are generally known to spin very rapidly, so magnetic braking via magnetic
field lines anchored in the surrounding protoplanetary accretion disc is usually invoked to explain the
much slower rotation rate of evolved stars such as the sun[166]. It is also possible that young stars are
mainly braked by a stellar wind if the star–disc becomes inefficient[464,465].

11.3.2. Models of stellar cycles
Stars exhibiting cyclic behavior can cover a broad parameter range that allows us to test whether the

dependence of cycle properties on stellar parameters agrees with what is expected from dynamo models.
For orientation one can consider the marginally excited solution from linear theory and it is indeed
common to look at plane wave solutions[466–468].

Several results have emerged from this type of analysis. Comparing models with different model
nonlinearities (� quenching, feedback on the differential rotation, and magnetic buoyancy) it turns out
[469] that only models with magnetic buoyancy as the dominant nonlinearity are able to produce apositive
exponent� in the relation�cyc/� = c1Ro−�; see Eq. (2.1). We emphasize that it is not sufficient that
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�cyc increases with�. For example, an increase proportional to�0.5, which is found for classical dynamo
models[62], is insufficient.

Meanwhile, there has been some uncertainty regarding the correct cycle frequency dependence on
Ro−1. We recall that inFig. 2.8there are two separate branches, both of which have a positive slope�.
On the other hand, a negative slope has been found when plotting�cyc/� versus the dimensional form
of � (rather than the nondimensionalRo−1 = 2��turnover) [470]. One may argue that the nondimensional
form is to be preferred, because it is more general and it also yields a smaller scatter[61].

While ordinarily quenched dynamos tend to produce negative exponents� [62], ‘anti-quenched’ dy-
namos can produce the observed exponents when the dynamo alpha and the turbulent dissipation rate,
�−1 = �tk

2
z , increasewith field strength, e.g. like

� = �0|B/Beq|n, �−1 = �−1
0 |B/Beq|m, m, n>0 . (11.3)

The motivation behind anti-quenching lies in the realization that the motions driving turbulent transport
coefficients can be caused by magnetic instabilities. Examples of such magnetic instabilities include
the magnetic buoyancy instability[438–440], the magneto-rotational instability[70,201], and global
instabilities of the tachocline differential rotation[356,471].

Assuming that the dynamo operates in its fundamental mode (even in the nonlinear regime) one can
apply relations (6.39) and (6.40) for a fixed valuekz, wherekzL = 1, whereL is the system size. This
leads to two algebraic relations[59]

�−1
0 |B/Beq|m = |1

2�0�
′|1/2 |B/Beq|n/2 , (11.4)

�cyc = �−1
0 |B/Beq|m . (11.5)

Dividing both equations by� and making use of the relation〈R′
HK〉 ∝ |B/Beq|
 (usually
 ≈ 0.5; see

Section 2.2), we have

2Ro 〈R′
HK〉m/
 =

∣∣∣∣�0�
′

2�2

∣∣∣∣1/2〈R′
HK〉n/2
 , (11.6)

∣∣∣�cyc

�

∣∣∣ = 2Ro 〈R′
HK〉m/
 . (11.7)

For slow rotation� is proportional to�, while for rapid rotation it is independent of� [310]. Likewise,
for �′ the possibilities range from being independent of� [472] to being proportional to�0.7 [473]. To
account for these different possibilities, we make the more general assumption∣∣∣∣�0�

′

�2

∣∣∣∣ ∼ Ro−q , (11.8)

whereq can be anywhere between−0.3 and−2, depending on the assumed�(�) and�′(�) dependencies.
We thus have

Ro 〈R′
HK〉m/
 ∼ Ro−q/2〈R′

HK〉n/2
 , (11.9)∣∣∣�cyc

�

∣∣∣ ∼ Ro 〈R′
HK〉m/
 . (11.10)
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Table 5
Summary of observable parameters characterizing stellar cycle properties (�, �, and�) and the corresponding model parameters
m andn, introduced in Eq. (11.3)

Stars Sample � � � m n

Inactive Grade: (0.46) 0.85 0.99 0.9 0.9–1.7
Active Excellent+good (0.48) 0.72 0.99 0.8 0.8–1.6

Inactive Expanded ≈0.5 1 0.75 0.5–1.5
Active Sample ≈0.5 1 0.75 0.5–1.5
superactive Ref.[61] −0.43 0.28 −0.43–0.57

See Ref.[59]. We recall that the values of� and� are obtained from separate fits and thus do not obey the relation� = ��.
Since the scatter in the plots giving� is larger than in those giving�, we discard the former in the calculation ofm andn. In
the first two rows, only stars from the original Wilson sample[474] with grades good and excellent are considered[59]. This
sample does not include superactive stars. In the last three rows, stars from the expanded sample[61] were considered. For most
of them, no calcium data are available, and therefore only cycle periods are considered, so� is not being determined.

Using definitions (2.1), i.e.〈R′
HK〉 ∼ Ro−� and|�cyc/�| ∼ Ro−�, together with� = �� (see Section 2.2),

we have

Ro1−m�/
 ∼ Ro−q/2−n�/2
 , (11.11)

Ro−�� ∼ Ro1−m�/
 , (11.12)

so�� = m�/
 − 1 = q/2 + n�/2
, which yields explicit results for the dynamo exponentsm andn,

m = 
(� + 1/�) , (11.13)

n = 
(2� − q/�) . (11.14)

Note thatm is independent of the rather uncertain value ofq. InTable 5we summarize the results obtained
from the subset of stars that show cycles[57]. The different branches, which are separated by a factor of
about 6, might be associated with the occurrence of different magnetic instabilities in different parameter
regimes, but no definitive proposal can be made at this point. In this table we also give the results for
an expanded sample[61] where, in addition to the chromospheric emission, photometric and other cycle
data have been used.

Although it is well recognized that single mode approximations are not sufficient to solve the dynamo
equations as stated [see, e.g., Eq. (9.14)], the one-mode equations may still turn out to be closer to
physical reality, because there is now evidence from data of accretion disc simulations that the spectral
sensitivity of the turbulent transport coefficients is highest at small wavenumbers[337]. In other words,
the multiplication�B in Eq. (6.3) should be replaced by a convolution� ◦ B, where� would now be an
integral kernel. In wavenumber space, this would correspond to a multiplication with ak-dependent̂�
such that̂�(k) is largest for small values ofk. One may hope that future simulations will shed more light
on this possibility.

11.3.3. Rapidly rotating stars or planets
An important outcome of mean field calculations in the presence of rapid rotation (not captured by

the analysis in Section 10) is the prediction that the� effect becomes highly anisotropic and takes



160 A. Brandenburg, K. Subramanian / Physics Reports 417 (2005) 1–209

asymptotically the form[221]

�ij = �0(�ij − �i�j /�
2) , (11.15)

which implies that, if the angular velocity points in theẑdirection, for example, i.e.� = �ẑ, the vertical
component of� vanishes, i.e.�zz → 0 for Ro−1 ≡ 2��?1. For calculations of axisymmetric and
nonaxisymmetric models using large but finite values ofRo−1 see Refs.[354,475].

In Eq. (11.15) we stated the asymptotic form of the� tensor in the limit of rapid rotation. Such a highly
anisotropic� tensor is known to lead to strong nonaxisymmetric magnetic field configurations[220,476].
Such an� effect has been applied to modeling the magnetic fields of the outer giant planets that are known
to have very large values ofRo−1. Simulations using parameters relevant to the outer giant planets of our
solar system show that these bodies may have a magnetic field that corresponds to a dipole lying in the
equatorial plane[475,477].

The biggest enemy of nonaxisymmetric fields is always differential rotation, because the associated
wind-up of the magnetic field brings oppositely oriented field lines close together, which in turn leads to
enhanced turbulent decay[341]. This is quite different to the case of an axisymmetric field, where the
wind-up brings equally oriented field lines together, which leads to magnetic field enhancements; i.e. the
� effect.

As the value ofRo−1 increases, the� tensor becomes not only highly anisotropic, but the magnitudes
of all components decreases. This is a common phenomenon known as ‘rotational quenching’ that affects
virtually all turbulent transport coefficients. An important turbulent transport coefficient that we will not
say much about here is the so-called� effect (modeling the toroidal Reynolds stress), is responsible for
driving differential rotation in stars including the sun. Very rapidly rotating stars are therefore expected
to have very littlerelative differential rotation, which is indeed observed[478]. This means that the
�� dynamo will stop working and one would therefore expect an anisotropic�2 dynamo mechanism to
operate in rapidly rotating bodies with outer convection zones. This means that such stars should generate
a predominantly nonaxisymmetric field. There are indeed numerous observational indications for this
[479,480]. It should be noted, however, that already the large scale flow that is generated by the magnetic
field and the Reynolds stress (i.e. the� effect) tend to make the field nonaxisymmetric[481]. In addition,
in rapidly rotating stars all motions tend to be mostly in cylindrical surfaces (Taylor–Proudman theorem).
This effect is believed to cause starspots to emerge mostly at high latitudes in rapidly rotating stars
[482,483]. Furthermore, the convective motions tend to be column-like[484]. This led to the proposal of
the Karlsruhe dynamo experiment where the flow is similarly column-like (Fig.11.3).

11.3.4. Connection with the Karlsruhe dynamo experiment
In the Karlsruhe dynamo experiment, liquid sodium is pumped upward and downward in alternating

channels[485]. Each of these channels consist of an inner and an outer pipe, and the walls of the outer
one are arranged such that the flow follows a swirling pattern; seeFig. 11.4. The swirl in all columns
is such that the associated kinetic helicity has the same sign everywhere. In fact, locally such a flow is
strongly reminiscent of the Roberts flow (Section 4.2.2) that is known to generate a Beltrami field in the
plane perpendicular to the direction of the pipes, i.e.(coskz, sinkz,0) if z is the direction of the pipes
and the phase shift inz has been ignored; see Section 8.4. On a global scale such a field corresponds to
a dipole lying in thexy plane, and perpendicular to thezdirection; seeFig. 11.4. Applied to the earth, it
would therefore correspond to a nonaxisymmetric field and would not really describe the magnetic field
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Fig. 11.3. Convection columns in a rapidly rotating spherical shell. Courtesy Yoshizawa[22].

Fig. 11.4. The dynamo module of the Karlsruhe dynamo experiment. The signs + and− indicate that the fluid moves in the
positive or negativez-direction, respectively, in a given spin generator. Courtesy Stieglitz and Müller[485].

of the earth, although it might be suitable for explaining the magnetic fields of the other giant planets
Uranus and Neptune[475] that are indeed highly nonaxisymmetric[486].

11.3.5. Chaos and intermittency
The search for more complicated temporal and spatio-temporal patterns has always been popular in

mean field dynamo research. In spatially resolved models (as opposed to one-mode approximations
[487]) it was for a long time difficult to find spatially well resolved solutions that showed chaotic or even
just quasiperiodic behavior. In fact, it was thought to be essential to invoke an additional explicit time
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dependence of the form of dynamical quenching[10–12]. More recently it turned out that quasiperiodic
and chaotic solutions to the mean field dynamo equations are possible when the dynamo number is raised
sufficiently[346,488]. Intermittent behavior has also been found when the feedback on the mean flow is
taken into account[489,490]. For moderately large dynamo numbers, such solutions require however small
turbulent magnetic Prandtl numbers, which is an assumption that is not confirmed by simulations[395].
Nevertheless, intermittent solutions of this or some other kind are thought to be relevant in connection
with understanding the intermittency of the solar cycle and the occurrence of grand minima[491,492].

The question is of course how much one can trust such detailed predictions of mean field theory when
we are still struggling to confirm the validity of mean field theory in much simpler systems. One may
hope that in the not too distant future it will be possible to compare mean field models with simulations
in somewhat more extreme parameter regimes where quasi-periodic and chaotic behaviors are expected
to occur.

11.3.6. Dynamos in proto–neutron stars
The∼ 1013G magnetic field of neutron stars is traditionally thought to be the result of compressing

the magnetic field of its progenitor star. The difficulty with this explanation is that in the early phase
of a neutron star (proto–neutron star) the neutrino luminosity was so immense and the neutrino opacity
high enough that the young neutron star must have been convectively unstable. Although this phase lasts
for only ∼ 20 s, this still corresponds to some 104 turnover times, because gravity is so strong that the
turnover time is only of the order of milliseconds. This would be long enough to destroy the primordial
magnetic field and to regenerate it again by dynamo action[493,494].

If the field was initially generated by an� effect, and if the associated small scale magnetic helicity has
been able to dissipate or escape through the outer boundaries, the field must have attained some degree of
magnetic helicity. Once the turbulence has died out, such a helical field decays much more slowly than
nonhelical fields[495], and it would have attained the maximum possible scale available in a sphere. Such
a field may well be that of an aligned or inclined dipole, as observed. There are also some interesting
parallels between dynamo action in decaying turbulence in neutron stars and that in the planned time-
dependent dynamo experiment in Perm based on decaying turbulence in liquid sodium[496]. In the Perm
experiment, a rapidly spinning torus with liquid sodium will suddenly be braked, which leads to swirling
turbulence due to suitable diverters on the wall of the torus.

11.4. Accretion disc dynamos

When dynamo theory was applied to accretion discs, it seemed at first just like one more example in
the larger family of astrophysical bodies that host dynamos[497–500]. Later, with the discovery of the
magneto-rotational instability[69,70], it became clear that magnetic fields are crucial for maintaining
turbulence in accretion discs[501,502], and that this can constitute a self-excited process whereby the
magnetic field necessary for the magneto-rotational instability is regenerated by dynamo action.

Simulations in a local (pseudo-periodic shearing box) geometry have shown that this self-excited
system can act both as a small scale dynamo if there is no vertical density stratification[265,413]and as
a large scale dynamo if there is stratification[201,503].

From a turbulence point of view it is interesting to note that the flow is highly anisotropic with respect
to the toroidal direction. This is true even down to the smallest scale in the simulations. From a mean field
dynamo point of view this system (with stratification included) is interesting because it is an example of
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Fig. 11.5. Horizontally averaged radial and toroidal magnetic fields,Bx andBy , respectively, as a function of time and height,
as obtained from the fully three-dimensional simulation of a local model of accretion disc turbulence. Time is given in units of
rotational periods,Trot. (No smoothing inz or t is applied.) Dotted contours denote negative values. Adapted from Ref.[337].

a simulation of a dynamo where the turbulence occurs naturally and is not driven by an artificial body
force. This simulation is also an example where an� effect could be determined[504].

11.4.1. Dynamo waves in shearing sheet simulations
When the vertical field boundary condition is used, i.e.Bx = By = 0 on z = ztop andzbot, the hor-

izontal flux through the box is no longer conserved, and hence the horizontal components of the hori-
zontally averaged field may be different from zero, i.e.Bx �= 0 �= By , even though they may be zero
initially. This is exactly what happened in the shearing box dynamo simulation when these boundary
conditions where used. InFig. 11.5we show the space–time diagram (or butterfly diagram in solar
physics) of the mean magnetic field of such a simulation[337,504]. In this particular simulation the
symmetry of the magnetic field has been restricted to even parity aboutz = 0, so the computation has
been carried out in the upper disc plane, 0<z<Lz, whereLz = 2H is the vertical extent of the box,
H is the Gaussian scale height of the hydrostatic equilibrium density, andz = 0 corresponds to the
equatorial plane.

It is interesting to note that the spatio-temporal behavior obtained from the three-dimensional simula-
tions resembles in many ways what has been obtained using mean field models; see Section 6.5.2. Note,
however, that inFig. 11.5dynamo waves propagate in the positivez direction, i.e.c >0 in Eq. (6.42).
This requires�<0, which is indeed consistent with the sign of� obtained earlier by means of correlating
Ey with By [201,504], but it is opposite to what is expected in the northern hemisphere (upper disc plane)
from cyclonic events.
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Fig. 11.6. ResultingBx andBy from a mean field calculation with negative� effect (�0 =−0.001�H ), together with a 10 times
stronger noisy components (�N = 0.01�H ), and a turbulent magnetic diffusivity (�0 = 0.005�H2), producing a cycle period of
about 30 orbits. Adapted from Ref.[337].

Mean-field model calculations confirm that the space–time diagram obtained from the simulations
(Fig. 11.5) can be produced with a negative� effect of the magnitude found by correlatingEy with
By and a turbulent magnetic diffusivity comparable to the turbulent kinematic viscosity obtained by
measuring the total (Reynolds and Maxwell) stress[201]. The directly determined� effect is however so
noisy, that it is hard to imagine that it can produce a mean field that is as systematic as that in the simulation
(Fig.11.5). However, model calculations show also that, even when the noise level of� exceeds the average
value by a factor of 10, the resulting mean field is still sufficiently coherent (Fig.11.6) and in fact similar
to the field obtained from the simulations[337].

A negative sign of the� effect in accretion discs may arise because of two important circumstances.
First, the vertical velocity fluctuation is governed by magnetic buoyancy and second, shear is important.
Following a simple argument of Ref.[360], the � effect is dominated by the contribution from the
momentum equation and the toroidal magnetic field,By ,

�Ey

�t
∼ u̇zbx ∼

(
bybx

p0
g

)
By ≡ �̃yyBy , (11.16)

where the vertical acceleration is assumed to be mostly due to magnetic buoyancy, i.e.u̇z ≈ −(��/�0) g

and−��/�0 = �B2/(2p0) ≈ Byby/p0, where we have linearized with respect to the fluctuations. In
accretion discs the shear is negative, i.e.�Uy/�x <0, and thereforebybx <0. If this effect does indeed
dominate, the� effect will be negative, i.e.�yy = ��̃yy <0. Subsequent work based on FOSA confirms the
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possibility of a negative value of�yy for sufficiently strong shear[505], as is indeed present in accretion
discs. However, because of the competing effect to drive a positive� effect from thermal buoyancy, the
sign of�yy changes to the conventional sign for weak shear.

In summary, local disc simulations suggest the possibility of a doubly positive feedback from both the
magneto-rotational instability and the dynamo instability, giving rise to small scale magnetic fields (if
there is no stratification) and large scale fields (if there is vertical stratification). The magnetic energy
exceeds the kinetic energy, but is below the thermal energy; see Section 4.1. The latter gives information
about the dimensionless value of the Shakura–Sunyaev viscosity parameter which is typically around
0.01[201,265,413]. Large scale field generation is compatible with that from a negative� which, in turn,
produces oscillatory mean fields that are symmetric about the mid-plane. This is consistent with mean
field theory, which also predicts that, with the same vertical field boundary conditions, the field should
be oscillatory and symmetric about the midplane, i.e. quadrupole-like.

When the boundary conditions in the accretion disc simulations are changed to perfectly conducting
boundaries, the situation changes entirely; the field becomes nonoscillatory and antisymmetric about the
midplane, i.e. dipole-like[360]. However, this drastic change is quite compatible with mean-field theory
which also predicts that with perfectly conducting boundaries a negative� in the upper disc plane should
give rise to a nonoscillatory field that is antisymmetric about the midplane. Having thus established this
type of correspondence between simulations and mean field theory, one is tempted to apply mean field
theory with a negative� in the upper disc plane to a global geometry. It turns out that with a conducting halo,
the most easily excited solution is also antisymmetric about the midplane (i.e. dipolar) and nonoscillatory.
Such models have been discussed in connection with outflows from dynamo active accretion discs, as
will be discussed further in the next section.

11.4.2. Outflows from dynamo active discs
It is now commonly believed that all accretion discs have undergone a phase with strong outflows.

One mechanism for driving such outflows is magneto-centrifugal acceleration[506]. The magnetic field
necessary might be the field that is dragged in from the embedding environment when the disc forms, but
it might also be dynamo generated[507]. In Fig. 11.7, we present a numerical solution of such a model
[508], where the dynamo is a mean field�� dynamo with negative� effect[201]. In the presence of open
boundaries considered here, the most easily excited solution has dipolar symmetry about the equatorial
plane[509].

Three-dimensional simulations of dynamo action in accretion disc tori have confirmed that the magneto-
rotational instability can sustain a magnetic field also in such a global model[510–513]. These simulations
are now also beginning to show the formation of outflows that are clearly associated with large scale
fields generated in the disc. The presence of large scale fields, and in particular its vertical component, is
responsible for increased values of the dimensionless value of the Shakura–Sunyaev viscosity parameter
which is now typically 0.1[513].

11.5. Galactic dynamos

We saw in Section 2.4 that spiral galaxies have large scale magnetic fields of the order of a few 10−6 G,
coherent on scales of several kpc, and also highly correlated (or anti-correlated) with the optical spiral
arms. Does the mean field turbulent dynamo provide a viable model for understanding the origin such
fields? We discuss below a number of observed properties of galactic fields which favor a dynamo origin



166 A. Brandenburg, K. Subramanian / Physics Reports 417 (2005) 1–209

Fig. 11.7. Outflow from a dynamo active accretion disc driven by a combination of pressure driving and magneto-centrifugal
acceleration. The disc represents a protostellar disc, whose tenuous outer regions will are heated by the magnetic field. This
pressure contributes to hydrostatic support, which is changed only slightly by the finite outflow velocities. The extent of the
domain is[0,8] × [−2,30] in nondimensional units (corresponding to about[0,0.8] AU × [−0.2,3] AU in dimensional units).
Left panel: velocity vectors, poloidal magnetic field lines and gray scale representation ofh in the inner part of the domain. Right
panel: velocity vectors, poloidal magnetic field lines and normalized specific enthalpyh/|�| in the full domain. Adapted from
Ref. [508].

of disc galaxy magnetic fields. However the strength of the field itself may not be easy to explain, in view
of the helicity constraint.

11.5.1. Preliminary considerations
To begin with, all the ingredients needed for large scale dynamo action are present in disc galax-

ies. There is shear due to differential rotation and so any radial component of the magnetic field will
be efficiently wound up and amplified to produce a toroidal component. A typical rotation rate is
� ∼ 25 km s−1 kpc−1 (at r ≈ 10 kpc), and for a flat rotation curve (U� = �R = constant) the shear
rate, defined asS = R�′ ≡ R d�/dR, would be the same, i.e.S = −�. This corresponds to a rotation
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time of∼ 2	/� ∼ 2.5× 108 yr. So, in a Hubble time (∼ 1010 yr) there have been about 40–50 rotations.
If only shear were involved in the generation of the galactic field, a fairly strong primordial seed field of
∼ 10−7 G would be required just after the galaxy formed. (We will also discuss other problems with such
a primordial hypothesis below.)

A mechanism to exponentiate the large scale field, like for example the�� dynamo, is therefore
desirable. An� effect could indeed be present in a disc galaxy. First, the interstellar medium in disc
galaxies is turbulent, mainly due to the effect of supernovae randomly going off in different regions. In a
rotating, stratified medium like a disc galaxy, such turbulence becomes helical (Section 10.3). Therefore,
we potentially have an� effect and so we expect�� mean field dynamo action. Typical parameters for
this turbulence are, a velocity scalev ∼ 10 km s−1, an outer scalel ∼ 100 pc giving an eddy turnover
time � ∼ l/v ∼ 107 yr.9 This yields an estimate of the turbulent diffusion coefficient,�t ∼ 1

3vl ∼
0.3 km s−1 kpc or�t ∼ 1026cm2 s−1. The inverse Rossby (or Coriolis) number is∼ 2�� ∼ 0.6 (seeTable
4, where we have taken� = 30 km s−1 kpc−1) and so we can use Eq. (10.57) to estimate� due to rotation
and stratification. This gives� ∼ �2�(v2/h) ∼ 0.75 km s−1, whereh ∼ 400 pc is the vertical scale height
of the disc. So the turbulence is only weakly helical; nevertheless the degree of helicity (∼ 5–10%) is
sufficient for inducing large scale dynamo action, because the� effect is strong enough to make the��
dynamo supercritical.

We gave a brief discussion of the simplest form of the mean field dynamo equations appropriate for
a thin galactic disc in Section 6.5.5, following Ref.[77]; here we just gather some important facts. We
recall that two dimensionless control parameters,

C� = Sh2/�t, C� = �h/�t , (11.17)

measure the strengths of shear and� effects, respectively. (Note that these are identical to theR� and
R� commonly used in galactic dynamo literature.) For the above galactic parameters, the typical values
areC� ≈ −10 andC� ≈ 1, and so|C�|?C�. Dynamo generation is controlled by the dynamo number
D =C�C�, whose initial ‘kinematic’ value we denote byD0. Exponential growth of the field is possible
in the kinematic stage, provided|D0|>Dcrit, where the critical dynamo numberDcrit ∼ 6–10, depending
on the exact profile adopted for�(z). Modes of quadrupole symmetry in the meridional(Rz) plane are
the easiest to excite in the case of a thin disc withD<0. Further the growth rate in the kinematic regime
given by (6.47) has a numerical value,

� ≈ �t

h2

(√|D| − √
Dcrit

)
≈ (1.10)Gyr−1 . (11.18)

The dynamo is generally supercritical, and the value of� evaluated locally at different radial position is
positive for a large range of radii, and so galactic fields can be indeed grow exponentially from small
seed values. Furthermore, in a Hubble time scale of 1010 yr, one could exponentially grow the field by a
factor of about e30 ≈ 1013, provided the growth rate determined in the kinematic regime were applicable.
In this case, even a small field of order 10−19 G would in general suffice as the initial seed magnetic
field; with galaxies at higher redshift requiring a larger seed magnetic field. We shall discuss below how
the nonlinear restrictions, due to helicity conservation, may alter this picture. Before this, we first gather

9 Numerical simulations of such a turbulent multiphase interstellar medium regulated by supernovae explosions, and includ-
ing rotation, show[514] the multiphase gas in a state of developed turbulence, with the warm and hot phases having rms random
velocities of 10 and 40 km s−1, respectively, and with turbulent cell size of about 60 pc for the warm phase.
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some of the observational indications which favor a dynamo origin for the galactic field, nicely reviewed
by Shukurov[515,516].

11.5.2. Observational evidence for dynamo action
The magnetic pitch angle. The simplest piece of evidence for dynamo action is just the form of the

magnetic field lines as projected onto the disc. It is seen that the regular magnetic field in spiral galaxies
is in the form of a spiral with pitch angles in the rangep = −(10–30◦), where a negativep indicates a
trailing spiral. Note that for dynamo action one needs to have nonzeroBR andB�, or a nonzero pitch
angle for the magnetic field lines projected onto the disc. A purely azimuthal field, withBR = 0, will
decay due to turbulent diffusion, and the same is true for a purely radial field. A simple estimate of the
pitch angle can be obtained from the ‘no-z’ approximation[357] to the dynamo equations, whereby one
replacesz derivatives by just a division byh. Substituting alsoBR,B� ∝ exp�t , this gives

(
� + �t

h2

)
BR = −�B�

h
,

(
� + �t

h2

)
B� = SBR . (11.19)

One derives a rough estimate for the ratio[515]

tanp = BR

B�
≈ −

(
�

−Sh

)1/2

= −
(

C�

|C�|
)1/2

≈ − l

h

(
�

|S|
)1/2

. (11.20)

For l/h = 1/4 and a flat rotation curve with� = −S, one then getsp ∼ −14◦. This is in the middle
of the range of observed pitch angles in spiral galaxies. More detailed treatments of galactic dynamos
[77] confirm this simple estimate. The above estimate is based on kinematic theory, and comparison with
observations should preferably done with models including nonlinear effects. However, similar pitch
angles are also obtained when one considers some simple nonlinear dynamo models[517]; see also
the case of models for M31 in Ref.[518]. (The no-z approximation also gives an estimate for� as in
Eq. (11.18) but with the crude estimateDcrit = 1.)

An alternative hypothesis to the dynamo is that galactic magnetic fields are simply strong primordial
fields that are wound up by differential rotation (see Refs.[519,520]and references therein). In this case,
detailed analysis[520] shows that differential rotation leads a field which rapidly reverses in radius (on
scales∼ 100 pc). More importantly the field is also highly wound up with pitch angles of orderp<1◦,
clearly much smaller than the observed values. In Ref.[520], it is argued that streaming motions in spiral
arms would nevertheless lead to a field-aligned along the spiral; but away from the arms the field will be
nearly toroidal. Clearly, in the case of NGC6946 it is the field in between the arms which has a spiral
form with moderately large pitch angles with an averagep ∼ 35◦ for several of the magnetic arms[96].
Also in the case of M31, although the field itself occupies a ring-like region, the field lines are still in the
form of spirals with pitch angles∼ 10◦ . . .20◦ [521].

Another possibility is that the primordial field is not tightly wound up because turbulent diffusion
compensates for the winding due to shear[522]. In this case there would be a balance between shear and
turbulent diffusion, and from the toroidal part of Eq. (11.19) one can estimateBR/B� ∼ 1/C�; which
impliesp ∼ 6◦ forC� ∼ 10. This is larger than the pitch angle determined neglecting turbulent diffusion,
but may still not be large enough to account for the observed range ofp in galaxies. Also one would need
a constant source ofBR, which could perhaps be due to accretion, since otherwise turbulent diffusion
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(without an� effect) will causeBR to decay. The galactic dynamo on the other hand provides a natural
explanation for the observed pitch angles of the regular magnetic field.

Even vertical symmetry of the field in the Milky Way. Another argument in favor of the galactic dynamo
theory is the observed symmetry properties of the regular magnetic field about the galactic equator.
Dynamo theory predicts that the toroidal and radial field components should be symmetric about the
equator. The even parity mode has a larger scale of variation in the vertical direction and is therefore
subject to a weaker turbulent diffusion than the odd parity mode[77]. A wavelet analysis of the Faraday
rotation measures of extragalactic sources indeed indicates that the horizontal components of the regular
magnetic field have even parity, that is they are similarly directed on both sides of the disc[109].

Such an even parity field can be produced from a primordial field if it is originally almost parallel to the
disc plane. However, such a field would still suffer the excessive winding mentioned above. On the other
hand, it is equally likely that a primordial field has a large component parallel to the rotation axis (entering
throughz<0 and exiting throughz>0). In this case one would have a dipole structure for the wound up
primordial field, which is not supported by the analysis of[109]. (As mentioned earlier, the determination
of the magnetic field structure from Faraday rotation can be complicated by local perturbations.) Further,
as discussed in Section 2.4 there was some evidence from the discovery of linear nonthermal filaments
perpendicular to the galactic plane, of a dipolar field in the central few hundred parsecs of our galaxy,
which could be explained on the basis of a primordial field[523]. However the latest surveys for such
linear filaments[113], no longer strongly support such a simple picture, and the observational situation
needs to be clarified.

The azimuthal structure of disc galaxy fields.The kinematic growth rates predicted by an axisymmetric
galactic dynamo are also the largest for purely axisymmetric field structures. Of course the spiral structure
induces nonaxisymmetry, and this can enhance the growth rates of nonaxisymmetric dynamo modes
[350,357–359]. However this enhancement is still not such that one expects a widespread dominance of
nonaxisymmetric magnetic structures in disc galaxies. Early interpretations of Faraday rotation in spiral
galaxies seemed to indicate a prevalence of bisymmetric structures[100], which would be difficult to
explain in the framework of dynamo theory; but this has since not been confirmed. Indeed as discussed
also in Section 2.4.2, many galaxies have mostly distorted axisymmetric magnetic structures, wherein
the axisymmetric mode is mixed in with weaker higherm modes. Only M81, among the nearby spirals,
remains a case for a predominantly bisymmetric magnetic structure.The fact that it is physically interacting
with a companion may have some relevance for the origin of its bisymmetric fields[524].

It would not be difficult to produce a predominantly bisymmetric (m= 1) structure by the winding up
of a primordial field; more difficult to explain would be the dominance of nearly axisymmetric structures.
Such configuration would require an initial primordial field to be systematically asymmetric, with its
maximum displaced from the disc center. Any primordial field would in general lead to a combination of
m = 0 and 1 modes, withm = 1 being in general more dominant.

The observed nonaxisymmetric spiral magnetic structures are also aligned or anti-aligned with the
optical spirals. This is intriguing because of the following: A given nonaxisymmetric mode basically
rotates at nearly the local rotation frequency, where the mode is concentrated. On the other hand, the
optical spiral pattern rotates at a ‘pattern’ frequency very different in general compared to the local
rotation frequency. It has been shown[357–359,525]that such structures can be maintained for a range
of radii of about a few kpc around the corotation radius of the spiral pattern. Near the corotation radius
a frozen-in field will rotate with the spiral pattern; and around this radius a moderate amount of the
turbulent diffusion allows modes to still rotate with the pattern frequency, instead of with the local
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rotation frequency. More intriguing are the ‘magnetic arms’ seen in NGC6946, and the anti-alignment
between these magnetic arms and optical spiral arms. Explaining this feature in a dynamo model requires
an understanding of how spiral structure influences the different dynamo control parameters[526–528].

Other possible evidence for dynamo action include[515] radial reversals of the magnetic field in the
Milky Way, the complicated magnetic structures that are observed in M51, and the magnetic ring seen
in M31. Shukurov[515] has argued that all these features can be understood in dynamo models of these
systems; whereas it is not clear how they may be explained in models involving primordial fields.

Strength of the regular magnetic field.The regular magnetic field in disc galaxies is close to energy
equipartition with the interstellar turbulence. This feature directly indicates that the field is somehow
coupled to the turbulent motions; although the exact way by which the regular field achieves equipartition
with the turbulence is still to be understood (see below). In the case of wound up primordial fields, it
is plausible that if the magnetic pressure exceeded the fluid pressure, then it would rise from the disc
due to buoyancy. This could be an indirect way by which the field strength is limited to be in rough
equipartition. More difficult is to actually generate a primordial field of the requisite strength. In models
of the generation of primordial magnetic fields based on processes occurring in the early universe (cf.
Refs.[179,189,190]and references therein), the strength of the generated field is highly uncertain, and
very sensitive to the assumed parameters.

11.5.3. Potential difficulties for galactic dynamos
Magnetic helicity constraint.The major potential difficulty for the galactic dynamo is still the restriction

imposed by magnetic helicity conservation. We have discussed these issues in detail in Section 9. The
magnetic Reynolds number in galaxies is large enough that one would expect the total magnetic helicity
to be well conserved. The fact that shear plays a major role in the galactic dynamo implies that the
galactic field is not maximally helical, and one can somewhat ease the restrictions imposed by helicity
conservation. Nevertheless, if there is negligiblenetsmall scale helicity flux out of the galaxy, the mean
galactic field is limited to[7] B ≈ (km/kf )Beq[(D0/Dcrit) − 1]1/2 for moderately supercritical dynamo
numbers; see also Section 9 and Eq. (9.42). If we adoptD0/Dcrit ∼ 2, km/kf ∼ l/h, with a turbulence
scalel ∼ 100 pc, andh ∼ 400−500 pc, then the mean field strength would be 1/4–1/5 of equipartition at
saturation. The above estimate is a prediction of the dynamical quenching model which has been verified
mainly using periodic box simulations. Nevertheless, even in open domains where helicity fluxes are
possible, Eq. (9.42) seems to describe the field strength near the end of the kinematic phase reasonably
well [406]. This estimate also assumes the absence ofRm dependent suppression of the Strouhal number,
which does seem to be supported by direct simulations[327].

Of course a preferential loss of small scale helicity could increase the saturation field strength further
and this has indeed been invoked by Kleeorin and coworkers[394,398,399]and byVishniac and Cho[388].
As suggested in Section 8.11, simulations are now beginning to show that, in the presence of shear and
open boundaries, a significant small scale magnetic helicity flux does indeed emerge. As demonstrated in
a simulation of forced turbulence with driven shear, strong large scale fields are generated on a dynamical
time scale when such helicity flux is possible. However, if the helicity flux is below a certain threshold,
the initially large field strength is followed by very long term oscillations of low magnetic field strength.
Nevertheless, these simulations are still quite idealized in that stratification is ignored and the forcing
does not represent galactic conditions. These deficiencies can hopefully be removed in the near future.
The theoretical underpinning of the phenomenologically imposed helicity fluxes[394,398,399]is only
beginning to be clarified[154]. This would be another area of further investigation.
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Small scale magnetic noise.As noted in Section 5, the small scale dynamo generates fluctuating mag-
netic fields in the kinematic stage, at a rate faster than the large scale dynamo. Can this rapidly generated
magnetic noise suppress large scale galactic dynamo action? The analytical estimate of the nonlinear�
effect using MTA presented in Eq. (10.57) indicates that the presence of a equipartition strength fluctu-
ating magnetic field does reduce the� effect, but only by a factor of∼ 2/3 for the diagonal components,
and even enhances the off-diagonal components. Also, in both MTA and quasilinear treatments (FOSA)
describing the effect of fluctuating fields,�t is not renormalized at all. Furthermore, the nonlinear behavior
seen in direct simulations of large scale dynamos[4,159,386]can be understood using helicity conser-
vation arguments alone, without further reduction of the turbulent transport coefficients due to magnetic
noise; although similar simulations at even higher values of the magnetic Reynolds number are desirable.
Overall, there is no strong evidence that magnetic noise due to small scale dynamo action, catastrophically
suppresses� and�t; but this issue also needs to be further investigated. Especially important to understand
is whether helicity conservation fully represents all the effects of flux freezing or there are further effects
which suppress the lagrangian chaos and hence quench the turbulent coefficients. For example, it would
be useful to compute the turbulent diffusion of a large scale magnetic field in the presence of strong small
scale MHD turbulence, like that described by Goldreich and Sridhar[26].

Magnetic fields in young galaxies?The galactic dynamo exponentiates seed mean magnetic fields over
a time scale of about (1–10) Gyr−1, depending on the dynamo parameters. For a young galaxy which is
say formed at redshiftz= 5 and is observed at a redshift ofz= 2, its age isT ∼ 1.7 Gyr in the currently
popular flat Lambda dominated cosmology (with cosmological constant contributing a density�� = 0.7,
matter density�m = 0.3 in units of the critical density and a Hubble constantH0 = 70 km s−1 Mpc−1).
For a mean field growth rate of say� ∼ 3 Gyr−1, this corresponds to a growth by a factor e�T ∼ 75;
and so even with a seed of∼10−9 G, we would have a mean field of only∼ 0.075�G. So, if one sees
evidence for strong microgauss strength mean (or large scale) fields in galaxies at high redshifts, the
galactic dynamo would have difficulties in accounting for them. If the seed fields were much weaker,
say∼10−18G, like those produced in batteries, one would have difficulty in accounting for microgauss
strength mean fields even for moderate redshift objects, withz ∼ 0.5.

At present there is some tentative evidence for magnetic fields from Faraday rotation studies of high
redshift quasars and radio galaxies. A Faraday rotation map of the extended and polarized jet of the
quasar PKS 1229-021 atz= 1.038, has revealed fields ordered on kpc scales and with strengths of a few
microgauss atz=0.395, corresponding to the position of an intervening absorption system[530]. Evidence
for similarly ordered fields also comes from rotation measure map of the quasar 3C191, which has an
associated absorption system atz=1.945 similar to its emission redshift[531]. A number of high redshift
radio galaxies atz>2 [532] also show very high Faraday rotation of∼ 1000 rad m−2, which could be
indicative of strong ordered magnetic fields in their host galaxy (although such fields could also arise from
the magnetization of a sheath around the radio lobe). There is a general difficulty that a given RM could
arise in several intervening systems including the source and our Galaxy. This introduces difficulties in
determining magnetic fields associated with high redshift systems[533]. A promising approach would
be to use radio gravitational lenses which show differences in Faraday rotation between their different
images[121,534]. The lines of sight to the different images follow very similar paths in the source and
our galaxy, but have large transverse separations in an intervening object, and so could probe intervening
magnetic fields better.

We should remember that the small scale dynamo could itself produce strong magnetic fields on
time scales of∼107 yr. However this would be correlated at most on the scales of the turbulence
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and smaller; so it will not be able to explain fields ordered on kpc scales. The fields generated by a
small scale dynamo could nevertheless provide a strong seed magnetic field for the large scale dynamo
[535]. Such fields can also lead to significant Faraday rotation, but if the large scale dynamo were
not operating, the resulting RMs would not be correlated on scales larger than the forcing scale of the
turbulence.

11.6. Cluster magnetic fields

We saw in Section 2.5 that clusters of galaxies appear to be magnetized, with fields ranging from
several�G to tens of�G in some cluster centers, and with coherence scalesl ∼ 10 kpc. How are such
fields generated and maintained? Note that a tangled magnetic field, left to evolve without any forcing,
would generate motions with a velocity of order the Alfvén velocityvA = B/(4	�)1/2, and result in
decaying MHD turbulence with a characteristic decay time�decay ∼ l/vA [536,537]. For a�G field, in
a cluster medium with densities∼ 10−3 cm−3 is vA ∼ 70 km s−1 and�decay∼ 1.4 × 108 yr. Although
the energy density in MHD turbulence decays as a power law, and the decay rates can be somewhat
slower if the field is partly helical[158], this time scale is still much smaller than the typical age of a
cluster, which is thought to be several billion years old. So one would still require some mechanism to
generate strong enough tangled cluster magnetic fields initially, and preferably maintain them for cluster
lifetimes.

First, there are a number of sources of seed magnetic fields in galaxy clusters. It is well known
that the intracluster medium (ICM) has metals which must have been generated in stars in galaxies
and subsequently ejected into the galactic interstellar medium (ISM) and then into the ICM. Since the
ISM is likely to be magnetized with fields of order a few�G, this would lead to a seed field in the
ICM. The exact manner in which the ISM from a galaxy gets mixed into the cluster gas is uncertain;
possibly involving tidal and ram pressure stripping of the galactic gas, together with galactic outflows
[538]. One can roughly estimate the seed field resulting from stripping the galactic gas, by using flux
conservation; that isBseed∼ (�ICM/�ISM)

2/3Bgal. ForBgal ∼ 3�G, and�ICM/�ISM ∼ 10−2.10−3, one
getsBseed∼ 0.1 . . .0.03�G. More difficult to estimate is the coherence scale of the seed field. One may
get even larger seed fields if cluster galaxies have substantial magnetized outflows: if∼ 103 galaxies
have mass outflow withṀ ∼ 0.1M� yr−1 lasting for 1 Gyr, with a Poynting flux about 10% of the
material flux, and the field gets mixed into the cluster gas over a Mpc sized region,Bseed∼ 0.3�G would
result[538].

Another source of seed fields is likely to be also the outflows from earlier generation of active galaxies
(radio galaxies and quasars)[539–542]. Such outflows may leave behind magnetized bubbles of plasma
in some fraction of the intergalactic medium (typically∼ 10%[541]), which when incorporated into the
ICM would seed the general cluster gas with magnetic fields. If one assumes the cluster gas is about 103

times denser than the IGM, and blindly uses the enhancement of the bubble field due to compressions
during cluster formation, one can get fields as large as 0.1–1�G in the ICM [541]. However this is to
ignore the issue of how the field in the magnetized bubble, especially if it is predominantly relativistic
plasma from a radio galaxy, mixes with the nonmagnetized and predominantly thermal gas during cluster
formation, and the resulting effects on both the field strength and coherence scales (see Ref.[543] for
the related problem of getting cosmic rays out of radio cocoons). It is likely that, while AGNs and
galaxies provide a potentially strong seed magnetic field, there would still be a need for their subsequent
amplification and maintenance against turbulent decay.
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In most astrophysical systems, like disc galaxies, stars and planets, rotation plays a very crucial role
in this respect; both in providing strong shear and in making random flows helical, and hence leading
to large scale dynamo action. Clusters on the other hand, are expected to have fairly weak rotation—if
at all, so one has to take recourse to some other mechanism for understanding cluster magnetism. One
possibility is small scale turbulent dynamo action; indeed most early work on the generation of cluster
magnetic fields explored this possibility[544–548]. The turbulence was thought to be provided by wakes
of galaxies moving through the intracluster medium. However galaxy wakes are probably inefficient.
First, the gas in the galaxy would get significantly stripped on the first passage through the cluster, and
stop behaving as a ‘hard’ sphere in producing a turbulent wake. Furthermore, the wakes generated by
the Bondi–Hoyle gravitational accretion are probably not pervasive enough, because the accretion radius
∼ GM/c2

s ∼ 0.5 kpc(M/1011M�)(cs/103 km s−1)−2 is much smaller than galaxy radii of order 10 kpc.
Further, calculations using the EDQNM equations[548] gave pessimistic estimates for the generated
fields when the turbulence is induced by galactic wakes. A different source for cluster turbulence and
magnetic fields is probably required.

Turbulence in clusters can also arise in mergers between clusters[549–552]. In hierarchical structure
formation theories, clusters of galaxies are thought to be assembled relatively recently. They form at
the intersection of filaments in the large scale structure, involving major mergers between comparable
mass objects and also the accretion of smaller mass clumps. In this process, it is likely that clusters
develop significant random flows, if not turbulence[178,551,552]. These would originate not only due to
vorticity generation in oblique accretion shocks and instabilities during the cluster formation, but also in
the wakes generated during the merger with smaller mass subclumps. In a simulation of cluster formation,
it was found that the intracluster medium becomes ‘turbulent’ during cluster formation[551], and this
turbulence persists even after about 5 Gyr after the last major merger. At this time peculiar velocities are
of order 400 km s−1 within 1/2 the Virial radiusrv; see Fig. 1 in[553]. A visual inspection of the flow
field reveals ‘eddies’ with a range of sizes of 50.500 kpc. Similar peculiar gas motions have also been
found in other numerical simulations of cluster formation[554] and cluster mergers[552]. In the merger
simulation[552] ram pressure effects during the merger are though to displace the gas in the cluster
core from the potential center, causing it to become unstable. The resulting convective plumes produce
large scale turbulent motions with eddy sizes up to several hundred kiloparsecs. Again, even after about
a Hubble time (∼ 11 Gyr after the first core interaction), these motions persists as subsonic turbulence,
with velocities of order 10–20% of the sound speed for equal mass mergers and twice as large for mergers
with a mass ratio of 1: 3. (In all these cases, since there is limited spatial resolution, it may be better to
call the flows random flows rather than turbulence.)

Observational evidence of intracluster turbulence is scarce. From analysis of pressure fluctuations as
revealed in X-ray observations it has been argued[555] that the integral turbulent scale in the Coma cluster
is close to 100 kpc, and they assume a turbulent speed of 250 km s−1 at that scale. It may be possible, in
the future, to detect cluster turbulence via the distortions they induce in the CMB, as well as via Doppler
broadening and shifting of metal lines in the X-ray spectrum[553].

A quantitative assessment of the importance of such random shear flows and perhaps turbulence, for
the generation of cluster magnetic fields has only begun recently, by doing direct simulations[556,557]
and also using semi-analytic estimates combined with simulations of the small scale dynamo[558].
(It was also emphasized by[178] in the context of generating protogalactic fields, that structure formation
can lead not only to seed fields but also significant vortical motions which amplify the seed.) Simulations
of cluster mergers[556] showed two distinct stages of evolution of the field. In the first stage, the field
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becomes quite filamentary as a result of stretching and compression caused by shocks and bulk flows
during infall. Subsequently, as bulk flows are replaced by more turbulent motions, the magnetic energy
increases by an average factor∼ 3 to localized enhancements of∼ 20. It is argued[556] that this increase
is likely to be a lower limit, as one cannot resolve the formation of eddies on scales smaller than half the
cluster core radius. Magnetic field evolution in a smooth particle hydrodynamics simulation of cluster
collapse has also been reported[557,559]; they found that compression and shear in random flows during
cluster formation can increase the field strengths by factors of order 103.

Both these groups use ideal MHD and it would be useful to relax this assumption. It will be important
to do further simulations which have the resolution to follow also the development of turbulence and the
nonlinear cascade to small scales. This is especially important given the current lack of consensus (cf.
Section 5) about how the small scale dynamo saturates, especially in the high Prandtl number systems
like the ICM. As discussed in connection with nonlinear small scale dynamos (Section 5.4), it is likely
that, once the magnetic field has reached equipartition field strength, the power spectrum should decrease
with increasing wavenumber. If this is not seen, the simulation may still not be sufficiently well resolved
or it may not have run for long enough, or both. It is encouraging that in simulations of the small scale
dynamo, one gets an RM probability distribution peaked at zero but with a significant width,�RM ∼
100.200 rad m−2 as observed, when scaled to cluster parameters[558]. Overall, it appears plausible that
cluster magnetism is the result of compression, random shear and turbulent amplification of seed fields
from galaxies and AGNs; but work on understanding the efficiency and details of all these processes is
still in its infancy.

12. Where do we stand and what next?

Significant progress has been made in clarifying and understanding mean field dynamo theory in the
nonlinear regime. Only a few years ago it was a completely open question whether or not� is really
catastrophically quenched, for example. What is worse, simulations were not yet available that show
whether or not mean field dynamos can work at all when the magnetic Reynolds number is large. A lot
has changed since then and we have now begun to develop and confirm numerically the nonlinear mean
field formalism for the case where the medium is statistically homogeneous.

One of the currently most pressing problems is to develop and test numerically a dynamical quench-
ing theory that is valid also in the inhomogeneous case, where the strength of the� effect varies in
space and changes sign, and to the case with open boundaries allowing helicity flux to escape. This
should be studied in a geometry that is close enough to the real case of either the solar convection
zone or to galactic discs. Concerning solar-like conditions, some progress has been made using forced
turbulence in cartesian geometry with a shear profile that resembles that of the sun at low latitudes.
However, driving the turbulence by convection and solving the equations in spherical geometry has so
far only led to mixed success in that the simulations are dominated by small scale fields[419,420].
In this connection it may help to lower the magnetic Prandtl number to suppress small scale dy-
namo action, keeping however the magnetic Reynolds number large enough to allow for large scale
dynamo action.

Regarding fully periodic box simulations, there is still a case for testing more thoroughly the dependence
of turbulent transport coefficients on the magnetic Reynolds number even in cases with closed or periodic
boundaries. An issue that is not fully resolved is whether the turbulent magnetic diffusion is quenched in
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a way that depends on the magnetic Reynolds number. One way of clarifying this issue is by considering
oscillatory large scale dynamos with shear[386], which give the possibility of measuring directly the
turbulent magnetic diffusivity via the cycle frequency[6].

As far as the solar dynamo is concerned, many problems remain to be solved. The first and perhaps
most severe one is simply the lack of a reliable theory: the mean field theory as it stands at the moment
and as it has been used even in recent years does not reproduce certain behavior that is known from
simulations[4,560]. Again, we have here in mind issues related to magnetic helicity conservation, which
need to be dealt with using dynamical quenching theory. Even from a more practical point of view, if one
is able to argue that in the sun the magnetic helicity issue can be solved in such a way that conventional
theory remains applicable, there would still be many hurdles, as outlined above. A popular model is the
flux transport model with a suitable meridional circulation profile. Here the preferred modes have usually
quadrupolar symmetry about the equator rather than dipolar symmetry[355,356,428]. However, there
are a number of other problems that have revived the idea that the solar dynamo may be a distributed
one[55].

For the galactic dynamo, one still needs to identify mechanisms by which fluxes of small scale helicity
can preferentially leave the system, so as to build up the regular field to the observed values. However,
unlike the case of the sun where we have direct evidence for losses of helical magnetic flux through the
surface, galaxies lack such direct evidence—even though they allow direct inspection all the way to the
midplane. Regarding the saturation strength of the large scale field, closed box simulations suggest that,
even in the kinematic phase, and conserving helicity, a significant regular field can probably be built up by
the mean field dynamo. However, for systems with boundaries the field undergoes subsequent variations
on the resistive time scale when, for long periods, the field can be extremely weak. Such systems still seem
to require strong helicity fluxes, for example mediated by shear, for being efficient large scale dynamos
[406]. For galaxies at least, the mean field dynamo theory seems to reasonably explain the structure of
the observed fields. In the case of clusters of galaxies, the origin of turbulence which may be needed for
dynamo action is not yet settled. The structure of the field will also depend on an improved understanding
of how the small scale dynamo saturates.

Another important question is what role does the small scale dynamo play relative to the large scale
dynamo. In galaxies, where the magnetic Prandtl number is large, it has been argued that the magnetic field
is dominated by small scale fields. This is an issue that clearly requires further clarification. Especially
whether the growth of the small scale field subtly changes the lagrangian chaos properties of the turbulence.
In solar and stellar dynamos, on the other hand, the small scale dynamo may not work at all any more,
or the critical dynamo number may be much larger than for unit magnetic Prandtl number. Whatever
the answer, it is likely that the magnetic Prandtl number dependence of the critical magnetic Reynolds
number can soon be settled using dedicated high-resolution simulations.
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Appendix A. Evolution of the correlation tensor of magnetic fluctuations

In this section we present a derivation of the Kazantsev equation in configuration space for the more
general case of helical turbulence, incorporating also ambipolar drift as a model nonlinearity[236]. These
equations are used to discuss the small scale dynamo in Section 5.2.1. They also play an important role
in Sections 5.6 and 8.10 where kinetic helicity drives the generation of large scale fields which, in turn,
produce small scale helical fields that act such as to saturate the dynamo.

The derivation of the governing equations involves straightforward but rather tedious algebra and
follows the discussion in[236]. We therefore only outline the steps and the approximations below leaving
out most of the algebraic details. To make the appendix fairly self contained we repeat some of the
equations which are also given in the main text. We start with the induction equation for the magnetic
field, including a nonlinear ambipolar diffusion term, written as

�Bi

�t
= Rx

ipqUpBq + �∇2Bi , (A.1)

where we have defined for later convenience, the operator

Rx
ipq = εilmεmpq

(
�

�xl

)
. (A.2)

HereU=U+ v+ vN, whereU is the mean velocity fieldv is the stochastic velocity which may be helical,
and which is�-correlated in time andvN = a(J×B)×B is the nonlinear ambipolar diffusion component,
which is used as a model nonlinearity.

Recall that we assumev to be an isotropic, homogeneous, Gaussian random velocity field with zero
mean, and�-correlated in time. That is〈vi(x, t)vj (y, s)〉 = Tij (r)�(t − s), with Tij as defined in (5.23),

Tij (r) =
(
�ij − rirj

r2

)
TN(r) + rirj

r2 TL(r) + εijkrk F (r) , (A.3)

whereTL, TN andF are the longitudinal, transverse and helical parts of the correlations, respectively. The
induction equation becomes a stochastic equation. We split the magnetic field into mean fieldB=〈B〉 and
a fluctuating fieldb= B − B. The equation for the mean field, for the Kazantsev model velocity field is
derived in Appendix B. Here we concentrate on the evolution of the fluctuating field. We assumebalso to
be a homogeneous, isotropic, random field, with an equal time two point correlation〈bi(x, t)bi(y, t)〉 =
Mij (r, t), wherer = x− y, r = |r | and

Mij = MN

(
�ij − rirj

r2

)
+ ML

rirj

r2 + Cεijkrk . (A.4)

HereML(r, t) andMN(r, t) are the longitudinal and transverse correlation functions for the magnetic
field whileC(r, t) represents the (current) helical part of the correlations. The evolution ofMij (r, t) can
be obtained from

(�Mij/�t) = �

�t
(〈bi(x, t)bj (y, t)〉) = �〈BiBj 〉

�t
− �(BiBj )

�t
. (A.5)
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The second term in the square brackets is easy to evaluate using the equation for the mean field (see below
in Section B.2). The first term is

�

�t
(Bi(x, t)Bj (y, t)) = Bi(x, t)

�Bj(y, t)

�t
+ �Bi(x, t)

�t
Bj (y, t) . (A.6)

Suppose we define the two-point productBi(x, t)Bj (y, t) = Bij (x, y, t) for notational convenience.
Substitute (A.1) into (A.6) and let the initial value of the two-point product beBi(x,0)Bj (y,0) = B0

ij .
Then, at an infinitesimal time�t later, this product is given by the formal integral solution:

Bij = B0
ij +

∫ �t

0
dt ′[Rx

ipqU
x
pBqj + R

y
jpqU

y
pBiq] + �t[�∇2

xBij + ∇2
yBij ] . (A.7)

For clarity, thex and y and t ′ dependencies of the fields have been suppressed (except in∇2) in
the integrand. We write down an iterative solution to this equation to various orders in�t . To zeroth
order, one ignores the integral and putsBij (x, y, t ′) = B0

ij . To the next order one substitutesB0
ij for Bij

in Eq. (A.7), to get a first order iterationB(1)
ij , and thenB(1)

ij for Bij , to getB(2)
ij . The resulting equation

is then averaged to get the〈Bij 〉 and the corresponding contribution fromBi(x, �t)Bj (y, �t) subtracted
to get the equation forMij (�t)= 〈bi(x, �t)bj (y, �t)〉. The presence of the�-correlatedu implies that one
has to go up to second order iteration to getMij (�t) correct to linear order in�t . Then dividing by�t and
taking the limit of�t → 0, we get

�Mij

�t
=

〈∫
R
y
jpq[vp(y, t)Rx

ilm(vl(x, s)[Mmq + Bm(x)Bq(y)])] ds

〉

+
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〉

+
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R
y
jpq[vp(y, t)Ry

qlm(vl(y, s)Mim)] ds

〉

+
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ipq[vp(x, t)Rx

qlm(vl(x, s)Mmj )] ds

〉
+ �[∇2

yMij + ∇2
xMij ] + R

y
jpq(Up(y)Miq) + Rx

ipq(Up(x)Mqj )

+ R
y
jpq(〈vNp(y)bi(x)Bq(y)〉) + Rx

ipq(〈vNp(x)Bq(x)bj (y)〉) . (A.8)

The first two terms on the RHS of Eq. (A.8) represent the effect of velocity correlations on the magnetic
fluctuations,Mij , and the mean field,B. The next two terms give the ‘turbulent transport’ of the magnetic
fluctuations by the turbulent velocity, the 5th and 6th terms the ‘microscopic diffusion’. The 7th and 8th
terms the transport of the magnetic fluctuations by the mean velocity. The last two nonlinear terms give
the effects of the backreaction due to ambipolar drift on the magnetic fluctuations.

For the discussions of the small scale dynamo in Section 5, the unified treatment of the large scale
dynamo in Section 5.6 or the toy closure model in Section 8.10 we do not keep the mean field terms.
(The coupling to the mean field can be important in discussions of helicity flux.) This also means that
we can continue to treat the statistical properties of the magnetic fluctuations as being homogeneous and
isotropic, and useMij (x, y, t) = Mij (r, t).
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All the terms in the above equation, can be further simplified by using the properties of the magnetic
and velocity correlation functions. In order to obtain equations forML andC, we multiply Eq. (A.8) by
rirj /r2 andεijkr

k and use the identities

ML(r, t) = Mij (r
irj /r2), C(r, t) = 1

2Mij εijkr
k/r2 . (A.9)

We consider some steps in simplifying the first two terms. The first term in Eq. (A.8 ) is given by〈∫
R
y
jpq(vp(y, t)R

x
ilm(vl(x, s)Mmq))ds

〉
= −εituεulmεjrsεspq[TlpMmq],rt . (A.10)

For examining the evolution ofML one needs to multiply the above equation byrirj /r2. We can simplify
the resulting equation by using the identity

rirj
�2A

�rr�rt
= �2(Arirj )

�rr�rt
− �j t r

i �A

�rr
− �ir r

j �A

�rt
− �j t�irA , (A.11)

whereA= T lpMmq . Then usingεituεulm = �il�tm − �im�t l , and the definition ofTL , TN andF , straight-
forward algebra gives the contribution of the first term to(�ML/�t)

ṀL |1st = − 1

r4

�

�r

(
r4TLL

�ML

�r

)
+ G

2
ML + 4FC . (A.12)

The second term of (A.8) gives an identical contribution.
To derive the evolution ofH due to these terms multiply (A.10) byεijkrk . Using the fact that the

turbulent velocity and small scale field have vanishing divergence, we haveMij,j = 0 andTij,j = 0. This
allows one to simplify the contribution from the first term to(�C/�t)

Ċ|1st = −εijkr
k

2r2 (Tij,trMtr + TtrMij,tr − Tir,tMtj,r − Ttj,rMir,t ) . (A.13)

The first two terms on the RHS of Eq. (A.13) can be further simplified by noting thatεijkTij = 2Frk and
εijkMij = 2Crk . We have then

−εijkr
k

2r2 (Tij,trMtr + TtrMij,tr ) = −
(
TLC

′′ + T ′
LC

′ + 4TLC
′

r
+ MLF

′′

+M ′
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′ + 4MLF
′

r

)
. (A.14)

Here prime denotes a derivative with respect tor. To evaluate the contribution of the last two terms on the
RHS of (A.13), it is convenient to split up the tensorsMij andTij into symmetric and antisymmetric parts
(under the interchange of(ij)). We put a superscriptS on the symmetric part andA on the antisymmetric
part. Then we can write after some algebra
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. (A.15)
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Adding the contributions from (A.14) and (A.15) gives

Ċ|1st = − 1

r4

�

�r

[
r4 �

�r
(TLLC + FML)

]
(A.16)

The second term of (A.8) gives an identical contribution. The third and fourth terms add to give a
contribution

(3rd+ 4th) = 4F(0)εjqm(�Mim/�r
q) + 2TL(0)∇2Mij (A.17)

to the RHS of (A.8), hence justifying their being called ‘turbulent transport’ ofMij (compare this to the
microscopic diffusion term 2�∇2Mij ).

The last two nonlinear terms give the effects of the backreaction due to ambipolar drift on the magnetic
fluctuations. They involve 4th order correlations ofb. In evaluating this term, we make the Gaussian
closure approximation that the fourth order moment of the fluctuating field can be written as a product
of 2nd moments. In this case the nonlinear terms add to give a contribution

nonlinear terms= −8aC(0, t)εjqm(�Mim/�r
q) + 4aML(0, t)∇2Mij (A.18)

to the RHS of (A.8). The Gaussian assumption of the magnetic correlations results in the nonlinearity of
this term appearing as a nonlinearity in the coefficient, rather than the correlation function itself. Gathering
together all the terms, we get for the coupled evolution equations forML andC:
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+ GML + 4�NC , (A.19)
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[
r4 �

�r
(2�NC − �NML)

]
. (A.20)

We can also write (A.20) in terms of the magnetic helicity correlation functionH(r, t), which is related
to the current helicity correlationC(r, t) by

C = − 1

r4

�

�r

(
r4�H

�r

)
, (A.21)

�H

�t
= −2�NC + �NML . (A.22)

Here we have also defined

�N = � + TLL (0) − TLL (r) + 2aML(0, t) ,
�N = −[2F(0) − 2F(r)] + 4aC(0, t) ,
G = −2(T ′′

L + 4T ′
L/r) . (A.23)

These equations generalize the Kazantsev equation to the helical case and also include a toy nonlinearity
in the form of ambipolar diffusion. If we take the limitr → 0 in Eq. (A.22), we getḢ (0, t)=−2�C(0, t),
which is exactly the equation for conservation (evolution) of magnetic helicity. So our nonlinear closure
model incorporates also the important constraint provided by helicity conservation. This set of equations
is used to discuss the nonhelical small scale dynamo (Section 5), a unified treatment of small and large
scale dynamos (Section 5.6) and also the helicity constraint in this toy model (Section 8.10).
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Appendix B. Other approaches to calculating� and �t

In this section we present alternative approaches to calculating turbulent transport coefficients such as
� and�t. These methods are more specialized compared to the standard approaches presented in Sections
6.3 and 6.4, but some of them are more rigorous, allowing additional insight into the viability and fragility
of � effect and turbulent diffusion.

B.1. The Lagrangian approach to the weak diffusion limit

In the limit of largeRm?1, one may also think of neglecting magnetic diffusion completely. The time
evolution of the magnetic field can then be solved exactly using the Cauchy solution,

Bi(x, t) = Gij (x0, t)

detG
B0j (x0) , (B.1)

whereGij = �xi/�x0j is the lagrangian displacement matrix,B0(x0)=B(x,0) is the initial condition, and

x(x0, t) = x0 +
∫ t

0
uL (

x0, t
′)dt ′ (B.2)

is the position of an advected test particle whose original position was atx0. We have also defined the
lagrangian velocityuL(x0, t) = U(x(x0, t)). Using the Cauchy solution, Moffatt[148] showed that

�(t) = −1
3

∫ t

0
uL(x0, t) · �L(x0, t ′) dt ′ , (B.3)

where�L = ∇L × uL is the vorticity of the lagrangian velocity fluctuation with respect tox0. So�(t)= 0
at the initial timet = 0, but the expectation is that for times much longer than the correlation time of
the turbulence,t?�, �(t) settles to a constant value. One could then take the limitt → ∞ in the above
integral.10

Deriving an expression for the�t coefficient is more complicated. A naive expectation is that one
will have

�t(t) = 1
3

∫ t

0
uL(x0, t) · uL(x0, t ′) dt ′ , (B.4)

analogous to the case of the effective turbulent diffusivity of a scalar field. One does get this term, but
there are additional terms for the magnetic field, derived for example in Moffatt’s book[148]. For these
terms convergence to finite values at large times is even more doubtful. Simulations by Kraichnan[561]
suggested that�(t) and�t(t) converge to finite values of orderu anduL, respectively, ast → ∞, for
statistically isotropic velocity fields with Gaussian statistics. However, numerical simulations[562]using
a frozen velocity field suggest that in the limit of large magnetic Reynolds numbers� tends to zero.

10The convergence of the integral to a constant whent → ∞ is not guaranteed because the above integral has derivatives
of the form�ui/�x0j = (�ui/�xm)(�xm/�x0j ). Although�ui/�xm is statistically stationary in time,�xm/�x0j is in general not,

since particles initially separated by some�x0, tend to wander further and further apart in a random flow, and|�x| ∝ |�x0|t1/2.
So secularly growing terms may in principle contribute to the integral determining�(t) making the limitt → ∞ meaningless
[148].



A. Brandenburg, K. Subramanian / Physics Reports 417 (2005) 1–209 181

B.2. Delta-correlated velocity fields

One of the few situations for which the kinematic mean field dynamo equations can be derived exactly
is for a random flow that is�-correlated in time, as introduced by Kazantsev[13]. Such a flow was also
used by Kraichnan[315] to discuss passive scalar evolution. Such flows are of course artificial and not a
solution of the momentum equation, but they serve as an excellent example where the mathematics can
be treated exactly.

To discuss mean field dynamo action, we have to add a helical piece to the correlation function of the
stochastic velocity fieldv driving the flow. So now we adoptU= U+ v in the induction equation where,
as before〈vi(x, t)vj (y, s)〉 = Tij (r)�(t − s), with Tij as defined in (5.23). Atr = 0, we have

−2F(0) = −1
3

∫ t

0
〈v(t) · (∇ × v(t ′))〉 dt ′

[
≈ −1

3�v · (∇ × v)
]

, (B.5)

TL(0) = 1
3

∫ t

0
〈v(t) · v(t ′)〉 dt ′

[
≈ 1

3�v2
]

, (B.6)

where the last expressions in parenthesis would apply if we had assumed a small but finite correlation
time �.

The induction equation is a stochastic equation and we would like to convert it into an equation for
the mean magnetic fieldB (see also Zeldovich et al., 1983, Chapter 8[222]). Let the magnetic field at an
initial time, sayt = 0, beB(x,0). Then, at an infinitesimal time�t later, the field is given by the formal
integral solution:

B(�t) = B(0) +
∫ �t

0
dt ′{∇ × [U(t) × B(t ′)] − �∇ × B(t ′)} . (B.7)

For clarity, the commonx dependence ofU andB, has not been explicitly displayed above. We write
down an iterative solution to this equation to various orders in�t . To zeroth order, one ignores the integral
and putsB(0)(x, �t) = B(x,0). To the next order one substitutesB0 for B in Eq. (B.7), to get a first order
iterationB(1), and thenB(1) for B, to getB(2). The resulting equation is then averaged to get theB(x, �t).
The presence of the�-correlatedv implies that one has to go up to second order iteration to getB(x, �t)
correct to linear order in�t . This procedure yields

B(�t) = B(0) − �t[∇ × (U× B(0)) − �∇ × B(0)]
+

∫ �t

0
dt ′

∫ t ′

0
dt ′′∇ × {v(t ′) × [∇ × (v(t ′′) × B(0))]} , (B.8)

where the overbar denotes averaging over an ensemble of the stochastic velocity fieldv, as before. On
using the fact thatv at timet is not correlated with the initial magnetic fieldB(x,0) and taking the limit
�t → 0 we get after some straightforward algebra,

�B

�t
= ∇ × [U× B+ �B− (� + �t)∇ × B] . (B.9)

The effect of the turbulent velocity is again to introduce the standard extra terms representing the� effect
with �=−2F(0) and an extra turbulent contribution to the diffusion�t =TL(0). If one allows for weakly
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inhomogeneous turbulence, one could also discover a turbulent diamagnetic effect due to the gradient of
�t, which expels magnetic fields from regions of strong turbulence.

B.2.1. Transport coefficients from random waves and individual blobs
We mention two additional approaches that have been important in understanding the origin and nature

of the� effect. One is based on the superposition of random waves that are affected and modified through
the presence of rotation, stratification, and magnetic fields[312,313,372,437,563], and the other is based
on the detailed analysis of individual convection cells[314] or blobs from supernova explosions[309].
The latter approach has to an� tensor of the form

�ij =
(

�R −Vesc 0
Vesc �� 0

0 0 �Z

)
(B.10)

in cylindrical (R,�, Z) coordinates. The effect of individual supernova explosions is slightly different
from the effect of the so-called superbubble where one explosion has triggered several others nearby.
The latter leads to structures more symmetric about the midplane causing�Z to be negligibly small. For
individual supernova bubbles, on the other hand, the sign of�Z is found to be opposite to the sign of
��. There is also a vertical pumping effectawayfrom the midplane, corresponding to the antisymmetric
components of the� tensor,

�i = −1
2εijk�jk = �iZVesc . (B.11)

The lack of downward pumping is possibly an artifact of neglecting the return flow. The motivation
for neglecting the return flow is the somewhat unjustified assumption that the magnetic field will have
reconnected to their original position by the time the return flows commences.

Appendix C. Derivation of the Zeldovich relation

In this section we show that in two dimensions we have the relation〈b2〉/〈B2〉 =Rm, whereB=B0 =
(B0,0,0) is an applied mean field. This relation was used in Section 8.7 in connection with heuristic
arguments about the nonlinear� effect.

Consider the evolution of the small scale magnetic vector potentiala= (0,0, a), whereb= ∇ × a, so

�a

�t
+ u · ∇a + uyB0 = �∇2a . (C.1)

Multiplication with a and volume averaging yield

�

�t
〈1

2a
2〉 + 〈u · ∇(1

2a
2)〉 + 〈auy〉B0 = −�〈b2〉 . (C.2)

Using stationarity,�/�t =0, incompressibility [which implies〈u ·∇(1
2a

2)〉= 〈∇ · (ua2/2)〉], and periodic
or closed boundaries, so〈∇ · (ua2/2)〉 = 0, as well as a Fickian diffusion law for the flux,

〈auy〉 = −�t∇yA = −�tB0 , (C.3)
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where(0,0, A(y)) is the corresponding vector potential forB0, we have

�tB
2
0 = �〈b2〉 . (C.4)

Finally, usingRm = �t/�, we have〈b2〉/〈B2〉 = Rm.

Appendix D. A heuristic treatment for the current helicity term

In this section we present a heuristic treatment for the occurrence of thej · b correction to the� effect.
A more rigorous and perhaps more convincing derivation is given in Section 9.2.

D.1. Taking nonlinearity into account

Originally, when the magnetic field is weak, the velocity is a sum of mean velocityU and a turbulent
velocityu=u(0) (which may be helical).The velocity fieldu(0) can be thought of as obeying the momentum
(Navier–Stokes) equation without the Lorentz force. Then suppose we assume an ansatz that in the
nonlinear regime the Lorentz force induces an additional nonlinear velocity componentuN, that is,
U= U+ u(0) + uN, where∇ · uN = 0 and

�u̇N = �−1
0 (B · ∇b+ b · ∇B) − ∇p′ + O(uu, bb, �uN) , (D.1)

where the dots denote partial time differentiation, andO(uu, bb, �uN) indicates all the neglected terms,
those nonlinear inb andu = u(0) + uN, and the viscous dissipation. Also,p′ is the perturbed pressure
including the magnetic contribution. PFL assumed that the mean field,B, was strong enough that the
nonlinear and viscous terms could be neglected. Zeldovich et al.[222] argued that when multiplied byb
and averaged, the resulting triple correlations could be replaced by double correlations, fairly close in spirit
to the minimal� approximation; but they did not actually perform a calculation akin to the calculation as
done below. Gruzinov and Diamond[365,366]also neglected this term, calling this a quasilinear dynamo.
This ‘quasilinear’ treatment is somewhat approximate; nevertheless it helps in heuristically understanding
the result of the EDQNM closure model, in an analytically tractable fashion.

Due to the addition ofuN, the turbulent EMF now becomesE=u(0) × b+uN × b, where the correction
to the turbulent EMF is

EN(t) =
∫ t

(B · ∇b+ b · ∇B− ∇p′) × b(t)dt ′ , (D.2)

where (as usual)�0 = �0 = 1 has been assumed. One again assumes that the small scale magnetic field
b(t) has a short correlation time, say�b, and that�b is small enough that the time integration can be
replaced by a simple multiplication by�b. We can calculateEN either in coordinate space or ink-space.
The calculation, following[258], is given in Section D.2. To the lowest order one gets

EN = 1
3�b j · bB , (D.3)

that is a correction toE akin to the magnetic contribution found by PFL[304]. Further, one verifies the
result of PFL that to the lowest order, the turbulent diffusion of the large scale field is not affected by
nonlinear effects of the Lorentz force. However, if one goes to higher order in the derivatives ofB, one
gets additional hyperdiffusion of the mean field and higher order additions to the� effect[258].
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The above heuristic treatment is not very satisfactory, since it neglects possibly important nonlinear
terms in the momentum equation. At the same time the EDQNM treatment has the limitation that one
assumes the randomu andb fields to be homogeneous and isotropic. In the main text, we have therefore
focused on MTA, since it allows one to remove some of these limitations.

D.2. Calculation of the quasilinear correctionEN

We calculateEN here in coordinate space representation. We can eliminate the pressure term inuN
using the incompressibility condition. Defining a vectorF = a[B · ∇b+ b · ∇B], with a = �/(�0�0), one
then gets

EN = 〈F × b〉 − 〈[∇(∇−2∇ · F)] × b〉 , (D.4)

where∇−2 is the integral operator which is the inverse of the Laplacian, written in this way for ease of
notation. We will write down this integral explicitly below, using−(4	r)−1 to be the Greens function of
the Laplacian. We see thatEN has a local and nonlocal contributions.

To calculate these, we assume the small scale field to be statistically isotropic and homogeneous, with
a two-point correlation function〈bi(x, t)bi(y, t)〉 = Mij (r, t), given by (5.25),

Mij = MN

(
�ij − rirj

r2

)
+ ML

rirj

r2 + Cεijkrk . (D.5)

Recall thatML(r, t)andMN(r, t)are the longitudinal and transverse correlation functions for the magnetic
field whileC(r, t) represents the (current) helical part of the correlations. Since∇ · b= 0,

MN = 1

2r

�

�r
(r2ML) . (D.6)

We also will need the magnetic helicity correlation,H(r, t) which is given byC = −(H ′′ + 4H ′/r),
where a prime′ denotes derivative with respect tor. In terms ofb, we have

ML(0, t) = 1
3〈b2〉, 2C(0, t) = 1

3〈 j · b〉, 2H(0, t) = 1
3〈a · b〉 , (D.7)

whereb= ∇ × a andj = ∇ × b. The local contribution toEN is easily evaluated,

E
L
N ≡ 〈F × b〉 = −aML(0, t)J+ 2aC(0, t)B , (D.8)

whereJ= ∇ × B.
At this stage (before adding the nonlocal contribution) there is an important correction to the� effect,

with � = �K + �M, where

�M = 2aC(0, t) = 1
3�〈 j · b〉 . (D.9)

(We again set�0 = 1 and�0 = 1 above and in what follows.) There is also a nonlinear addition to the
diffusion of the mean field (the−aML(0, t)∇ × B term), which as we see gets canceled by the nonlocal
contribution!
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Let us now evaluate the nonlocal contribution. After some algebraic simplification, this is explicitly
given by the integral

(E
NL
N )i(x, t) ≡ − (〈[∇(∇−2∇ · F)] × b〉)i

= 2εijk

∫
�Mmk(r , t)

�rl
�Bl(y, t)

�ym
rj

r3

d3r

4	
, (D.10)

wherey=r+x. Note that the mean fieldBwill in general vary on scalesR much larger than the correlation
length l of the small scale field. We can then use the two-scale approach to simplify the integral in
Eq. (D.10). Specifically, assuming that(l/R)<1, or that the variation of the mean field derivative in
Eq. (D.10), overl is small, we expand�Bl(y, t)/�ym, in powers ofr , aboutr = 0,

�Bl

�ym
= �Bl

�xm
+ rn̂p

�2Bl

�xm�xp
+ r2n̂pn̂q

2

�3Bl

�xm�xp�xq
+ · · · , (D.11)

where we have defined the unit vectorn̂i = ri/r (we will soon see why we have kept terms beyond the
first term in the expansion). Simplifying the derivative�Mmk(r , t)/�rl using Eq. (5.25) and noting that
εijkrj rk = 0, we get

rj εijk
�Mmk

�rl
= rj εijk

[
r−1(ML − MN)n̂m�kl + M ′

Nn̂l�mk + Cεmkl + rC′n̂f n̂lεmkf
]

. (D.12)

We substitute (D.11) and (D.12) into (D.10), use∫
n̂i n̂j

d�

4	
= 1

3�ij ,

∫
n̂i n̂j n̂kn̂l

d�

4	
= 1

15[�ij�kl + �ik�j l + �il�jk] , (D.13)

to do the angular integrals in (D.10), to get

E
NL
N = aML(0, t)J+ 6a

5
H(0, t)∇2B+ 2a

5

[∫ ∞

0
ML(r, t)r dr

]
∇2J . (D.14)

The net nonlinear contribution to the turbulent EMF isEN = E
L
N + E

NL
N , got by adding Eq. (D.8) and

Eq. (D.14). We see first that the nonlinear diffusion term proportional to∇ × B has the same magnitude
but opposite signs in the local [Eq. (D.8)] and nonlocal [Eq. (D.14)] EMF’s and so exactly cancels in the
netEN. This is the often quoted result[302,304,365,366]that the turbulent diffusion is not renormalized
by nonlinear additions, in the quasilinear approximation. However, this does not mean that there is no
nonlinear correction to the diffusion of the mean field. Whenever the first term in an expansion is exactly
zero it is necessary to go to higher order terms. This is what we have done and one finds thatEN has an
additional hyperdiffusionEHD = �HD∇2(∇ × B) = �HD∇2J, where

�HD = 2a

5

∫ ∞

0
dr rML(r, t) . (D.15)

Taking the curl ofEN, the nonlinear addition to the mean field dynamo equation then becomes

∇ × EN = (�M + hM∇2)∇ × B− �HD∇4B . (D.16)

Here�M = 1
3a〈 j · b〉 is the standard nonlinear correction to the� effect[302,304], andhM = 1

5a〈a · b〉 is
an additional higher order nonlinear helical correction derived here.
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Appendix E. Derivation of Eq. (10.28)

Now turn to the simplification of thė�Mjk term in Section 10.1. We again define wavevectors,k1 = k+
K/2− k′ andk2 = −k+ K/2, and transform to new variables, (k′,K′), whereK′ = k1 + k2 = K− k′. Note
that since all Fourier variables will be nonzero only for small|K| and|k′|, they will also only be nonzero
for small|K′|. Eq. (10.22) becomes

��Mjk

�t
=

∫
d3K ′d3k′ei(K′+k′)·RPjs(k+ 1

2K
′ + 1

2k
′)

× [i(−kl + 1
2K

′
l − 1

2k
′
l)B̂l(k

′)Msk(k− 1
2k

′;K′)

+ (ik′
l)B̂s(k

′)Mlk(k− 1
2k

′;K′)] , (E.1)

where, for notational convenience, we have defined

Msk(k− 1
2k

′;K′) = b̂s(k− 1
2k

′ + 1
2K

′)b̂k(−(k− 1
2k

′) + 1
2K

′) . (E.2)

(Note that the terms involvingk′
l B̂l(k′) above are zero, since∇ ·B=0.) We now expandPjs(k+ 1

2K
′+ 1

2k
′)

aboutK′ = 0 and bothPjs andMlk aboutk′ = 0, keeping at most terms linear inK′ andk′, respectively
to get

��Mjk

�t
=

∫ {
Pjs(k)iklB̂l(k

′)
[
Msk(k;K′) − k′

t

2

�Msk(k;K′)
�kt

]
+ Pjs(k)i(k

′
l + 1

2K
′
l )

[
B̂l(k

′)Msk(k;K′) + B̂s(k
′)Mlk(k;K′)

]
− i(k′

s + K ′
s)kj

2k2 (k · B̂)Msk(k;K′)
}

d3K ′d3k′ei(K′+k′)·R . (E.3)

We have also used here the fact thatksmsk = 1
2i(�vsk/�Rs) above, to neglect terms of the formk′

j ksmsk

andK ′
j ksmsk, which will lead to terms with two derivatives with respect toR. (Note that in homogeneous

turbulence with∇ · b= 0 one will haveksmsk = 0.)
Integrating overK′ andk′, and using the definition ofmij we finally get

��Mjk

�t
= ik · Bmjk + 1

2B · ∇mjk + Bj,lmlk − 1
2Bm,skm

�mjk

�ks
− 2

kj ks

k2 Bs,lmlk . (E.4)

Appendix F. Calculation of the second and third terms in (10.38)

In the calculation of turbulent transport coefficients in the case where helicity is produced by rotation
and gradients of the turbulence intensity in Section 10.3, we had to evaluate the contributions from
the second and third terms in (10.38) toE for nonzero�. The somewhat cumbersome derivation is
presented below.
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The contribution due to the second term is

E
(�2)
i = 2εijkεj lm

∫
�2k̂ · �k̂mIlk d3k

= 2εijkεj lm

∫
�2k̂ · �k̂m

[
−ik · B (v(0)lk − mlk) + 1

2B · ∇(v(0)jk + mjk)

+Bl,smsk − Bk,sv
(0)
ls − 1

2ksBs,�(�v
(0)
lk /�k� + �mlk/�k�)

]
d3k . (F.1)

Note that due to the presence of the antisymmetric tensorεj lm the last term ofIlk does not contribute to

E
(�2)
i . Further note that to linear order in�, the velocity correlationvlk can be replaced by the nonhelical,

isotropic, velocity correlation of the original turbulencev(0)lk . Substituting the general form of the magnetic
and velocity correlations, and noting that only terms which have an even number ofk̂i survive the angular
integrations, we have

E
(�2)
i = 2εijkεj lm

∫
�2k̂ · �k̂m{−k · B1

2 k̂k∇l(E
(0) − M) + k · Bεlknk̂nN

+ 1
2B · ∇[�lk(E(0) + M)] + Bl,sPskM − Bk,s�lsE

(0)

− 1
2 k̂sBs,�[k̂��lkk(E

(0) + M)′ − �l�k̂k(E
(0) + M)]} d3k , (F.2)

where primes denote derivatives with respect tok. TheN dependent term vanishes on doing the angular
integrals, and the other terms in (F.2) simplify to

E
(�2)
i = − 1

15Bi(� · ∇)(Ẽ(2) − M̃(2)) + 4
15� · B ∇i(Ẽ

(2) − M̃(2))

+ 3
5�iB · ∇(Ẽ(2) + 11

9 M̃
(2)) + �l(Ẽ

(2) − M̃(2))[1
6B[l,i] + 7

30B(l,i)]
− 2

15�lB(l,i)(Ẽ
(3) + M̃(3)) . (F.3)

Here,B(l,i) ≡ Bl,i + Bi,l , B[l,i] ≡ Bl,i − Bi,l , andẼ(2), . . . , M̃(3) have been defined in Eq. (10.54).

For a constant�(k) = �0 say, we simply havẽE(2) = 1
2�2

0u
(0)2, M̃(2) = 1

2�2
0b

2, while Ẽ(3) andM̃(3)

depend on the velocity and magnetic spectra.
Now consider the third term in (10.38). Using Eqs. (10.27) and (10.35) this is given by

E
(�3)
i = − εijk

∫
�2BjlmI

(0)
lk,m d3k

= − εijk

∫
�2(εj lmk̂ · � + εj lt k̂t�m − 2εj lt k̂ · � k̂t k̂m)

× �

�Rm

[k̂ · B(v(0)lk − mlk)] d3k . (F.4)

Using Eqs. (10.40) and (10.41), only those terms inv
(0)
lk andmlk which contain an even number ofk̂i

survive after doing the angular integrals overk in (F.4). Further, those terms which contain a spatial
derivative do not contribute, since (F.4) already contains a spatial derivative, and we are keeping only
terms up to first order in theR derivatives. Also, in those terms that haveεj lt , the part of the velocity
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and magnetic correlations proportional tok̂l give zero contribution. Using these properties, and doing the
resulting angular integrals, we get

E
(�3)
i = − 7

15� · ∇[Bi(Ẽ
(2) − M̃(2))] − 2

15�l∇i[Bl(Ẽ
(2) − M̃(2))]

+ 1
5�i∇l[Bl(Ẽ

(2) − M̃(2))] . (F.5)

Appendix G. Comparison with the paper by Rädler, Kleeorin, and Rogachevskii

The results presented at the end of Section 10.3 are modified if one were to assume a power law form
for the spectrum of velocity and magnetic correlations in the rangek0<k<kd (as done in Ref.[320]),

4	k2E(0) = (q − 1)
u(0)2

2k0

(
k

k0

)−q

, 4	k2M = (q − 1)
b2

2k0

(
k

k0

)−q

, (G.1)

and also take�(k) = �∗(k) = 2�0(k/k0)
1−q , as in Ref.[320], then

Ẽ(2) = 4
3�2

0
u(0)2

2
, M̃(2) = 4

3�2
0
b2

2
, (G.2)

and hence all the�2
0 terms in Eqs. (10.57)–(10.61), would have to be multiplied by 4/3. In this case one

also hasẼ(3) = −(q + 2)Ẽ(2) andM̃(3) = −(q + 2)M̃(2), so one has for the last term in Eq. (10.61)

4
30

[
Ẽ(3) + M̃(3)

]
= − 8

45(q + 2)�2
0

(
u(0)2 + b2

2

)
. (G.3)

This leads to

�ij = 1
3�eff j · b− 16

15�2
0

[
�ij� · ∇(u(0)2 − 1

3b
2) − 11

24(�i∇j + �j∇i)(u(0)2 + 3
11b

2)
]

, (G.4)

�ij = 1
3�0�iju(0)2 , (G.5)

� = −1
6�0∇(u(0)2 − b2) − 2

9�2
0� × ∇(u(0)2 + b2) , (G.6)

� = 2
9��2

0(u
(0)2 − b2) , (G.7)


ijk = 2
9�2

0(�j�ik + �k�ij )
{[
u(0)2 + 7

5b
2] + 2

5(q − 1)[u(0)2 + b2
]}

. (G.8)

Here�eff = 2�0(2− q)/(2q − 3)(k0/kd)
2−q for the spectral dependences which have been assumed, and

�eff = 2�0(k0/kd)
1/3 for a Kolmogorov spectrum. Our results for the rotation dependent terms in�, �, �

(and
 whenq = 1), all agree exactly with the result of[320]; however we get a different coefficient (2/5
instead of−4/5) in front of the term proportional to(q − 1) in the expression for
ijk.
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Appendix H. Calculation of �1 and�2

In order to evaluate�1 and�2 in the calculation of the nonlinear helicity fluxes of Section 10.4 we
use the induction (10.8) for the fluctuating field. We then get for�1

�1 =
∫ {

εijkεipqεqlm

∫ ∫ ∫
ûl(k+ 1

2K− k′)b̂k(−k+ 1
2K)B̂m(k

′)

× i(kp + 1
2Kp)i(−kj + 1

2Kj)e
iK·Rd3Kd3k′ + T1(k)

}
d3k . (H.1)

Here,T1(k) subsumes the triple correlations of the small scaleu andbfields and the microscopic diffusion
terms that one gets on substituting Eq. (10.8) into Eq. (10.67). We transform from the variables(k′,K) to
a new set(k′,K′) whereK′ =K− k′, use the definition of the velocity-magnetic field correlation�lk(k,R),
and carry out the integral overK′ to write

�1 =
∫ {

εijkεipqεqlm

∫
d3k′eik′·RB̂m(k

′)(ikp + 1
2ik′

p + 1
2∇p)

× (−ikj + 1
2ik′

j + 1
2∇j )�lk(k− 1

2k
′,R) + T1(k)

}
d3k . (H.2)

Once again, sinceB varies only on large scales,B̂(k′) only contributes at smallk′. One can then make a
smallk′ expansion of�lk, and do thek′ integral, retaining only terms which are linear in the large scale
derivatives, to get

�1 =
∫ {

εijkεipqεqlm

[
kpkj

(
Bm�lk + 1

2i∇sBm

��lk
�ks

)
+ 1

2i(kp∇jBm − kj∇pBm)�lk

+1
2i(kp∇j�lk − kj∇p�lk)Bm

]
+ T1(k)

}
d3k . (H.3)

This agrees with the result given in Eq. (10.70) for the upper sign.
We now turn to�2. Again, using the induction equation (10.8) for the fluctuating field, we get for�2

�2 =
∫ {

εijkεkpqεqlm

∫ ∫ ∫
ûl(−k+ 1

2K− k′)b̂i(k+ 1
2K)B̂m(k

′)

× i(−kp + 1
2Kp)i(−kj + 1

2Kj)e
iK·Rd3K d3k′ + T2(k)

}
d3k , (H.4)

whereT2(k) represents the triple correlations and the microscopic diffusion terms that one gets on sub-
stituting Eq. (10.8) into Eq. (10.67). We transform from the variables(k′,K) to a new set(k′,K′) where
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K′ = K− k′. It is also convenient to change from the variables(k, k′) to (−k,−k′). Under this change we
have

�2 =
∫ {

εijkεkpqεqlm

∫ ∫
ûl(k+ 1

2k
′ + 1

2K
′)b̂i(−k− 1

2k
′ + 1

2K
′)

× B̂
∗
m(k

′)i[kp + 1
2(K

′
p − k′

p)]i(kj + 1
2(K

′
j − k′

j ))

× ei(K′−k′)·Rd3K ′d3k′ + T2(k)

}
d3k . (H.5)

We can now carry out the integral overK′ using the definition of the velocity-magnetic field correlation
�li (k,R), to get

�2 =
∫ {

εijkεkpqεqlm

∫
d3k′e−ik′·RB̂

∗
m(k

′)(ikp − 1
2ik′

p + 1
2∇p)

× (ikj − 1
2ik′

j + 1
2∇j )�li (k+ 1

2k
′,R) + T2(k)

}
d3k . (H.6)

Once again, sinceB varies only on large scales,B̂(k′) only contributes at smallk′. One can then make a
smallk′ expansion of�lk, and do thek′ integral, retaining only terms which are linear in the large scale
derivatives, to get

�2 =
∫ {

εijkεkpqεqlm

[
−kpkj

(
Bm�li + 1

2i∇sBm

��li
�ks

)
+ 1

2i(kp∇jBm + kj∇pBm)�li

+1
2i(kp∇j�li + kj∇p�li )Bm

]
+ T2(k)

}
d3k . (H.7)

We have used here∫
B̂

∗
m(k

′)e−ik′·Rd3k′ =
∫

B̂m(k
′)eik′·Rd3k′ = Bm(R) , (H.8)

∫
(−ik′

j )B̂
∗
m(k

′)e−ik′·Rd3k′ =
∫

ik′
j B̂m(k

′)eik′·Rd3k′ = ∇jBm(R) . (H.9)

Interchanging the indicesi andk in �2 yields the result given in Eq. (10.70) for the lower sign.
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