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Scaling laws in decaying helical hydromagnetic turbulence
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Abstract. We study the evolution of growth and decay laws for the magnetic field coherence length ξ, energy EM and
magnetic helicity H in freely decaying 3D MHD turbulence. We show that with certain assumptions, self-similarity of the
magnetic power spectrum alone implies that ξ ∼ t1/2. This in turn implies that magnetic helicity decays as H ∼ t−2s,
where s = (ξdiff/ξH)2, in terms of ξdiff , the diffusion length scale, and ξH, a length scale defined from the helicity power
spectrum. The relative magnetic helicity remains constant, implying that the magnetic energy decays as EM ∼ t−1/2−2s. The
parameter s is inversely proportional to the magnetic Reynolds number ReM, which is constant in the self-similar regime.
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1. Introduction

Magnetic fields are ubiquitous in the Universe, being ob-
served in objects from planets to galaxy clusters (Zeldovich
et al. 1983; Ruzmaikin et al. 1988; Kronberg 1994). In gala-
xies and galaxy clusters, the typical strength is of order a few
µGauss, which is thought to be produced by dynamo action
on a seed field. In galaxies the dynamo timescale is roughly a
rotation period, 108 yr, and a simple calculation (Ruzmaikin
et al. 1988) based on the age of a typical galaxy shows that
the seed field must have been about 10−20 Gauss, or perhaps
less in the currently favored models with a cosmological term
(Davis et al. 1999).

There is no shortage of ideas for generating this seed
field. The more conventional astrophysical explanations are
based on a Biermann battery operating at the era of reion-
ization (see, e.g., Gnedin et al. 2000, and references therein).
There are more speculative ideas based on various genera-
tion mechanisms in the early Universe (Grasso & Rubin-
stein 2001), which have the common feature of producing
stochastic, homogeneous and isotropic magnetic and velocity
fields, characterized by their power spectra and initial length
scales. Some of these mechanisms produce stochastic fields
with non-zero magnetic helicity (Joyce 1997; Cornwall 1997;
Vachaspati 2001) the first of these being maximally helical.
Another common feature of these generation mechanisms in
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the early Universe is that they last for a short time only, typi-
cally much less than the time it takes for the Universe to dou-
ble in size at the time of generation, after which the magnetic
fields decay. As we are discussing mechanisms operating at
the era of the electroweak phase transition (10−11 s) or be-
fore, field is generated essentially instantaneously compared
with any current astrophysical or cosmological timescale.

The subsequent decay of these primordial fields, and
also of those in star-forming regions, motivates the study
of freely decaying magnetohydrodynamic (MHD) turbulence
(Mac Low et al. 1998; Biskamp & Müller 1999; Müller &
Biskamp 2000; Christensson et al. 2001). The decay will not
in general just be through linear dissipation, as the fields in
the early are likely to have high magnetic Reynolds number
because of the high conductivity of a fully ionized relativis-
tic plasma (we recall that ReM = ξv/η, where ξ and v are
the typical length scale and velocity of the system, and η the
conductivity). This has been taken to mean in the cosmolo-
gical context that the magnetic field is frozen into the plasma,
and the scale length of the field increases only with the ex-
pansion of the Universe. This is in general untrue, because
the plasma can move, and turbulence can transfer energy to
different length scales (Brandenburg et al. 1996).

Thus a study of decaying MHD turbulence is required in
order to calculate quantities such as the size of the seed for the
galactic dynamo or the amplitude of the perturbations in the
temperature of the Cosmic Microwave Background (CMB)
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radiation arising from primordial magnetic field generation
(Durrer et al. 1998, 2003; Caprini & Durrer 2001; Caprini et
al. 2003). Our numerical results (Christensson et al. 2001) un-
covered decay laws for magnetic fields which were not those
one would expect from purely linear dissipative processes.
In particular we saw that helical fields decayed more slowly
than non-helical, due to the fact that magnetic helicity is an
invariant of ideal MHD. Helicity is known to be important in
dynamo theory (Pouquet et al. 1976; Meneguzzi et al. 1981;
Brandenburg 2001), and we shall also be able to confirm its
importance in decaying turbulence. Our interest here is to try
and understand the results, and to compare them with those
found by Biskamp & Müller (1999) and Müller & Biskamp
(2000). In doing so we have developed a new framework for
understanding scaling in decaying 3D MHD turbulence, in
the case where the fields are close to being maximally heli-
cal, as in the mechanisms proposed by Joyce & Shaposhnikov
(1997) and Vachaspati (2001). It should be noted that none of
the estimates by Durrer et al. (1998, 2003), Caprini & Durrer
(2001) and Caprini et al. (2003) take into account the decay
laws we find, and so our results are of direct importance for
cosmology.

The decay of the magnetic field in the turbulent case is
often presumed to result from an inverse cascade (Pouquet
et al. 1976; Meneguzzi et al. 1981; Brandenburg 2001), in
which power is transferred locally in k-space from small to
large scales. However, while it is certainly true that power is
transferred from small to large scales, as can been seen from
the energy power spectra plotted in Christensson et al. (2001),
it was not established that the power is transferred locally,
despite the appearance of the term “inverse cascade” in the
title of our paper, and so it may be strictly incorrect to call
the process a cascade. In fact, a true inverse cascade seems
rather unlikely, as large scale power appears almost immedi-
ately even from initial conditions which are highly localized
in k-space. For our analysis in this work it will not matter
whether or not there is a cascade, and we will not discuss
the matter further. However, we emphasize that the decay of
the energy is not simple linear dissipation: there is definitely
interesting non-linear physics, as shown by the appreciable
Reynolds numbers (100-600) and the processing of the initial
power spectra.

Various scaling arguments have been put forward to ob-
tain the growth law for the length scale of the magnetic field
and the decay law for the energy. For ideal MHD (infinite
conductivity), Olesen (1997) and later Son (1999), Field &
Carroll (2000), and Shiromizu (1998) argued ξ(t) ∼ t2/(n+5)

where t is conformal time, and n is the index of the ini-
tial magnetic power spectrum. Supporting evidence for this
scaling law was also found in two-dimensional MHD simu-
lations (Galtier et al. 1997). Shiromizu’s results were based
on a renormalization group argument, which has been revis-
ited by Berera & Hochberg (2001), who do not find evidence
for an inverse cascade in the steady state. The effect of having
significant helicity was supposed to modify this scaling law
to ξ(t) ∼ t2/3, EM ∼ t−2/3 (Biskamp 1993; Son 1999; Field
& Carroll 2000). Early numerical experiments with a shell
model of the full MHD equations (Brandenburg et al. 1996)

suggested ξ ∼ t0.25, and gave supporting evidence to the in-
verse cascade. Full MHD simulations by Biskamp & Müller
(1999) and Müller & Biskamp (2000) showed, in the heli-
cal case, an energy decay law EM ∼ t−1/2, supported by a
phenomenological model, which we will discuss at the end of
this work. Decaying non-helical turbulence was studied semi-
analytically in a shell model by Basu (2000) who found an
energy decay law of EM ∼ t−1.2. The decay of helical fields
was also studied semi-analytically by Sigl (2002), giving a
growth law for the length scale between t1/2 and t2/3. Un-
fortunately, direct comparison with our results is otherwise
difficult because the correlation functions are expressed in
real space. The importance of magnetic helicity in slowing
down the decay has been recognized earlier in studies of a
low-order model of three-dimensional hydromagnetic flows
(Stribling & Matthaeus 1991), where it was also found that a
finite initial cross helicity (not studied in the present paper)
can slow down the decay. However, power law exponents of
the decay have not been determined for this low-order model.

In an earlier paper (Christensson et al. 2001) we per-
formed 3D simulations both with and without magnetic he-
licity, starting from homogeneous and isotropic random ini-
tial conditions, with power spectra suggested by cosmolog-
ical applications. We found that the coherence scale of the
field grows approximately as t1/2, with significant transfer of
power to small scales in the helical case, which we ascribed to
an inverse cascade. The magnetic power spectrum was self-
similar with an approximately k−2.5 behavior at high k. We
found decay laws for the magnetic and kinetic energies of
t−0.7 and t−1.1 in the helical case, and t−1.1 for both in the
non-helical case. These are close to, but not identical to those
found by Biskamp & Müller (1999), and we suggested that
their relatively large initial length scale, 25% of the simula-
tion box size, might account for the difference. It should be
emphasized that we are interested in the decay only while the
scale length of the flows is less than the simulation volume,
as we want results relevant to the early Universe where there
are no boundaries.

In this paper we present a new theoretical understanding
of our numerical results for the power law behavior of the
length scale and the energies in the helical case. We show that
the key to understanding the power laws is the self-similarity
of the magnetic field, coupled with the near-invariance of the
helicity, and that the crucial parameter controlling the rate of
decay of the magnetic energy and the helicity is the magnetic
Reynolds number.

Our theoretical model has analogies with decaying fluid
turbulence in 2 dimensions, where there is also an ideal in-
variant, the kinetic energy, which plays a similar role to the
helicity in 3D. Decaying turbulence in 2D (Ting et al. 1986;
Chasnov 1997) exhibits self-similarity, and power-law decays
in the kinetic energy and enstrophy (mean squared vortic-
ity) are observed in numerical simulations at high Reynolds
number (Chasnov 1997). We reserve detailed discussion for
Sect. 5.
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2. MHD equations

The matter and radiation in the early Universe is modeled as
an isothermal compressible gas with a magnetic field, which
is governed by the momentum equation, the continuity equa-
tion, and the induction equation, written here in the form
(Waleffe 1993)

∂u
∂t

= −u · ∇u− c2
s∇ ln ρ +

J × B
ρ

+

+
µ

ρ

(
∇2u +

1
3
∇∇ · u

)
, (1)

∂ ln ρ

∂t
= −u · ∇ ln ρ − ∇ · u, (2)

∂A
∂t

= u × B + η∇2A, (3)

where B = ∇×A is the magnetic field in terms of the mag-
netic vector potential A, u is the velocity, J is the current
density, ρ is the density, µ is the dynamical viscosity, and η is
the magnetic diffusivity. In an expanding Universe the equa-
tions are identical when expressed in terms of conformally
rescaled fields B, u and dissipation parameters ν, and η. We
work in the gauge A0 = −η∇·A (Subramanian & Barrow
1998; Christensson et al. 2001) under the assumption that η
is uniform.

In Fourier space it is useful to represent the vector poten-
tial in terms of its projection onto an orthogonal basis formed
by ê+, ê− and k̂, or

Ak = A+
k ê+ + A−

k ê− + A0
kk̂. (4)

The two basis vectors ê+ and ê− can be chosen to be the
unit vectors for circular polarization, right-handed and left-
handed respectively. That is ê± = ê1 ± iê2 where ê1 and ê2

are unit vectors orthogonal to each other and to k. They are
given by ê1 = k×ẑ/|k×ẑ| and ê2 = k×(k×ẑ)/|k×(k×ẑ)|
respectively. ẑ is a reference direction.

Note that since

ik̂ × ês = skês (5)

where s = ±1, this corresponds to an expansion of the mag-
netic vector potential into helical modes.

Using these basis vectors it is easily seen that the shell-
averaged magnetic energy spectrum is

EM(k) = 2πk2〈|Bk|2〉 (6)

where the amplitude of the magnetic field is given by

|Bk|2 = (|A+
k |2 + |A−

k |2)|k|2 (7)

and the expression for the shell-averaged magnetic helicity
spectrum H(k) is

H(k) = 4πk2〈A∗
k ·Bk〉 (8)

where

A∗
k ·Bk = (|A+

k |2 − |A−
k |2)|k|. (9)

The function H(k) is bounded in magnitude by the inequality

|H(k)| ≤ 2k−1EM(k). (10)

A field which saturates the above inequality is maximally he-
lical.

3. 3D MHD simulations of decaying turbulence

We solve Eqs. (1)–(3) numerically (Brandenburg 2001) using
a variable third order Runge-Kutta timestep and sixth order
explicit centered space derivatives. All runs are performed on
a 1203 grid, using periodic boundary conditions, as is appro-
priate when modeling an infinite volume system. The average
density 〈ρ〉 = ρ0 (where the brackets denote a volume aver-
age) is conserved.

We use natural units where the speed of light is c = 1,
and fix the unit of length by setting k1 = 1, where k1 is
the smallest wave number in the simulation box. Hence the
box has size 2π. The scale factor is fixed by setting ρ0 = 1,
and B is measured in units of

√
µ0ρ0c, where µ0 is the mag-

netic permeability. We define the mean kinematic viscosity as
ν ≡ µ/ρ0. The sound speed cs = 1/

√
3, as appropriate for a

relativistic fluid.
The equations are not quite those for a relativistic gas in

the early universe (Brandenburg et al. 1996). However, we
have checked that our results change little when using the true
relativistic equations in the low velocity limit (Christensson
et al. 2001).

We take u and B to be homogeneous and isotropic Gaus-
sian random fields drawn from a power-law distribution with
a high wavenumber cut-off. The mechanisms for the produc-
tion of magnetic fields, such as the helical production me-
chanism of Joyce & Shaposhnikov (1997), are all stochastic,
homogeneous and isotropic, and have an associated length
scale k−1

c . Hence the power spectra, PM(k) ≡ 〈B∗
k · Bk〉,

and PV(k) ≡ 〈u∗
k · uk〉 can be initially modeled as

PM(k) = AMknMe−(k/kc)4 , (11)

PV(k) = AVknVe−(k/kc)
4
. (12)

Causality demands that nM ≥ 2 and nV ≥ 0 (Durrer et
al. 1998, 2003; Caprini & Durrer 2001; Caprini et al. 2003).
Note that in the plots it is the shell-integrated energy spectra,
EM,V(k) = 4πk2 × 1

2PM,V(k), which are shown.
The amplitudes A±

k can be chosen independently, pro-
vided A∗±

−k = A±
k , which is just the condition that the vector

potential be real. Therefore it is possible to adjust the ampli-
tudes |A+

k | and |A−
k | freely and in so doing obtaining a mag-

netic field with arbitrary magnetic helicity. With our method
we are able to put statistically random but maximally helical
fields in our initial conditions. In our runs with initial helicity
we take H = Hmax. We took nM,V to have the lowest values
consistent with causality, and chose kc = 30.

The initial magnetic energy was taken equal to the kinetic
energy, and had the value 5 × 10−3 in all runs. The initial
density was uniform and equal to 1. The values for ν and η
for the runs presented here are summarized in Table 1.

These values were chosen so as to maximize the Reynolds
numbers while maintaining numerical stability and resolv-
ing the dissipation scales 2π

√
νt and 2π

√
ηt. The magnetic

dissipation scale is resolved for times t > 1/N2η, where
N = 120 is the lattice size, with a similar formula for the
viscous damping scale. We start taking data at t 	 40, when
ξdiff 	 2π

√
8 for the smallest of our resistivity values, which

corresponds to k 	 30, or approximately 3 lattice points.
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Run A B C D E F G
104ν 1.0 0.7 0.7 0.7 0.7 0.7 0.7
104η 1.0 0.7 0.6 0.5 0.4 0.3 0.2
vt/ξH 0.49 0.59 0.62 0.64 0.66 0.67 0.69

103Re−1
M 9.2 5.4 4.5 3.7 3.0 2.4 1.6

Table 1. Kinematic viscosity ν, magnetic diffusivity η, vt/ξH and
the inverse of the magnetic Reynolds number ReM = ξHv/η for
our runs. ξH is the helicity length scale defined in Eq. (14) and v is
the RMS velocity, evaluated at the end of the runs (t � 80).

Examining Fig. 1 of Christensson et al. (2001), we can see
the magnetic energy spectrum turning down for k >∼ 30 at
t = 46.3, showing that the system is exhibiting Ohmic dissi-
pation as required. Under-resolved runs show ringing in real
space and the velocity and the magnetic field explode fairly
quickly, and so are in practice easy to discard.

4. Helicity conservation and magnetic energy
decay

In this section we shall take a closer look at the observed scal-
ing laws for helical magnetic fields and see if we can under-
stand them on theoretical grounds. Magnetic helicity is not
exactly conserved if η 
= 0, as it straightforward to show that

Ḣ = −2η

∫
d3 k

(2π)3
k3

(|A+
k |2 − |A−

k |2
)
. (13)

Hence, providing the power spectrum of the gauge field de-
cays faster than k−6 for k → ∞, implying that the magnetic
energy spectrum EM(k) decays faster than k−2, we can de-
fine a helicity scale ξH such that

Ḣ = −8π2η H/ξ2
H. (14)

If we assume that the evolution of ξH is described by a power
law ξH ∼ tr it is clear that the solutions to Eq. (14) are qual-
itatively different depending on the exponent r. If and only if
r = 1/2 does the magnetic helicity show a power law decay

H ∼ t−2s (15)

where

s = (ξdiff/ξH)2, (16)

in terms of the diffusion scale ξdiff = 2π
√

ηt. Addi-
tional length scales we consider are the integral scale ξI =
2π

∫
dkk−1EM(k)/

∫
dkEM(k), the relative helicity scale

ξR = π|H |/EM and the magnetic Taylor microscale ξT =
2πBrms/Jrms, where Brms and Jrms are the RMS magnetic
field and current density respectively. It is plausible that all
these scales are proportionally related and Fig. 1 shows that
this is indeed the case. A theoretical reason for this behavior
is given below.

The magnetic helicity is bounded in magnitude by the in-
equality Eq. (10). An equivalent way to express this is by

HREL ≡ π|HM|
ξIEM

≤ 1, (17)

where HREL is the relative magnetic helicity. So if the above
bound remains approximately saturated, i.e. HREL ∼ 1, and
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Fig. 1. Time evolution of the ratio of length scale to the diffusion
scale for run D. The notation is ξI/ξdiff (dashed), ξH/ξdiff (dot-
dashed), ξR/ξdiff (dotted) and ξT/ξdiff (continuous). The length
scales are defined in Eq. (14) and the subsequent text.

the helical length scale goes as ξH ∼ t1/2, the decay law for
the magnetic energy is

EM ∼ t−1/2−2s. (18)

In any case, the energy cannot decay faster than this. Given
HREL = ξR/ξI, it is seen from Fig. 1 that HREL is indeed of
order unity and does not decay markedly with time.

To characterize the decay laws we define the exponents

Q(t) = −tĖM/EM, R(t) = −tḢ/2H. (19)

In Fig. 2 we have plotted R(t) versus the quantity s(t) =
(ξdiff/ξH)2 for several runs with different initial conditions.
The time span is t ∼ 40 to ∼ 80, i.e. the last half of
the simulations. This figure tells us several things. Firstly, it
shows us that the value of R is approximately independent
of time which confirms the power law decay of H . Secondly,
Fig. 2 indicates that the quantity s is also approximately in-
dependent of time, hence reinforcing the relation ξH ∼ t1/2.
Thirdly, it seems that R and s are almost equal, and not just
proportional.

Taking the relative helicity to be constant, it follows from
the power-law behavior of H that the energy decay law is
indeed EM ∼ t−1/2−2s. In the limit of exact conservation of
magnetic helicity, s → 0, the magnetic energy must decay as
EM ∼ t−1/2.

Regarding the physical significance of the parameter s we
note that if ξH 	 vt, where v is the RMS velocity, (i.e. if
the eddy turn-over time is t) then s 	 (2π)2/ReM, where
ReM is the magnetic Reynolds number evaluated using the
helicity scale ξH. We have measured f = vt/ξH and Re−1

M

for all runs, and find that they both change by less than about
10% between t = 20 and the end of the runs at t = 80,
giving the final values in Table 1. One can see that there is a
linear relation f = f0+f1/ReM between the two, and a least
squares fit gives f0 = 0.734± 0.002, f1 = −26.6 ± 0.4.

The linear relation between f and Re−1
M implies that there

should be a linear relation between s and Re−1
M , and hence a
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Fig. 2. The quantity R(t), defined by Eq. (19) versus the quantity
s(t) = (ξdiff/ξH)2 for runs listed in Table 1. The length scales ξH

and ξdiff are defined in Eq. (14) and the subsequent text. The time
span is approximately from t � 40 to � 80, i.e. the last half of the
simulations.
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Fig. 3. Energy decay exponent Q, defined in Eq. (19), plotted against
the inverse magnetic Reynolds number Re−1

M , calculated using the
helicity scale ξH, for the last half of the runs listed in Table 1. The
fit is a quadratic least squares fit using the final values for each run.

quadratic relation between Q(t), the energy decay exponent
defined in Eq. (19), and Re−1

M . Fig. 3, showing Q and Re−1
M

for 40 < t < 80, confirms that this is indeed the case, with
asymptote at large ReM consistent with Q = 1/2. Further-
more, it also shows that both Q and Re−1

M change little over
the last half of the runs.

Let us now turn to the decay of magnetic energy which we
use to show that the characteristic length scale of the field ξ
must scale as t1/2, assuming the scaling form of the magnetic
energy power spectrum

EM(k) = ξ−qgM(kξ) (20)

found in Christensson et al. (2001). From the MHD equations
one can show

ĖM = −
∫

d3xu · (J × B) − η

∫
d3xJ2. (21)

We assume that the dissipation term, if not dominant, always
contributes a constant fraction to the energy loss. If EM(k) ∼
k−z at high k, with z < 3, then the integral is dominated by
the high-k cut-off ξ−1

diff . We do indeed see a power spectrum
with 2 < z < 3 (Christensson et al. 2001), which means
that there is a well-defined helicity decay law, and that the
energy decay is dominated by the smallest scales. Hence the
dissipative loss εM = −ĖM is then

εM ∼ ξ−q−zξ−3+z
diff . (22)

However, on integrating the energy power spectrum and then
differentiating with respect to time,

εM ∼ ξ̇ξ−q−2 ∼ t−1ξ−q−1. (23)

If we use the fact that ξdiff ∼ t1/2, we find on equating the εM

found in the two different ways, ξ−q−z ∼ t−(1+z)/2ξ−q−1,
or

ξ ∼ t1/2. (24)

In deriving the power law for the length scale of the magnetic
field, it is not necessary that the dissipative terms account for
all the energy loss, just that it scales the same way as the
energy loss and hence contributes a fixed fraction to the total.

From the scaling form of the energy power spectrum (20),
the energy decay law (18) and the length scale growth law
(24) one can easily show that a causal power spectrum with
n = 2 behaves as

EM(k, t) ∼ k4t2−2s (25)

at low k. This growth at large scales should be taken into ac-
count when calculating the strength of primordially-produced
fields, and will weaken the strong bounds derived by Durrer
et al. (1998, 2003), Caprini & Durrer (2001), Caprini et al.
(2003).

5. Comparison with 2D fluid turbulence

There is an important similarity between 3D MHD and 2D
fluid turbulence: both exhibit inverse cascade behavior asso-
ciated with the existence of ideal invariants (Biskamp 1993)
In 2D fluid turbulence the energy shows an inverse cascade
(Frisch & Sulem 1984), which is similar to the inverse cas-
cade of magnetic helicity in 3D MHD turbulence. There are
also some corresponding similarities between the decay laws
in decaying MHD turbulence and decaying 2D fluid turbu-
lence. Chasnov (1997) studied 2D velocity fields initialized
with a Gaussian distribution, whose energy spectrum E(k) is
a power law at low k and has an exponential cut-off at high
k, much as we do.

From the Navier-Stokes equation for an incompressible
fluid one can easily show

∂〈u2〉
∂t

= −2ν〈ω2〉, ∂〈ω2〉
∂t

= −2ν〈∇ω2〉, (26)
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where ω = ∇ × u is the vorticity (which is a scalar in two
dimensions, i.e. ω = ωẑ). We define two length scales from
the enstrophy, 〈ω2〉/2, and the palinstrophy, 〈∇ω2〉/2,

l2 = 〈u2〉/〈ω2〉, l2p = 〈ω2〉/〈∇ω2〉, (27)

in addition to the diffusion length scale ldiff =
√

νt. Postu-
lating power-law decays for the energy and enstrophy,

〈u2〉 ∼ tn, 〈ω2〉 ∼ tm, (28)

we find that m = n − 1, and that

n = −2νt〈ω2〉/〈u2〉 = −2(ldiff/l)2. (29)

Hence, a power-law decay again requires that l ∼ t1/2, and
in the limit that the length scale of the flow becomes large
compared with the diffusion scale, the energy is conserved.
This is analogous to the conservation of magnetic helicity in
3D MHD.

However, the Reynolds number, approximately constant
in our simulations, behaves rather differently in 2D fluid tur-
bulence. Defining Re = ul/ν, with u = 〈u2〉1/2, we find
Re ∼ t(1+2)/2, at least for large Reynolds numbers. For small
Reynolds numbers we expect Re to decay to zero through
dissipation, pointing to the existence of a critical Reynolds
number Rec, at which the system can remain for long peri-
ods, if initialized close enough to the correct value (Chasnov
1997).

The energy spectrum of decaying turbulence is also found
to be self-similar in 2D. Similar arguments to those presented
in Sect. 4 show that self-similarity again implies l ∼ t1/2.
These arguments also show that if the palinstrophy length
scale lp is of the same order of magnitude as the enstrophy
length scale l, and that enstrophy is being dissipated at the
diffusion scale ldiff , the high-k exponent of a power-law en-
ergy spectrum must be between −4 and −5. Intriguingly, the
results of Chasnov (1997) seem to indicate a power law some-
what steeper than the k−3 behavior expected in stationary tur-
bulence (Kraichnan & Nagarajan 1967; Batchelor 1969).

6. Discussion and conclusions

We have studied the evolution of decaying 3D MHD tur-
bulence involving maximally helical magnetic fields. For fi-
nite magnetic diffusivity there emerges an important quantity
s = (ξdiff/ξH)2, where ξH is the helicity scale defined in Eq.
(14), and ξdiff is the diffusion scale. We find ξH 	 vt, where
v is the RMS velocity, and hence that s ∝ Re−1

M , the mag-
netic Reynolds number evaluated using the helicity scale. The
magnetic field coherence length (which can be equally well
expressed as the integral, helicity or relative helicity scales)
goes as ξ ∼ t1/2, magnetic helicity HM ∼ t−2s and magnetic
energy EM ∼ t−1/2−2s. A corollary is that ReM is constant
once the system has reached self-similarity. Furthermore, we
can extrapolate to the limit of very large magnetic Reynolds
numbers, useful for example in the early Universe, to find H
constant and EM ∼ t−1/2.

Our model for the scaling laws should be compared with
that of Biskamp & Müller (1999). The first difference is that
they assumed that the non-linear term in the evolution equa-
tion for the magnetic field was the dominant source of energy

loss for the magnetic field, and that the magnetic field was
asymptotically the dominant contributor to the total energy
E, expressed as Γ ≡ EV/EM � 1. Then we can write

Ė ∼ Γ
1
2 E3/2/ξ, (30)

where ξ is a length scale of the magnetic field. They then
found the phenomenological relation Γ 	 E/H , which,
when coupled with E 	 H/ξ and the conservation of H ,
gives E ∼ t−1/2.

We emphasize that this model is not inconsistent with
ours. We infer EV ∼ t−1 from the relation ξH 	 vt, and
hence that Γ ∼ t−1/2+2s ∼ (E/H)t2s. The difference be-
tween Biskamp & Müller’s assumed relation Γ ∼ E/H
and ours is small at large magnetic Reynolds numbers where
s → 0. Furthermore, both approaches need to assume only
that the non-linear and dissipative terms in Eq. (21) are not
sub-dominant (rather than dominant) and it turns out that both
scale with time in the same way, as EM/t. In our simulations
dissipation typically accounted for about 60% of the energy
loss in the period t 	 40 to t 	 80, which means that the
field is not force-free.

We believe that our model has certain advantages, in that
the assumptions going into it give more physical insights than
the phenomenological (and dimensionally incomplete) rela-
tion Γ ∼ E/H . Our assumptions are that the magnetic power
spectrum exhibits a self-similar form (20), with power-law
behavior k−z at high k, that resistive dissipation occurs pre-
dominantly at the diffusion scale ξdiff , that there is a separate
helicity scale ξH, from which it follows that 2 < z < 3.
We also assume that the eddy turn-over time ξ/v is t, and
that the relative helicity is asymptotically constant, i.e. that
the energy decays as fast as possible as is consistent with he-
licity conservation. Given these assumptions, it follows that
the dissipative and non-linear terms in the magnetic energy
loss equation (21) scale the same way, and we can infer that
ξ ∼ t1/2. From this we derive a scaling law for H , finding
as expected that H is conserved in the limit of large mag-
netic Reynolds number, and with the assumption of constant
relative helicity, we obtain that E ∼ t−1/2 in the same limit.

In summary, for both 3D helical MHD and 2D fluids, the
key to understanding the free decay of turbulence is self-
similarity, coupled to a separation between the scale of the
flow and the diffusion scale.

Note added. Since the first draft of this work appeared as
astro-ph/0209119,v1, there have been several developments.
A new review of magnetic fields in cosmology has appeared
(Giovannini 2004). Using different scaling arguments, Cam-
panelli (2004) has rederived our scaling laws for decaying he-
lical turbulence, and extended the analysis to the non-helical
case, where the ideal limit has EM ∝ t−1, EV ∝ t−1, and
ξ ∝ t1/2. Extensive 3D numerical simulations, including the
interesting case of Prandtl number larger than unity, have
been carried out by Banerjee & Jedamzik (2003, 2004). The
authors did not seem to be aware of our work or of Campan-
elli (2004) and did not attempt to analyse the decay of the
helicity, kinetic or magnetic energies in its light. However,
examination of their Figs. 1 and 7 in the later paper show de-
cay laws close to t−0.5 and t−1 for the helical and non-helical
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cases respectively (with Prandtl number unity). They do not
quote Reynolds numbers for the simulations so an exact com-
parison cannot be made. There has also been further work
on effects of primordial fields on the CMB (Kosowsky et al.
2005; Kahniashvili & Kahniashvili 2005) and on the evolu-
tion of magnetic fields in the post-recombination era (Sethi &
Subramanian 2004).
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