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Direct and large eddy simulations of hydrodynamic and hydromagnetic turbulence have been
performed in an attempt to isolate artifacts from real and possibly asymptotic features in the energy
spectra. It is shown that in a hydrodynamic turbulence simulation with a Smagorinsky subgrid scale
model using 5123 mesh points, two important features of the 40963 simulation on the Earth
simulator �Y. Kaneda et al., Phys. Fluids 15, L21 �2003�� are reproduced: a k−0.1 correction to the
inertial range with a k−5/3 Kolmogorov slope and the form of the bottleneck just before the
dissipative subrange. Furthermore, it is shown that, while a Smagorinsky-type model for the
induction equation causes an artificial and unacceptable reduction in the dynamo efficiency,
hyper-resistivity yields good agreement with direct simulations. In the large-scale part of the inertial
range, an excess of the spectral magnetic energy over the spectral kinetic energy is confirmed.
However, a trend toward spectral equipartition at smaller scales in the inertial range can be
identified. With magnetic fields, no explicit bottleneck effect is seen. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2222399�
I. INTRODUCTION

In astrophysical magnetohydrodynamic �MHD� turbu-
lence, e.g., in stars, accretion disks, the interstellar medium,
and the intergalactic medium, the magnetic and fluid Rey-
nolds numbers are very large. It is therefore of great interest
to perform simulations with as large a Reynolds number as
possible. However, the goal of reaching astrophysical values
of the magnetic Reynolds numbers is still far out of reach.
The best we can hope for, therefore, is to find asymptotic
trends such that one can extrapolate into the very large Rey-
nolds number regime. However, even that is not really pos-
sible as the following estimate shows. As a rule of thumb, for
a purely hydrodynamical simulation one needs at least an
order of magnitude to resolve the dissipative subrange, one
order of magnitude for the bottleneck �a shallower spectrum
just before the dissipative subrange�, and almost an order of
magnitude for the forcing to become isotropic. This leaves
basically nothing for the inertial range—even for simulations
with 10243 mesh points. It is therefore only with simulations
as big as 40963 mesh points1 that one begins to see an inertial
range.

In MHD turbulence without imposed field, i.e., when the
field is self-consistently generated by dynamo action, the
magnetic energy spectrum peaks at a wave number that is
larger by a certain factor than the wave number of the kinetic
energy spectrum.2 This factor has been related to the value of
the critical magnetic Reynolds number for dynamo action,

a�Electronic mail: Nils.E.Haugen@sintef.no
b�
Electronic mail: brandenb@nordita.dk

1070-6631/2006/18�7�/075106/7/$23.00 18, 07510

ownloaded 07 Aug 2006 to 130.225.213.134. Redistribution subject to
ReM,crit. Specifically, kmag�kkinReM,crit
1/2 has been suggested,3

where kmag and kkin are the wave numbers of the peaks of the
magnetic and kinetic energy spectra, respectively, and
ReM,crit�35.4 This leads to the conclusion that in MHD tur-
bulence one needs an even larger Reynolds number than for
purely hydrodynamical turbulence in order to have a chance
to see an inertial range.

What has been found so far is that there is a certain
range, kmag�k�kd, where the spectral magnetic energy ex-
ceeds the spectral kinetic energy,2,4 i.e., there is spectral su-
perequipartition. While spectral superequipartition is not a
priori implausible, it is curious that this has not been seen in
simulations with an imposed field. Such simulations with
imposed field have recently been performed5–7 to verify the
Goldreich-Sridhar theory of MHD turbulence.8 More system-
atic studies of the resulting energy spectra as a function of
the imposed field strength have been carried out,9 and it was
found that there is spectral equipartition only when the im-
posed field, B0, is of equipartition strength, i.e., B0

2

��0�0urms
2 , where �0 is the vacuum permeability, �0 is the

mean density, and urms is the rms velocity. If B0 is larger, the
magnetic spectrum is always in subequipartition.

The case of an imposed field is usually thought to be
representative of the conditions deep in the inertial range.
Thus, the observed superequipartition does seem to be in
conflict with this result. This is also supported by the well
known fact that in the solar wind, kinetic and magnetic en-
ergy spectra follow a power law with an −5/3 exponent over
several decades.10 In this work, we want to elucidate this
puzzle by comparing direct simulations with simulations us-

ing hyperviscosity and hyper-resistivity, as well as Smagor-
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insky subgrid scale �SGS� modeling, in order to imitate
larger Reynolds numbers. For recent comparisons between
direct and Smagorinsky SGS simulations; see Refs. 11–14,
where also decaying turbulence is considered, albeit only at a
resolution of 643 mesh points. This was too small to discuss
the shape of the energy spectra. Recent simulations using
hyperviscosity have shown that at large enough resolution
�5123 mesh points�, the same k−0.1 correction to the Kolmog-
orov k5/3 inertial range spectrum is seen15 as in the 40963

mesh points direct simulations of Kaneda et al.1 In the
present paper, we compare these two simulations also with
new Smagorinsky SGS models.

We need to emphasize that throughout this paper, we
only deal with the case of “nonhelical” turbulence, i.e.,
��u ·��u	� is negligible �or small compared with kf�u2	,
where kf is the typical forcing wave number�. In some sense,
the case of finite helicity may be regarded as more typical.16

However, with helicity there is a whole range of new prob-
lems that need to be addressed. For example, when using
hyper-resistivity the magnetic field would saturate at an arti-
ficially enhanced value when there is helicity.17 These helic-
ity effects are now fairly well understood �see Ref. 18 for a
review�, but in the present paper we discard these complica-
tions.

II. METHOD

We solve the compressible nonideal MHD equations,

Du

Dt
= −

1

�
� p +

J � B

�
+ f + Fvisc, �1�

where D/Dt=� /�t+u ·� is the advective derivative, p is the
pressure, � is the density, f is an isotropic random nonhelical
forcing function with power in a narrow band of wave num-
bers, B is the magnetic field, J=��B /�0 is the current
density, and Fvisc is the viscous force �see below�. We con-
sider an isothermal gas with constant sound speed cs, so that
the pressure is given by p=cs

2� and �−1� p=cs
2� ln �. The

density obeys the continuity equation,

D ln �

Dt
= − � · u . �2�

The induction equation is solved in terms of the magnetic
vector potential A,

�A

�t
= u � B − Eres, �3�

where B=��A is the magnetic flux density and Eres is the
electric field due to resistive effects �see below�.

In the following, different combinations of expressions
for Fvisc and Eres have been explored. In all simulations,
these expressions are of the general form

Fvisc =
1

�
� · �2��S�, Eres = ��0J , �4�
where
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Sij =
1

2

 �ui

�xj
+

�uj

�xi
−

2

3
�ij � · u� �5�

is the traceless rate of strain tensor. In a direct simulation, we
simply use constant values of � and �, i.e.,

� = �0, � = �0 �direct� . �6�

In the case of a Smagorinsky SGS model, we use �=�S and
�=�S �without constant contributions� where

�S = �CK��2�2S2, �S = �CM��2�J2�Smagorinsky� , �7�

where CK is the Smagorinsky constant, CM is the magnetic
Smagorinsky constant, and � is the filter size, which we have
set equal to the mesh size. This version of the magnetic
Smagorinsky SGS model has been studied earlier; see, e.g.,
Ref. 11. We choose CK=0.2, but we vary the value of CM. In
simulations with hyperviscosity, we replace

��S → �0�3�
4S, �J → �3�

4J �hyper� �8�

in Eq. �4�, and use constant coefficients, referred to as �
=�3 and �=�3. Following Ref. 15, we use constant dynami-
cal hyperviscosity, �0�3=const, in which case a positive vis-
cous heating term can be defined.

In the present work, we only consider cases with small
Mach number. Compressibility effects are therefore
unimportant,19 and the continuity equation �2� can therefore
be solved without additional subgrid scale terms. We note,
however, that by defining suitable averages �Favre filtering;
see Ref. 20�, the continuity does formally retain its original
form. Likewise, in strongly compressible flows a turbulent
bulk viscosity will be important for smearing out shocks;
see, e.g., Ref. 21. Again, this is neglected, because we are
only interested here in nearly incompressible flows.

It is customary to quote Reynolds numbers based on the
Taylor microscale 	=�5urms/
rms, where 
rms is the rms
vorticity, and on the one-dimensional velocity dispersion
u1D, where u1D

2 =urms
2 /3. Hence, we define the fluid and mag-

netic Reynolds numbers for a direct numerical simulation as

Re	 =
u1D	

�
, ReM =

u1D	

�
, �9�

respectively. Their ratio is the magnetic Prandtl number,
PrM =� /�=ReM /Re, which is unity for all runs. For the hy-
perviscous and Smagorinsky cases, we define the Taylor mi-
croscale Reynolds number, in analogy to earlier work,15 as

Re	 = Re	,0
 kd,eff

kf
�2/3

, �10�

where we have defined the effective Kolmogorov wave num-
ber, kd,eff, whose value is found empirically by making the
inertial ranges of the spectra overlap as best as possible, and
Re	,0 is a calibration parameter. In an earlier paper,15 the
calibration parameter was found to be Re	,0�7.5, which is
also the value chosen here.

We use nondimensional quantities by measuring length
in units of 1 /k1 �where k1=2� /L is the smallest wave num-

ber in the box of size L�, speed in units of the isothermal

 AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



075106-3 Hydrodynamic and hydromagnetic energy spectra Phys. Fluids 18, 075106 �2006�

D

sound speed cs, density in units of the initially uniform value
�=�0, and magnetic field in units of ��0�0cs

2�1/2.
We use periodic boundary conditions in all three direc-

tions for all variables. This implies that the mass in the box is
conserved, i.e., ��	=�0, where angular brackets denote vol-
ume averages. We adopt a forcing function f of the form

f�x,t� = RNfk�t� exp�ik�t� · x + i��t��� , �11�

where x is the position vector, and R indicates the real part.
The wave vector k�t� and the random phase −���t���
change at every time step, so f�x , t� is �-correlated in time.
For the time-integrated forcing function to be independent of
the length of the time step �t, the normalization factor N has
to be proportional to �t−1/2. On dimensional grounds, it is
chosen to be N= f0cs��k�cs /�t�1/2, where f0 is a nondimen-
sional forcing amplitude. The value of the coefficient f0 is
chosen such that the maximum Mach number stays below
about 0.2. Empirically, this is achieved by taking f0=0.02 for
all runs discussed below.

At each time step, we select randomly one of many pos-
sible wave vectors in a certain range around a given forcing
wave number. The average wave number is referred to as kf.
We force the system with nonhelical transversal waves,

fk = �k � e�/�k2 − �k · e�2, �12�

where e is an arbitrary unit vector that is real and not aligned
with k; note that �fk�2=1. For all simulations we use the
PENCIL CODE �http://www.nordita.dk/software/pencil-code�,
which is a grid-based high-order code �sixth order in space
and third order in time� for solving the compressible hydro-
magnetic equations.

III. RESULTS

In an earlier paper,15 we showed that although hypervis-
cosity does cause an artificially enhanced bottleneck effect in
purely hydrodynamic turbulence, it does not affect the iner-
tial range if the resolution is large enough. Instead, hypervis-
cous simulations with 5123 mesh points reproduce the k−0.1

correction with wave number k. This was first found by
Kaneda et al.1 We begin by comparing these results with
simulations where Smagorinsky SGS viscosity is used.

A. Hydrodynamic turbulence

In Fig. 1, we compare kinetic energy spectra of runs
using ordinary viscosity �40963 mesh points, solid line� by
Kaneda et al.1 with runs using Smagorinsky viscosity �5123

mesh points, dashed line� and runs using hyperviscosity
�5123 mesh points, dash-dotted line�. Since the simulation
with 40963 mesh points and ordinary viscosity is the largest
direct simulation to date, we use it as our benchmark. The
spectra for the runs with hyperviscosity and Smagorinsky
viscosity have been scaled by empirically determined factors
1.1 and 0.95, respectively, so as to make the spectra overlap
within the inertial range. However, these scaling factors are
still well within the range over which the spectra fluctuate in
time.

We see that at all scales �including those of the bottle-

neck� the simulation with Smagorinsky SGS modeling is sur-
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prisingly similar to the benchmark result. Furthermore, we
see that at large scales and in the inertial range the run with
hyperviscosity agrees well with the benchmark result. The
bottleneck is, however, greatly exaggerated in height, even
though the width is the same.15

Most important is perhaps the k−0.1 correction to the
usual k−5/3 inertial range scaling. The same correction is seen
in all three simulations. The k−0.1 correction is stronger than
the usual intermittency correction predicted by the She-
Leveque model,22 which would only predict a k−0.03 correc-
tion. This strong correction may be an artifact of the absence
of a well resolved subinertial range.23 This would be in some
ways just opposite to the emergence of a shallower spectrum
near the dissipative cutoff wave number if the dissipative
subrange is not well resolved.24

The only major discrepancy between the Smagorinsky
and direct simulations is the lack of a sharp decline of the
spectral energy toward the right of the bottleneck. In order to
understand this difference, we must first of all recall that our
Smagorinsky simulation did not have any explicit �constant�
component at all ��0=0�. Therefore, if the Smagorinsky
model were a perfect subgrid scale model, it would represent
the infinite Reynolds number case. The bottleneck would
then be far to the right and outside the graph, so one would
only have a pure Kolmogorov spectrum. The reason for the
bottleneck in the Smagorinsky case is therefore related to the
fact that we are still working here with an ordinary diffusion
operator using just a variable viscosity coefficient. Therefore,
the standard explanation for the bottleneck still applies; it is
caused by strongly nonlocal interactions in wave-number
space, corresponding to wave vectors forming strongly elon-
gated triangles. Close to the viscous cutoff wave number,
these interactions prevent the disposal of energy from the
end of the inertial range, which then causes the pileup of
energy near the dissipation wave number.24 The same argu-
ment also applies to the current case of Smagorinsky viscos-
ity. In conclusion, the reason for the discrepancy between
direct and Smagorinsky simulations to the right of the bottle-

FIG. 1. Comparison of energy spectra of the 40963 mesh points run1 �solid
line� and 5123 mesh points runs with hyperviscosity �dash-dotted line� and
Smagorinsky viscosity �dashed line�. �In the hyperviscous simulation, we
use �=�3=5�10−13.� The Taylor microscale Reynolds number of the
Kaneda simulation is 1201, while the hyperviscous simulation of Ref. 15 has
an approximate Taylor microscale Reynolds number of 340Re	730. For
the Smagorinsky simulation, the value of Re	 is slightly smaller.
neck is that the Smagorinsky model tries to maintain pure
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Kolmogorov scaling everywhere, but fails to do so just be-
fore the cutoff wave number imposed by the finite mesh
resolution.

B. Hydromagnetic turbulence

For the MHD case, we use a 10243 mesh points simula-
tion with ordinary viscosity as our benchmark.2 We compare
with the SGS model where Smagorinsky schemes are used
both for the velocity and the magnetic fields. In the follow-
ing, we refer to this as Method I. We also compare with cases
where we use hyper-resistivity. In the momentum equation,
we use either the usual Smagorinsky SGS model, which is
referred to as Method II, or we use hyperviscosity �Method
III�. The results of these three methods are compared with
those of direct simulations �Method O�. In summary, the dif-
ferent methods considered here are

Method I: �S and �S �full Smagorinsky� ,

Method II: �S and �3 �Smagorinsky/hyper� ,

Method III: �3 and �3 �full hyper� ,

TABLE I. Summary of the most important runs. The meaning of the entries
in the columns for � and � depends on the entry for “Method,” as explained
in the text. In the Smagorinsky cases, ordinary viscosity is neglected, i.e.,
�=0. Except for Method O, the resulting values of kd,eff, and hence also of
Re	, are uncertain within �40%.

Run Res. Method � � kd,eff Re	

A 10243 O 8�10−5 8�10−5 143 200a

B1 1283 II 0 1�10−9 180 180

B2 2563 II 0 3�10−11 330 270

B3 5123 II 0 5�10−13 700 450

C1 1283 III 1�10−9 1�10−9 180 180

C2 2563 III 3�10−11 3�10−11 330 270

C3 5123 III 5�10−13 5�10−13 700 450

aNote that in Ref. 25, the value of Re	 was based on the three-dimensional
velocity dispersion, so the nonmagnetic equivalent of run A was quoted with
Re	=350.

FIG. 2. Total magnetic and kinetic energies for runs with 1283 �solid line�
and 643 �dashed line� mesh points and Smagorinsky diffusion and resistivity
�Method I� compared with a direct simulation with 10243 mesh points
�Method O, horizontal dotted lines�. Note the lack of convergence for any

value of CM.
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Method O: �0 and �0 �benchmark� .

We have listed the relevant runs in Table I.
In Fig. 2, we show that the agreement between the re-

sults of Method I and the benchmark is poor. The dynamo-
generated magnetic energy remains far below the benchmark
target. The largest value of the magnetic energy is reached
for CM =0.3, but even then it is only about 30% of the target
value.

In order to understand the reason for the poor perfor-
mance of the magnetic Smagorinsky model �Method I�, we
plot in Fig. 3 kinetic and magnetic energy spectra for various
values of CM. Clearly, for CM �0.3 both kinetic and mag-
netic spectra diverge toward large wave numbers. This shows
that this model becomes unphysical and cannot be used for
too small values of CM. For CM =0.5, on the other hand,
magnetic and kinetic spectra fall off at large wave numbers.
However, the effective resistivity of the magnetic Smagorin-
sky scheme is apparently too large for CM =0.5, so that the
dynamo is suppressed. The poor performance of this model
is not too surprising if one recalls that it is a rather crude
method in that it deals with the small scales only in a diffu-
sive manner. We also note that the Smagorinsky SGS model
has, to our knowledge, never before been tested in the con-
text of dynamo action. We conclude that using the Smagor-
insky SGS model for the magnetic field does not give satis-
factory results. Therefore, from now on, we discard it as
inappropriate for our purpose.

We see from Fig. 4 that the compensated spectra with

FIG. 3. Comparison of magnetic and kinetic energy spectra of runs using
Method I with 1283 mesh points and various values of CM.

FIG. 4. Comparison of magnetic and kinetic energy spectra of runs with
10243 mesh points and normal diffusion �run A, solid line� with 1283 mesh
points and hyperdiffusion �run C1, dash-dotted line�, and with 1283 mesh
points and Smagorinsky viscosity and hyper-resistivity �run B1, dashed
line�. Note that both the magnetic and kinetic energy spectra for the three

runs are very similar for k /kd0.1.
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only 1283 mesh points, using Methods II and III, match the
benchmark quite well at all scales down to the dissipative
scale. We have compensated the energy spectra by k5/3�T

−2/3,
such that a Kolmogorov-like spectrum would appear flat.
Here �T=�K+�M, where �K and �M are the kinetic and mag-
netic dissipation rates, respectively. The kinetic energy spec-
trum of the 10243 run has, however, been multiplied by 1.3
in order to make all spectra overlap. We believe the shift is
due to the fact that the 10243 run has not been run for very
long, and the average dissipation rate, �T, has not yet fully
converged, even though the slope converges generally much
quicker. From the general agreement between the three runs
shown in Fig. 4 we conclude that, for our purpose, Methods
II and III give useful results.

In Fig. 5, we compare compensated spectra for three
simulations that all use Smagorinsky viscosity and hyper-
resistivity, but have different Reynolds numbers. We see that,
unlike the purely hydrodynamic case, the dissipative sub-
ranges do not collapse onto the same functional form for
different Reynolds numbers. On the other hand, for purely
hydrodynamical simulations15 the dissipative subranges col-
lapse very well onto the same functional form and the iner-
tial range simply becomes longer for larger Reynolds num-
bers. Furthermore, in Fig 1 of Ref. 15 we see that the
bottleneck is similar and constant for all Reynolds numbers.
Again, in the MHD simulation we see nothing similar.

In Fig. 6, we have shown the same as in Fig. 5, but using
hyperviscosity instead of Smagorinsky viscosity. We clearly
see that the tendency is the same in both figures. Since the

FIG. 5. Magnetic and kinetic energy spectra for runs with 1283 �run B1�,
2563 �run B2�, and 5123 �run B3� mesh points where all of them use Sma-
gorinsky viscosity and hyper-resistivity �Method II�. Note the approach of
the kinetic energy spectra toward the magnetic energy spectra at a point that
is well before entering the bottleneck and the dissipative subrange.

FIG. 6. Magnetic and kinetic energy spectra for runs with 1283 �run C1�,
2563 �run C2�, and 5123 �run C3� mesh points where all of them use hyper-

viscosity and hyper-resistivity �Method III�.
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bottleneck effect is quite different for pure hydrodynamical
simulations with Smagorinsky viscosity and with hypervis-
cosity �see Fig. 1�, it is reasonable to assume that the ten-
dency we see is robust and not due to the specific modeling
applied, but that it is a physical effect.

Finally, we compare in Fig. 7 spectra of Smagorinsky
and hyperviscous simulations using the highest available
resolution of 5123 mesh points. Again, note that the spectra
for hyperviscous simulations and those with Smagorinsky
SGS modeling are almost identical. Furthermore, there is no
range where both kinetic and magnetic energy spectra are
parallel. Together with the results of Figs. 5 and 6, therefore,
we conclude that we have not yet reached Reynolds numbers
large enough to show an inertial range.

IV. SPECULATIONS ON ASYMPTOTICS

The direct MHD simulations of Ref. 2 have suggested
the presence of a superequipartition range where EM�k�
�2.5EK�k�. However, the spectra still showed some weak
bending, indicating that a proper inertial range has not been
reached even at a resolution of 10243 mesh points.26 The
present SGS models reproduce the spectral superequiparti-
tion of magnetic over kinetic spectral energy �Fig. 7�, but
they also show now more clearly that the two spectra are not
parallel to each other. Instead, they approach each other in
such a way that the compensated kinetic energy spectrum
shows a strong uprise.

One might argue that the uprise at the end of the com-
pensated kinetic spectrum is just a strong bottleneck. This is,
however, unlikely since both SGS models give the same up-
rise, even though in purely hydrodynamic turbulence the hy-
perviscosity model is known to produce a much higher
bottleneck than the Smagorinsky model �Sec. III A�. Further-
more, in hydrodynamic turbulence the width of the bottle-
neck is independent of Reynolds number, whereas in the
present case it appears to become wider with increasing Rey-
nolds number. This suggests that the uprise in the MHD case
is a true large-scale feature of the spectrum, and independent
of the dissipative subrange.

Next, we recall that in simulations with an imposed mag-
netic field, the magnetic and kinetic energy spectra are found

FIG. 7. Magnetic and kinetic energy spectra for runs with 5123 mesh points
and hyperviscosity and hyper-resistivity �run C3, solid line� and Smagorin-
sky viscosity and hyper-resistivity �run B3, dashed line�. Note the mutual
approach of kinetic and magnetic energy spectra before entering the dissi-
pative subrange.
to be in approximate equipartition only when the field
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strength is of the order of Beq.
9 Such simulations are thought

to be representative of the small-scale end of the inertial
range of any MHD simulation, even if the field is generated
by a small-scale dynamo as in the present case. Assuming
that this interpretation is correct, it would support our previ-
ous suggestion that the spectral superequipartition was only a
nonasymptotic feature, confined to the large scales, and not a
true inertial range feature. We are therefore led to believe
that for much larger Reynolds numbers, the kinetic and mag-
netic energy spectra might converge. Qualitatively, this can
be reproduced by the phenomenology proposed recently by
Müller and Grappin.27,28 According to their theory, the total
energy ET=EM +EK follows still the expected k−5/3 spectrum,
while the residual energy ER= �EM −EK� follows a k−7/3 spec-
trum. In Fig. 8, we produce such an example with

ET�k� = k−5/3e−k/kd, ER�k� = ak−7/3e−k/kd, �13�

for k�1 �in arbitrary units�. Using the fact that in the inertial
range EM exceeds EK by about a factor a=2, we reconstruct
EM and introduce an additional k2 subinertial range, so we
write

EM�k� =
1

2
�ET�k� + ER�k��/�1 + �k/kM�−11/3� , �14�

with kM =5. The kinetic energy obtained by assuming that the
total energy is constant is

EK�k� = �ET�k� − EM�k��/�1 + �k/kK�−11/3� , �15�

where we have included a different subinertial range below
kK=1.5. The resulting spectra shown in Fig. 8 reproduce sur-
prisingly well the basic features suggested by our SGS simu-
lations of Fig. 7.

In order to see how well our simulations reproduce the
anticipated k−7/3 scaling of the residual spectrum, we plot in
Fig. 9 the appropriately compensated ER spectrum. Clearly,
the residual spectrum is still curved, but it remains reason-
ably straight within about half an order of magnitude in wave
numbers.

V. CONCLUSIONS

The results of subgrid scale models should always be
taken with great care. Even if their results can be trusted in

FIG. 8. Sketch of kinetic and magnetic energy spectra, following the Müller
and Grappin phenomenology. Note the slight superequipartition just to the
right of the peak of EM�k� and the asymptotic equipartition for large wave
numbers.
one case �e.g., in the case without magnetic fields�, they may

ownloaded 07 Aug 2006 to 130.225.213.134. Redistribution subject to
not give reliable results in another case �e.g., in the presence
of magnetic fields and dynamo action�. However, once we
begin to see detailed agreement between SGS models and
direct simulations, it may be possible to use this agreement
to justify the use of the SGS model in more extreme param-
eter regimes that are currently inaccessible to direct simula-
tions.

In the present work, we have shown that the Smagorin-
sky SGS model with a resolution of 5123 mesh points is able
to reproduce the hydrodynamic turbulence spectra of a direct
simulation at an almost 10 times larger resolution �Fig. 2�.
On the other hand, an extension of this model to the MHD
case with dynamo action leads to obvious problems �the in-
tensity of the dynamo is artificially suppressed�. However,
using hyper-resistivity instead of a Smagorinsky-type SGS
model leads to fair agreement between the 1283 SGS simu-
lation and the nearly 10 times larger direct simulation �Fig.
4�. Thus, having validated the SGS model at 1283 mesh
points, we may be justified in proceeding further to a reso-
lution of 5123 mesh points �Fig. 7�. Here, a new and yet
unconfirmed feature arises: a tendency toward spectral equi-
partition. This, together with the knowledge that there is
spectral equipartition with imposed fields of equipartition
strength,9 suggests a spectrum that might look like what is
shown in Fig. 8.

Obviously, we will not be able to verify this result in the
immediate future. Although it may soon be possible to obtain
the resources necessary to do a 40963 MHD simulation to
validate the results of Fig. 7, yet another order of magnitude
in improved resolution will be necessary to test the hypoth-
esis sketched in Fig. 8. Our results may therefore serve as a
justification for using future computing resources for this
type of problem.
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