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ABSTRACT

We study numerically the dependence of the critical magnetic Reynolds number for the turbulent small-Rmc

scale dynamo on the hydrodynamic Reynolds number . The turbulence is statistically homogeneous, isotropic,Re
and mirror-symmetric. We are interested in the regime of low magnetic Prandtl number , whichPmp Rm/Re! 1
is relevant for stellar convective zones, protostellar disks, and laboratory liquid-metal experiments. The two
asymptotic possibilities are as (a small-scale dynamo exists at low ) orRm r const Rer � Pm Rm /Repc c

as (no small-scale dynamo exists at low ). Results obtained in two independent sets ofPm r const Rer � Pmc

simulations of MHD turbulence using grid and spectral codes are brought together and found to be in quantitative
agreement. We find that at currently accessible resolutions, grows with with no sign of approaching aRm Rec

constant limit. We reach the maximum values of for . By comparing simulations withRm ∼ 500 Re∼ 3000c

Laplacian viscosity, fourth-, sixth-, and eighth-order hyperviscosity, and Smagorinsky large-eddy viscosity, we
find that is not sensitive to the particular form of the viscous cutoff. This work represents a significantRmc

extension of the studies previously published by Schekochihin et al. (2004a) and Haugen et al. (2004a) and the
first detailed scan of the numerically accessible part of the stability curve .Rm (Re)c

Subject headings: magnetic fields — methods: numerical — MHD — turbulence

Online material: color figures

The magnetic Prandtl number , which is the ratio of thePm
kinematic viscosity to the magnetic diffusivity, is a key param-
eter of MHD turbulence. In fully ionized plasmas,Pm≈

, whereT is the temperature in kelvins andn�5 42.6# 10 T /n
the ion number density in units of cm�3. In hot rarefied plasmas,
such as the warm and hot phases of the interstellar medium or
the intracluster medium, . In contrast, in the Sun’sPmk 1
convective zone, to 10�4, in planets, ,�7 �5Pm∼ 10 Pm∼ 10
and in protostellar disks, while estimates vary, it is also believed
that (e.g., Brandenburg & Subramanian 2005). AllPmK 1
these astrophysical bodies have disordered fluctuating small-
scale magnetic fields and, in some cases, also large-scale
“mean” fields. As they also have large Reynolds numbers and
large-scale sources of energy, they are expected to be in a
turbulent state. It is then natural to ask if their magnetic fields
are a product of turbulent dynamo.

To be precise, there are two types of dynamo. The large-
scale ormean field dynamo generates magnetic fields at scales
larger than the energy-containing scale of the turbulence, as is,
for example, the case in helical turbulence.The small-scale
dynamo amplifies magnetic fluctuation energy below the en-
ergy-containing scale of the turbulence. The small-scale dy-
namo is due to random stretching of the magnetic field by
turbulent motions and does not depend on the presence of
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helicity. Mean-field dynamos typically predict field growth on
timescales associated with the energy-containing scale (or
longer), while the small-scale dynamo amplifies magnetic en-
ergy at the turbulent rate of stretching. Thus, the small-scale
dynamo is usually a much faster process than the mean-field
dynamo, and the large-scale field produced by the latter can
be treated as approximately constant on the timescale of the
small-scale dynamo. The mean-field dynamo (or, more gen-
erally, a large-scale magnetic field of any origin) also gives
rise to small-scale magnetic fluctuations because of the tur-
bulent shredding of the mean field: this leads to algebraic-in-
time growth of the small-scale magnetic energy—again, a
slower generation process than the exponential-in-time small-
scale dynamo.

In the systems with , the existence of the small-scalePmk 1
dynamo is well established numerically and has a solid theo-
retical basis (see Schekochihin et al. 2004b for an account of
the relevant theoretical and numerical results and for a long list
of references). The situation is much less well understood for
the case of small . It has been largely assumed that a small-Pm
scale dynamo should be operative in this regime as well. For
example, the presence of large amounts of small-scale magnetic
flux in the solar photosphere (e.g., Title 2000) has been attributed
to small-scale dynamo action. This appeared to be confirmed by
numerical simulations of the MHD turbulence in the convective
zone (Cattaneo 1999; Cattaneo et al. 2003; Nordlund 2003).
However, such simulations are usually done at (PmpPm≥ 1
5 in Cattaneo’s simulations). Previous attempts to simulate MHD
turbulence in various contexts with found achievingPm! 1
dynamo in this regime much more difficult than forPm≥ 1
(Nordlund et al. 1992; Brandenburg et al. 1996; Nore et al. 1997;
Christensen et al. 1999; Maron et al. 2004). A systematic nu-
merical investigation of the effect of on the efficiency of thePm
small-scale dynamo was carried out by Schekochihin et al.
(2004a), who found that the critical magnetic Reynolds number

required for the small-scale dynamo to work increasesRmc

sharply at . An independent numerical study by HaugenPm! 1
et al. (2004a) confirmed this result.
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Fig. 1.—Sketch of the two possible shapes of the stability curve vs.Rmc

for the small-scale dynamo. [See the electronic edition of the Journal forRe
a color version of this figure.]

What are the basic physical considerations that should guide
us in interpreting this result? First of all, let us stress that all
working numerical small-scale dynamos are of the large-Pm
kind (the case of is nonasymptotic, but its propertiesPmp 1
that emerge in numerical simulations suggest that it belongs to
the same class). Two essential features of the large- dynamosPm
are (1) the scale of the velocity field is larger than the scale
of the magnetic field, and (2) the velocity field that drives the
dynamo is spatially smooth and locally looks like a random
linear shear, so the dynamo is due to exponential-in-time sep-
aration of Lagrangian trajectories and the consequent expo-
nential stretching of the magnetic field. The basic physical
picture of such dynamos (Zeldovich et al. 1984; see discussion
in Schekochihin et al. 2004b; see also a review of an alternative
but complementary approach by Ott 1998) explicitly requires
these two conditions to hold. The map dynamos and the dy-
namos in deterministic chaotic flows that were extensively stud-
ied in the 1980s–1990s (see review by Childress & Gilbert
1995) are all of this kind. The numerical dynamos with

(the first due to Meneguzzi et al. 1981) are of this kindPm≥ 1
as well because they are driven by the spatially smooth viscous-
scale turbulent eddies, which have the largest turnover rate.

When with both and , the char-PmK 1 Rmk 1 Rek 1
acteristic scale of the magnetic field lies in the inertial range.lB

For Kolmogorov turbulence, a simple estimate givesl ∼B

, where is the energy-containing scale. As the vis-�3/4Rm l l0 0

cous scale is , we have . In a rough�3/4l ∼ Re l l K l K ln 0 0 B n

way, one can think of the turbulent eddies at scales asl 1 lB

stretching the field at the rate and of the eddies at scalesu /ll

as diffusing the field with the turbulent diffusivity . Inl ! l u lB l

Kolmogorov turbulence, , so both the dominant stretch-1/3u ∼ ll

ing and the dominant diffusion are due to the eddies at scale
. The resulting rates of stretching and of turbulent dif-l ∼ lB

fusion are of the same order, so the outcome of their competition
cannot be determined on this qualitative level (Kraichnan &
Nagarajan 1967). An important conclusion, however, can be
drawn. If the bulk of the magnetic energy is at the scale , thelB

existence of the dynamo is entirely decided by the action of
the velocities at the scale . Then it cannot matter where inlB

the inertial range lies. But , so the value of�3/4l l /l ∼ PmB B n

does not matter as long as it is asymptotically small. There-Pm
fore, there are two possibilities: either there is a dynamo at low

and as or there is not and there existsPm Rm r const Rer �c

a finite as . Strictly speaking,Pm p Rm /Rer const Rer �c c

the third possibility is that , wherea is some frac-aRm ∝ Rec

tional power, but this can only happen if the intermittency of
the velocity field (non–self-similarity of the inertial range) is
important for the existence of the dynamo.9

The two possibilities identified above are illustrated in Figure
1. Several authors (Vainshtein 1982; Rogachevskii & Kleeorin
1997; Boldyrev & Cattaneo 2004) showed that, given certain
reasonable assumptions, the first possibility ( ) isRm r constc

favored by the Kazantsev (1968) model: the small-scale dy-
namo in a Gaussian white-in-time velocity field. In particular,
Boldyrev & Cattaneo (2004) found that the Kazantsev model
gives that is roughly 10 times larger in the regimeRm PmK 1c

than in the regime (Rogachevskii & Kleeorin 1997Pmk 1
predict , which is consistent with that). ThisRm ∼ 400c

9 The role of coherent structures can be prominent in quasi–two-dimensional
dynamos (three-component velocity field depending on two spatial variables),
where the inverse cascade characteristic of the two-dimensional turbulence
gives rise to persistent large-scale vortices, which drive the dynamo (Smith
& Tobias 2004).

prompted them to declare the issue settled on the grounds that
the failure of the dynamo in numerical experiments at current
limited resolutions is compatible with such an increase in

. However, the dynamo in the Kazantsev modelRm PmK 1c

is a quantitative mathematical consequence of the model, and
it is not known if and how it is affected by such drastic and
certainly unrealistic assumptions as the Gaussian white-noise
statistics for the velocity field.10 The existence of a dynamo in
real turbulence is also a quantitative question (see discussion
above), so it cannot be decided by a model that is not a quan-
titative approximation of turbulence.

Thus, the issue cannot be considered settled until definitive
numerical evidence is produced. This is an especially hard task
because we do not know just how high a magnetic Reynolds
number we must achieve in order to clearly see the distinction
between and . In this Letter, weRm r const Rm /Rer constc c

have collected numerical results from two independent com-
putational efforts: simulations using an incompressible spectral
MHD code (see code description in Maron & Goldreich 2001
and Maron et al. 2004) and weakly compressible simulations
using a grid-based high-order MHD code (the Pencil Code11).

The equations we solved numerically (in a triply periodic
cube) are

∇p (� � B) � B
� u � u · �u p � � � F � f, (1)t visc

r 4pr

2� B p � � (u � B) � h∇ B, (2)t

where is the velocity and is the magnetic field (the Pencilu B
Code, in fact, solves the evolution equation for the vector po-
tential and then computes ). All runs reportedA B p � � A
below are in the kinematic regime, , so the LorentzFBF K FuF
force in equation (1) plays no role. Turbulence is driven by a
random white-in-time nonhelical body force concentrated atf

10 Vainshtein & Kichatinov (1986) argue that the equations that arise from
the Kazantsev model are valid for nonwhite velocity fields ifn-point joint
probability density functions of Lagrangian displacements satisfy Fokker-
Planck equations with some diffusion tensor. They further assume (on dimen-
sional grounds) that this diffusion tensor scales as the scale-dependent turbulent
diffusion∼ . This is, in fact, a closure scheme that we believe to be equivalentu ll

to Kazantsev’s zero-correlation-time theory.
11 See http://www.nordita.dk/software/pencil-code.
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Fig. 2.—Dependence of on . “JLM” refers to simulations done withRm Rec

the incompressible spectral code written by J. L. Maron: runs with Laplacian
viscosity and fourth-, sixth-, and eighth-order hyperviscosity (resolutions 643–
2563). In this set of simulations, hyperviscous runs were done at the same
values ofh as the Laplacian runs, so the difference between the results for
these runs is nearly imperceptible. “PENCIL” refers to weakly compressible
simulations done with the Pencil Code: runs with Laplacian viscosity, sixth-
order hyperviscosity, and Smagorinsky large-eddy viscosity (resolutions 643–
5123). [See the electronic edition of the Journal for a color version of this
figure.]

, where is the wavenumber associated with the boxk p k k0 0

size. The (hyper)viscous force is

1 2 n�1ˆF p � · 2 r n (�∇ ) S , (3)[ ]G Hvisc n
r

where is the fluid viscosity andnn

1 �u �u 1i jS p � � d � · u. (4)ij ij( )2 �x �x 3j i

In the spectral simulations, the density , and the incom-r p 1
pressibility constraint is enforced exactly via the� · u p 0
determination of the pressurep. The grid simulations are iso-
thermal: with sound speed , and the density2p p c r c p 1s s

satisfies

� r � � · (ru) p 0. (5)t

We stay in the weakly compressible regime of low Mach num-
bers and (angular brackets2 1/2 �1M p Au S /c ∼ 10 r � ArS p 1s

denote volume averages). Some numerical results on the onset
of dynamo action at larger Mach numbers are given in Haugen
et al. (2004b).

The dissipation in the induction equation (2) is always La-
placian with magnetic diffusivityh (we choose not to tamper
with magnetic dissipation because we are interested in the sen-
sitive question of field growth or decay). With regard to the
viscous dissipation, we perform three kinds of simulations:

1. Simulations with Laplacian viscosity: in equa-n p 1
tion (3).

2. Simulations with fourth-, sixth-, and eighth-order hyper-
viscosities: , 3, and 4, respectively, in equation (3).n p 2

3. Large-eddy simulations (LES) with the Smagorinsky effec-
tive viscosity (e.g., Pope 2000): in equation (3), , andn p 1 n1

is replaced by , whereD is the mesh size
2 1/2ˆ ˆn p C D 2S : S( ) ( )S S

and is an empirical coefficient.C p 0.2S

The magnetic Reynolds number is defined by Rmp
, where is the box wavenumber (the smallest2 1/2Au S /k h k0 0

wavenumber in the problem). For the runs with Laplacian
viscosity ( ), the hydrodynamic Reynolds number isn p 1

. For hyperviscous runs and for LES, we2 1/2Rep Au S /k n0 1

define by replacing with the effective viscosity:Re n1

2ˆ ˆn p e/A2S : SS p e/AF�uF S (6)eff

(the second expression is for the spectral simulations, where
exactly). Here is the total injected power� · u p 0 e p A f · uS

and is equal to the total energy dissipation. As the forcing isf
white in time, ; indeed, given i j ′ ′e p const A f (t, x)f (t , x )S p

, it is easy to show that .1′ ij ′ iid(t � t )e (x � x ) e p e (0)2

The results of all our simulations are presented in Figure 2,
where is plotted versus . Each value of was com-Rm Re Rmc c

puted by interpolating between least-squares–fitted growth/de-
cay rates of a growing and a decaying run. Error bars are based
on and for these pairs of runs. The only exception isRm Re
the point enclosed in a circle, which corresponds to

for a run that appeared to be marginal (in this case(Rm, Re)
we could not afford the resolution necessary to achieve a de-
caying case). The run times in all cases were long enough for
the least-squares–fitted growth rates to stop changing appre-

ciably (typically this required about 20 box-crossing times, but
cases close to marginal needed longer running times).

We see that there is good agreement between the results for
runs with different forms of viscous dissipation; this confirms
the natural assumption that the field-generation properties of
the turbulence at low are not sensitive to the way thePm
velocity spectrum is cut off. It is also encouraging that results
from two very different codes are in quantitative agreement.

Our previous studies (Schekochihin et al. 2004a; Haugen et
al. 2004a) had the maximum value of . The resultsRm ∼ 200c

reported here raise it to∼500, with the corresponding values
of around 0.15. While a roughly 10-fold increase withPmc

respect to for the dynamo has now been achieved,Rm Pmp 1c

there is thus far no sign of reaching an asymptoticallyRmc

constant value. This said, the current resolutions are clearly
still insufficient to make a definitive judgement, although we
are now very close to values of predicted by the theoriesRmc

based on the Kazantsev model (Rogachevskii & Kleeorin 1997;
Boldyrev & Cattaneo 2004)—whether or not the model yields
quantitatively correct predictions should become clear in the
near future.

The numerical results reported above concerned the depen-
dence for the turbulent small-scale dynamo, i.e., theRm (Re)c

ability of turbulent velocity fluctuations to amplify magnetic
energy at scales smaller than the energy-containing scale of the
turbulence. The dependence is also an interestingRm (Re)c

issue for other kinds of dynamo.
If the velocity field is non–mirror-symmetric, it can often

drive the mean-field dynamo (MFD), which means the growth
of the magnetic field at scales larger than the energy-containing
scale of the turbulence (Krause & Ra¨dler 1980). This large-
scale field generated by the MFD, just like a mean field imposed
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externally, can induce small-scale magnetic fluctuations as it
is shredded by the turbulence, so the total field has both a mean
(large-scale) and a fluctuating component. In many cases, the
breaking of the mirror symmetry leads to a nonzero value of
the net helicity (the average is over all scalesAu · (� � u)S ( 0
that are smaller than the energy-containing scale of the tur-
bulence,not over the entire volume of the system). The mean-
field generation is then referred to as thea-effect. The stability
curve for thea-effect is different than for the small-Rm (Re)c

scale dynamo: it is essentially a condition for at least one
unstable large-scale mode to fit into the system. In a numerical
study done with the same code as the grid simulations reported
above but with fully helical random forcing, Brandenburg
(2001) found much lower values of than for the small-Rmc

scale dynamo and very little dependence of on forRm Pmc

.Pm≥ 0.1
A nonzero net helicity is not a necessary condition for the

MFD (e.g., Gilbert et al. 1988). In fact, it has been suggested
recently by Rogachevskii & Kleeorin (2003) that the MFD can
be driven simply by the presence of a constant mean velocity
shear (shear-current ord-effect)—a very generic possibility of
obvious relevance to systems with mean flows. Mean flows are
present in many astrophysical cases and in all current laboratory
dynamo experiments (Gailitis et al. 2004; Mu¨ller et al. 2004;
Bourgoin et al. 2002; Lathrop et al. 2001; Forest et al. 2002).
A mean flow can be a dynamo in its own right: an MFD (field
growth at scales above the flow scale) and, if the flow has
chaotic trajectories in three dimensions, also a small-scale dy-
namo (field growth at scales∼Rm�1/2 times the scale of the
flow; see Childress & Gilbert 1995—as noted above, small-
scale dynamos in deterministic chaotic flows are equivalent to
the large- case). When is large, the energy of the tur-Pm Re
bulent velocity fluctuations is comparable to the energy of the
mean flow. The critical required for field growth will haveRm
some dependence on , which reflects the effect of the tur-Re
bulence on the structure of the mean flow and/or on the effective
value of the magnetic diffusivity (theb-effect; see Krause &

Rädler 1980). This dependence was the subject of two recent
numerical studies: of the dynamo in a turbulence with a con-
stant Taylor-Green forcing by Ponty et al. (2005) and of the
Madison dynamo experiment (propeller driving in a spherical
domain) by Bayliss & Forest (2004). The dependence ofRe

that emerges from such simulations is distinct from thatRmc

for a pure small-scale dynamo. Indeed, Y. Ponty et al. (2005,
private communication) have shown that, in the limit of large

, the value of in their simulations tends to a constantRe Rmc

that coincides with calculated for the mean flow alone,Rmc

i.e., for the velocity field with fluctuations removed by time
averaging. In contrast, the subject of the present Letter has
been the possibility of a small-scale dynamo driven solely by
turbulent fluctuations, in the absence of a mean flow. The im-
portance of this possibility or lack thereof is that such a dy-
namo, if it exists, occurs at the turbulent stretching rate asso-
ciated with the resistive scale. This is much faster (by a factor
of ∼Rm1/2; see discussion above) than the growth rate of any
MFD or of a small-scale dynamo associated with the mean
flow, i.e., than the stretching rate at the energy-containing scale
or at the scale of the mean flow.
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