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ABSTRACT

Aims. An efficient algorithm for calculating radiative transfer on massively parallel computers using domain decomposition is presented.
Methods. The integral formulation of the transfer equation is used to divide the problem into a local but compute-intensive part for calculating
the intensity and optical depth integrals, and a nonlocal part for communicating the intensity between adjacent processors.
Results. The waiting time of idle processors during the nonlocal communication part does not have a severe impact on the scaling. The wall
clock time thus scales nearly linearly with the inverse number of processors.
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1. Introduction

Over the past one or two decades tremendous advances have
been made in achieving high resolution power in computational
astrophysical fluid dynamics; see Haugen et al. (2003) for a
10243 simulation of hydromagnetic turbulence and Kaneda
et al. (2003) for a 40963 simulation without magnetic fields.
Such high resolution is now possible mainly due to the avail-
ability of massively parallel computers allowing superb perfor-
mance at a low price, especially if off-the-shelf personal com-
puters can be interconnected using standard Ethernet switches.
This poses no major difficulty for the usual finite difference
schemes that allow the computational domain to be decom-
posed into smaller sub-domains, because the necessary com-
munication between processors is limited to a small neighbor-
hood of the processor boundaries.

Radiative transfer calculations fall generally outside this
class of problems, because the transfer equation is intrinsically
nonlocal. Physically speaking, information travels at the speed
of light when the gas is optically thin. Thus, from one time step
to the next, the change in intensity in the domain of one pro-
cessor can affect the radiation field on many other processors
even if they are far apart.

In this paper we describe a simple method that renders the
transfer problem essentially local – at least as far as the bulk of
the computational cost is concerned. By using the integral for-
mulation of the transfer equation, the intensity may be written

� Appendices are only available in electronic form at
http://www.edpsciences.org

as a local integral term plus an attenuated boundary term. The
local integral term may be computed in parallel by all proces-
sors whereas only the boundary term, which may be applied
after the integrals have been computed on all processors, re-
quires communication between processors.

The attenuated boundary terms only need to be computed
on and communicated across those boundaries where the radi-
ation leaves each sub-domain (hereafter referred to as down-
stream boundaries). The corresponding update of the interior
of each sub-domain may be carried out afterwards and again is
a completely local operation.

The efficiency of our parallelization method depends heav-
ily on how rapidly the attenuated boundary terms may be ob-
tained during the communication step. Due to this dependency,
our method is only practical if the radiation is strictly along
straight lines and does not diffuse in the transverse direction
via interpolation, as in the short characteristics method, for ex-
ample. This is discussed in detail in Sect. 3.3.

Our technique may be contrasted with other popular ap-
proaches to solving the transfer equation in decomposed do-
mains. In the multiple wavefront method (Nakamoto et al.
2001), parallel efficiency is achieved by allowing different ray
directions to be treated simultaneously, trying to avoid multi-
ple tasks for the same processor and minimizing the number of
idle processors. This method does not impose any restrictions
on the radiative transfer scheme, but efficient parallelization re-
quires a large number of ray directions and frequencies to be
treated. If a non-diffusive scheme is employed, our technique
appears simpler and remains efficient even when the number
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of CPUs greatly exceeds the number of ray directions and
frequencies.

2. The transfer equation

Radiation couples with the equations of fluid dynamics both
through radiative heating and cooling and, if the temperatures
are high enough, through radiative pressure. For the applica-
tions that we currently have in mind (e.g. stellar convection and
protostellar accretion discs), only heating/cooling is important,
so ∇ · F enters the energy equation

ρ
De
Dt
+ p∇ · u + ∇ · F = Qdiss, (1)

where ρ is the mass density, p is the pressure, u is the fluid ve-
locity, e is the internal energy per unit mass, F is the energy
flux, and Qdiss is the (kinetic and/or magnetic) energy dissipa-
tion. For radiative energy transfer the energy flux is given by

F =
∮

4π
dΩ

∞∫
0

dν n̂ Iν(n̂), (2)

where I is the specific intensity giving the amount of energy
transported by radiation per unit frequency range per unit area
per unit time into a solid angle Ω in the direction n̂.

To determine the specific intensity one has to solve the
transfer equation (e.g. Mihalas & Weibel-Mihalas 1984),

n̂ · ∇Iν = χν(S ν − Iν), (3)

where n̂ is the unit vector in the direction of propagation, χν
is the opacity (per unit volume) or inverse mean free path of
a photon, and S is the source function, which gives the ratio
between emission and absorption.

The transfer Eq. (3) is here written in its time independent
form. This is appropriate for the non-relativistic case, where the
maximum fluid velocity is much lower than the speed of light.
The flux divergence is then given by

∇ · F =
∮

4π
dΩ

∞∫
0

dν χν(S ν − Iν). (4)

Following Nordlund (1982), we define Qν = S ν − Iν, giving
the cooling rate per ray direction and infinitesimal frequency
interval, and the optical depth scale τν =

∫
χν ds, where s is

measured along the propagation direction of the ray. It is then
possible to rewrite Eq. (3) as

dQν
dτν
=

dS ν
dτν
− Qν. (5)

This equation may also be written in integral form,

Q(τ) = Q(τ0)eτ0−τ +
∫ τ

τ0

eτ
′−τ dS

dτ′
dτ′

︸�������������︷︷�������������︸
Q(intr)(τ)

, (6)

where the explicit reference to the frequency ν has been
dropped. By using Q instead of I numerical precision is
retained even when the optical depth is very high and
I approaches S very closely.

In general the source function S may depend on the in-
tensity itself, i.e. on a nonlocal quantity, turning (6) into an
integro-differential equation which has to be solved by means
of an iterative scheme, such as Accelerated Lambda Iteration
(see Olson et al. 1986). However, during each iteration step the
source function is given (i.e. taken from a previous iteration
step) and in the following we may – without loss of generality
– assume that the source function is independent of intensity.

3. The radiative transfer scheme

For the sake of simplicity we here assume that the set of ray di-
rections is chosen in such a way that all rays travel directly
through neighboring grid points. This will suffice to moti-
vate our method and we delay the discussion of interpolation
schemes for solving the transfer equation for arbitrary ray di-
rections until Sect. 3.3.

With the above assumption, it is in principle easy to solve
(5) for all ray directions. Given the cooling rate at a mesh point
n−1, the discretization of (6) enables us to compute the cool-
ing rate at the next mesh point n in the direction of the ray.
Once a given boundary condition is adopted, it is thus possible
to determine the cooling rate in the entire simulation box by
stepping successively along the ray.

However, in the case of domain decomposition, only those
processors adjacent to a boundary of the simulation box are
able to immediately compute the correct cooling rate within
their sub-domain. All other processors have to wait until they
are provided with boundary information from a neighboring
processor that already has determined the correct cooling rate.
Without further sophistication, this would imply that most
computation related to the radiative transfer problem is not car-
ried out in parallel and valuable CPU time is spent in waiting.

Fortunately, for a local source function (e.g. independent
of mean intensity), the integral term Q(intr) in (6) represents a
valid solution of the transfer equation within each sub-domain,
apart only from the contribution from the upstream boundary.
We call this the intrinsic solution,

Q(intr)
n = Q(intr)

n−1 e−δτn−1/2 +

∫ τn

τn−1

eτ−τn
dS
dτ

dτ, (7)

with

Q(intr)
0 = 0 and δτn−1/2 = τn − τn−1. (8)

The complete solution for an arbitrary boundary condition Q0

may be obtained by simply adding the correction term Q0 eτ0−τn

to the intrinsic solution on all inner points,

Qn = Q0 eτ0−τn + Q(intr)
n . (9)

In order to reduce the idle time of the individual processors we
split the calculation of the cooling rate into three distinct parts,
two of which may be carried out by all processors in parallel.
How this works in detail is illustrated in the following.

3.1. Non-periodic boundaries

We first assume that our computational domain is non-periodic
in all spatial dimensions. As far as radiative transfer is
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Fig. 1. Illustration of the radiative transfer scheme. See text for details.

concerned, this is the simplest case – the periodic case is treated
in the next subsection.

The basic procedure to obtain the solution to the radia-
tive transfer problem in decomposed domains is illustrated in
Fig. 1. For the sake of simplicity, the computational domain is
two-dimensional and divided into four sub-domains. The trans-
fer equation is solved for rays along the direction indicated. The
generalization to three-dimensional domains is trivial.

In the following, Q0 refers to the cooling rate on the local
upstream boundary of a given sub-domain, which either co-
incides with the boundary condition of choice for the entire
computational domain (global boundary) or overlaps with the
downstream boundary of a neighboring processor in the direc-
tion opposite to the ray.

The first step is to obtain the intrinsic solution Q(intr) within
each sub-domain, assuming a vanishing cooling rate at the
boundary. This corresponds to evaluating the integral in Eq. (6).
For each point the cooling rate and the optical depth τ−τ0 are
stored. This step can be carried out by all processors in paral-
lel since no information is required from outside the processor
(Fig. 1b).

The communication part follows next. The local boundary
cooling rate Q0 in the lower ghost zone of processors 3 and 4,
as well as in the left ghost zone of processors 1 and 3 are given
by the global boundary condition of choice (Fig. 1c). Since all
its upstream boundaries are set, processor 3 can immediately
compute the correct cooling rate on its upper and right bound-
aries by adding the correction term Q0 eτ0−τN to the cooling rate
obtained from the intrinsic solution (Fig. 1d). Here τ0 and Q0

refer to a point in the left (lower) ghost zone and τN to the cor-
responding point at the upper (right) boundary along the ray.

Now that the correct cooling rate on the upper (right)
boundary of processor 3 is available, this information is com-
municated to processor 1 (4) where the boundary condition in
the lower (left) ghost zone is set (Fig. 1e). Likewise, proces-
sor 1 (4) is now able to compute directly the cooling rate on its
right (upper) boundary and can send the values to processor 2
(Figs. 1f and 1g).

In Fig. 1g all information necessary to solve the full trans-
fer equation on every point on all processors is available and
the communication part is finished. The last step is again
carried out by all processors in parallel and independently
of each other. It amounts to simply adding the correction
term Q0 eτ0−τn , this time on all inner points in the sub-domain
(Fig. 1h).

3.2. Periodic boundaries

For many applications it is convenient to assume periodicity of
the simulation box in one or more spatial directions. An exam-
ple is convection in an infinitely extended plane-parallel layer.
While this is trivial to implement for the HD- and MHD-part
of a scheme, periodicity introduces a potential difficulty to the
radiative transfer scheme.

In the non-periodic case there is always at least one pro-
cessor where all upstream boundaries are entirely set, once
the boundary condition for the whole simulation box has been
used. In the example setup of the previous subsection this
would be processor 3. By determining the cooling rate on its
downstream boundaries and communicating to all its neigh-
bors, all upstream boundaries of these neighbors are entirely
set, and so on. This implies that each processor has to propa-
gate boundary values only once through its domain.

In contrast to the above, in the case of periodicity, it might
become necessary to propagate boundary values several times
through each sub-domain. This is illustrated in Fig. 2. The
computational box in this example is taken to be periodic in the
horizontal direction, so that only the heating rates in the lower
ghost zones of processors 3 and 4 are known a priori from the
global boundary condition (Fig. 2b). Without communication,
this information does not suffice to entirely cover any of the
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Fig. 2. Same as Fig. 1, except that here the computational domain is
periodic in the horizontal direction. Note that the ray travels at an in-
clination of 22.5◦ relative to the horizontal axis.

downstream boundaries of processors 3 or 4 for the given ray
direction (Fig. 2c).

In order to cover all up- and downstream boundaries of pro-
cessors 3 and 4, it is necessary to communicate the available
downstream heating rates along the periodic direction several
(in this case two) times (Figs. 2d–2g).

3.3. Remarks on interpolation

So far we have only considered rays that pass directly through
neighboring grid points. In general we would like to take
into account rays with arbitrary inclination, so we have to

interpolate in the angular direction. According to Stone et al.
(1992) there are essentially two approaches to this problem
which we discuss now briefly, taking into account their com-
patibility with our proposed parallelization method.

The first approach we consider is to set up exactly one ray
per grid point and trace it all the way back to the boundary of
the computational domain, interpolating the values for opac-
ity and source function along the way. This is usually called
the method of long characteristics. For large numerical grids in
two (three) spatial dimensions, the above prescription is, how-
ever, hardly ever used in this form as it scales as N3 (N4) with
the number of grid points N. A common cure for this problem
is to introduce in addition to the ordinary hydrodynamical (HD)
grid an arbitrarily inclined radiation grid for each ray direction,
with grid points along a number of parallel rays in that direc-
tion (e.g. Nordlund 1982; Stein & Nordlund 1988; Razoumov
& Scott 1999; Juvela & Padoan 2005). The values for opacity
and source function are interpolated from the HD grid onto the
radiation grid, the transfer equation is solved along each of the
parallel rays, and the solution (in terms of the radiative cooling
rate) is finally interpolated back onto the HD grid.

This approach is well suited for incorporation into our par-
allelization method because the radiation does not diffuse out
on the radiation grid. Hence, a ray that reaches a point on
the downstream boundary of a processor’s sub-domain can be
traced back to a unique point at the upstream boundary and
the attenuated boundary terms may thus be rapidly computed
during the communication step of our method. This is cru-
cial for keeping the idle times of the individual processors at
a minimum. Furthermore, interpolation between the two sep-
arate grids is a completely local operation that can be carried
out by all processors in parallel before and after the communi-
cation step. Thus, the full advantage of our method can still be
exploited. In fact, because it is a local operation, angular inter-
polation actually improves our method’s scaling with the num-
ber of processors since the communication time then becomes
– relative to the overall expense of obtaining the full solution
to the transfer equation – even less significant.

The other approach is to use the method of short character-
istics (e.g. Kunasz & Auer 1988; Auer & Paletou 1994; Auer
et al. 1994). In this method, the rays are cut off at cell bound-
aries, and the radiation intensity is interpolated onto neighbor-
ing grid points. As a result, the radiation along rays that do not
travel directly through grid points diffuses away from the ex-
act downstream direction. Due to this diffusion, the radiation
reaching one particular grid point on the downstream bound-
ary of a processor’s sub-domain depends in a highly non-trivial
(unphysical) manner on the radiation coming from a substan-
tial number of grid points on its upstream boundary. In order to
propagate the boundary radiation values through downstream
processors one would thus essentially have to repeat the radia-
tive transfer solution again, but now with each processor de-
pendent on its upstream neighbor. This would remove the ad-
vantage of being able to do most of the work independently
on each processor. The short characteristics method is thus not
suitable for parallelization with the method presented here.
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3.4. Periodic rays

For rays traveling along a periodic direction, there is no bound-
ary condition to start from. However, writing the transfer equa-
tion in its integral form,

QN = Q0 eτ0−τN +

∫ τN

τ0

eτ−τN
dS
dτ

dτ, (10)

where the subscripts 0 and N refer to corresponding points on
opposite sides of the simulation box, and using the periodic-
ity condition QN = Q0, it is possible to solve for the cooling
rate Q0,

(
1 − eτ0−τN

)
Q0 =

∫ τN

τ0

eτ−τN
dS
dτ

dτ. (11)

In a decomposed domain we may thus obtain the full periodic
ray solution in much the same way as in the previous section
once Q0 is known. However, additional communication is re-
quired to calculate Q0 itself, which means that we have to com-
municate twice through the simulation box.

The periodic ray solution is illustrated in Fig. 3 for a ray
traveling in the positive x-direction across 4 processors. The
source function and opacity profile are depicted in the two up-
permost panels, followed by the intrinsic cooling rate on each
processor, the corresponding corrections and the final cooling
rate.

4. Implementation into the Pencil Code

The method for solving radiative transfer problems, as outlined
in the previous section, has been implemented into the pencil
code1. This code has been specifically designed for turbulence
simulations in a parallel computing environment using the do-
main decomposition scheme.

The numerical scheme consists of a third order Runge-
Kutta method due to Williamson (1980) for the time step-
ping and sixth order centered finite differences in space; see
Brandenburg (2003) for details. The code is able to do domain
decomposition in two spatial dimensions (y- and z-directions)
using the Message Passing Interface (MPI) for interprocessor
communications.

For the numerical solution of the transfer equation we ap-
proximate the source function by a second order polynomial in
optical depth (see Bruls et al. 1999). The integral in Eq. (6)
may then be solved exactly. Numerical details are given in
Appendix A, available in electronic form. It is however worth
noting here that the intrinsic solution where an arbitrary but
definite boundary condition is employed may equally well be
obtained by virtue of Feautrier’s (see Mihalas 1978) or any
other suitable method.

In fact, we have found in another context that on most
(but not all) CPUs, the Feautrier method is faster by up to
about a factor of two, relative to the most optimized integral
method (see Appendix A for details). However, since the in-
tegral method is more general (applicable for example also in
cases with a combination of Doppler effect and polarization in
spectral lines), we choose to present its implementation here.

1 http://www.nordita.dk/software/pencil-code
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Fig. 3. Illustration of the periodic ray solution for one ray traveling in
the positive x-direction across 4 processors.

When solving the intrinsic part of the transfer equation we
store the difference in optical depth between all grid points and
the upstream boundary in a 3-dimensional array. This allows
us to quickly compute the attenuated boundary terms and add
them to the intrinsic cooling rate on the downstream boundary
(during the communication step) as well as to all non-boundary
grid-points (afterwards).

5. Benchmarks results

The scaling of our method with the number of processors de-
pends on how many processors can simultaneously compute
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the attenuated cooling rates on the downstream boundaries of
each processor. This in turn depends on

– the number of ray directions;
– the type of boundary condition (periodic or non-periodic);
– the shape (in terms of grid points) and distribution of sub-

domains.

To investigate the above dependencies we have performed a se-
ries of benchmarks on the Beowulf cluster at the Danish Center
for Scientific Computing. All our tests ran on a sub-network
with 302 Intel Pentium 4 machines with 3.2 GHz CPUs and
1 GB memory, connected with Gigabit Ethernet and 10-Gigabit
uplinks. On the software side, we used the Intel Fortran 8.1
compiler and the LAM MPI implementation.

In the benchmark series the number of processors, N, in-
creases from 1 to 128 in powers of two. To be representative of
typical applications of our scheme, each benchmark is a short-
lived 3-D hydrodynamical simulation of a (gray) solar atmo-
sphere near the surface. As is explained in Appendix B, avail-
able in electronic form, the ionization fraction that enters the
equation of state is calculated in an iterative fashion from the
thermodynamic variables. We use the ionization fraction to cal-
culate the number density of negative hydrogen ions, which are
the only source of opacity in these simulations.

To find out whether the choice of boundary conditions for
the radiative cooling rate has a significant influence on the scal-
ing, the entire computational domain is either periodic or non-
periodic in the horizontal x- and y-directions. The boundary
condition in the z-direction is in both cases non-periodic.

Furthermore, we have taken into account two different sub-
domain shapes, characterized by the number of grid points
in each spatial direction: “planar” sub-domains with mx =

my = 64 grid points in the x- and y-directions and mz =

32 grid points in the z-direction, and “columnar” sub-domains
with mx = mz = 64 grid points in the x- and z-directions and
my = 32 grid points in the y-direction. Depending on their
shape, these sub-domains are distributed in the following way.
If N is an even power of two, there are as many processors
in the y-direction as there are in the z-direction (Ny = Nz).
If N is an odd power of two, then for planar domains there
are twice as many processors in the z-direction as there are in
the y-direction (Nz = 2Ny), and for columnar domains it is the
other way around (Ny = 2Nz). This is illustrated in Table 1 for
up to eight processors.

In our present implementation where we only solve for rays
that travel through grid points, there are three qualitatively dif-
ferent sets of ray directions determined by the geometry of a
grid cell:

– rays along coordinate axes (6 ray directions);
– this plus rays along face diagonals (6+ 12− 4 = 14 ray

directions);
– this plus rays along the space diagonals (14+8 = 22 ray

directions).

Rays along face diagonals only make up 12 − 4 = 8 addi-
tional ray directions since rays along those face diagonals that
lie in the horizontal plane are impractical to solve for if peri-
odic boundary conditions are employed, and, for comparison,
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Fig. 4. Wall clock time per grid point and time step in a 3-dimensional
simulation of the solar surface for different sets of ray directions – in
this case for columnar sub-domains and non-periodic boundary con-
ditions for the cooling rate. The straight lines denote least square fits.
Perfect scaling would be represented by a horizontal line.

Table 1. Distribution of sub-domains in y and z for up to 8 processors.

nCPU 1 2 4 8

planar
sub-domains

columnar
sub-domains

we left them out in the case of non-periodic boundary condi-
tions as well.

The reason we carried out separate benchmarks for each of
the above sets is that one could expect a decrease in scaling
performance as one goes from 6 ray directions to 22. For rays
along the edges of a grid cell there is always a whole layer of
processors that can simultaneously receive the boundary cool-
ing rate and propagate the attenuated cooling rate computed at
the downstream boundary to the next layer. For inclined rays
however, the number of processors that can do the communi-
cation simultaneously varies as one communicates through the
entire domain and is generally less or equal than for rays along
the edges. For comparison with ordinary hydrodynamical do-
main decomposition, we also included a benchmark with no
radiative transfer at all for each type of boundary condition and
sub-domain shape. In total, there are thus 4×2×2= 16 bench-
marks per processor number.

In Fig. 4 we show the scaling of the wall clock time per grid
point and time step in a 3-dimensional simulation of the solar
surface for different sets of ray directions using columnar sub-
domains and non-periodic boundary conditions for the cooling
rate. Perfect scaling would be represented by a horizontal line
in this figure. Due to the locality of the Navier-Stokes equa-
tions, the purely hydrodynamic benchmark series (0 rays) are
close to being perfect in the above sense. In comparison, the
radiative benchmarks (6, 14, and 22 rays) show for each type
of boundary condition and sub-domain shape a slight increase
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Fig. 5. Least square fits to the wall clock time per grid point and time
step for all sets of ray directions, boundary conditions for the cooling
rate, and sub-domain shapes.

in the wall clock time with the number of processors, but gen-
erally with at most about 30% as nCPU varies from 1 to 128.

In Fig. 5 we compare the scaling behavior for different
shapes of the sub-domains, both for periodic and non-periodic
rays. The main conclusion to be drawn from this is that the
difference in performance is surprisingly small. Nevertheless,
as a general trend one can say that the scaling is slightly bet-
ter for planar than for columnar sub-domains. On the other
hand, columnar sub-domains perform slightly better for a small
number of processors (nCPU ≤ 8). Within the accuracy of the
measurements, which is not perfect due to constantly varying
network and I/O performance on the cluster in the course of
the benchmark series, we can say that neither the number of
ray directions, nor the choice of boundary conditions and sub-
domain shape has an appreciable impact on scaling with the
number of processors.

6. Conclusions

In this paper we have presented a parallelization method for
carrying out hydrodynamical radiative transfer calculations on
massively parallel computers using the domain decomposi-
tion scheme. The proposed method is conceptually simple and
straightforward to implement. It is also flexible in the sense that
the solution of the transfer equation is not limited to the inte-
gral method but may also be obtained by direct discretization
(Feautrier type methods).

We find that the proposed parallelization method scales al-
most linearly with inverse number of processors, irrespective of
the choice of boundary conditions, sub-domain shape, or num-
ber of ray directions. The method is thus ideal for carrying out
large hydrodynamical simulations on massively parallel super-
computers using the domain decomposition scheme.

The present implementation into the pencil code only
represents a first proof of concept. The inclusion of more ray di-
rections, a non-uniform vertical mesh, non-gray radiative trans-
fer, radiation pressure, or scattering opacities are all examples
of extensions that are still possible within the framework of our
parallelization method.

Our focus has not been to optimize the intrinsic part of the
radiative transfer calculations, but already in the implementa-
tion used for the benchmark series in Sect. 5, one can afford
22 rays per mesh point at a cost of about 40% of the total time
to advance the MHD-equations (60% relative to advancing only
the HD-equations). With the fully optimized integral method
(storing and reusing exponentials whenever possible), or with
the Feautrier method, one can afford 2 to 4 times more rays per
point, depending on the CPU and the type of network.

The number of possible applications of our method is large.
It has been tested successfully for simulations of the solar at-
mosphere where even a gray opacity treatment with a small
number of rays already gives quite useful results (but a more
accurate model requires an opacity bin coverage, cf. Stein &
Nordlund 1989). To give a list of other applications that is by
no means exhaustive, the method is directly applicable to lo-
cal simulations of accretions discs using the shearing sheet ap-
proximations, to global models of stars or discs that are em-
bedded in a Cartesian domain (e.g. Dobler et al. 2006, Freytag
et al. 2002), as well as to studies of radiatively driven ioniza-
tion in HII regions. A generalization to time dependent radia-
tive transfer would allow applications of the method to studies
of the reionization of the Universe, as well as to other contexts
where effects of the finite speed of light are important.
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Appendix A: Numerical details

In order to solve Eq. (6) one uses polynomial approximations
for the opacity χ and the source function S . In the current im-
plementation for the Pencil Code, the opacity is assumed to
vary linearly from a mesh point n to the next mesh point n+1
that lies in the direction of the ray, so the difference in opti-
cal depth between these points, calculated by the trapezoidal
rule, is

δτn+1/2 =
1
2 (χn + χn+1) δsn+1/2, (A.1)

where δsn+1/2 is the spatial distance between n and n+1. A more
accurate (but also more expensive) method is based on a cubic
spline fit, using the logarithmic derivative of the opacity,

δτn+1/2 =
1
2 [χn(1 + 1

6 dnδs) + χn+1(1 − 1
6 dn+1δs)] δs, (A.2)

where

dn =

(
d lnχ

ds

)
n

, (A.3)

and, for brevity, we write δs instead of δsn+1/2. While theoreti-
cally this expression may yield negative values for δτ, for rea-
sonably resolved temperature variations δ lnχ should not ex-
ceed unity (and certainly must not exceed 6), so in practice this
does not happen. A third alternative is

dτn =
χn+1 − χn

ln(χn+1/χn)
dsn, (A.4)

but in practice this turns out to be less accurate than Eq. (A.2)
above.

To calculate the cooling rate Q↑n due to an ‘upwards’ di-
rected ray, between τn and τn+1 the quadratic Taylor approxi-
mation for the source function is used, i.e. we ignore the third
and higher derivatives of S (τ). Equation (6) then gives

Q↑n = an−1/2 Qn−1 + bn−1/2 S ′n−1 + cn−1/2 S ′′n−1 (A.5)

with three coefficients

an−1/2 = e−δτn−1/2 , bn−1/2 = 1 − e−δτn−1/2 , (A.6)

and

cn−1/2 = e−δτn−1/2 (1 + δτn−1/2) − 1; (A.7)

similarly, the ‘downwards’ directed rays give

Q↓n = an+1/2 Qn+1 − bn+1/2 S ′n+1 + cn+1/2 S ′′n+1. (A.8)

One observes that in the limit of large optical depth, (Q↑ +
Q↓)/2 → −S ′′ (diffusion limit). This demonstrates that the
second derivative S ′′ needs to be taken into account, as oth-
erwise the numerically obtained total heating rates would be
wrong (they would still be ∝ S ′′ because up- and down-stream
contributions do not cancel exactly, but with an incorrect and
resolution-dependent coefficient).

We point out that a factor of nearly two in computational
speed may be gained in the radiative transfer part of the com-
putations, at the expense of some storage space, by storing and

reusing the e−δτn−1/2 factors between two rays in opposite direc-
tions. The speed increase was verified in smaller test cases, but
the timings presented in Fig. 4 were obtained without imple-
menting this.

For small values of δτ, the expressions for the coefficients
an, bn, and cn, must be computed in double precision to avoid
loss of precision, but the final coefficients may be stored in
single precision without noticeable loss of accuracy. On some
CPUs further speed-up may be obtained by conditionally us-
ing asymptotic expressions for these coefficients, while in other
cases, especially where compiler options or special libraries are
available to enable vectorization or other optimization of ex-
ponentials, it may be faster to retain the explicit computation
of exponentials. We have implemented coding that automati-
cally chooses between these two alternatives, based on an ini-
tial comparison of the speeds.

The derivatives of S with respect to the optical depth τ have
to be computed on an irregularly spaced grid, i.e.

S ′n =
(
δS n−1/2

δτn−1/2

δτn+1/2

2
+
δS n+1/2

δτn+1/2

δτn−1/2

2

)/
δτn, (A.9)

S ′′n =
(
δS n+1/2

δτn+1/2
− δS n−1/2

δτn−1/2

)/
δτn, (A.10)

where δτn = (δτn−1/2 + δτn+1/2)/2 (see Bruls et al. 1999). The
procedure to compute radiative energy transport in Cartesian
geometry is then straightforward. For each ray direction there
are in three dimensions – dependent on the inclination – either
one, two or three upstream boundaries where a certain bound-
ary condition is employed and the iteration as defined by (A.5)
starts. By moving stepwise through the entire box it is possible
to determine the cooling rate on every single mesh point and
for all desired ray directions.

Appendix B: Simulations of the solar atmosphere

The benchmark we used in Sect. 4 is a short-lived simulation of
the solar atmosphere near the surface without magnetic fields.
For all benchmarks in the series (see Sect. 5) the physical size
of the simulation box is 6 Mm × 6 Mm × 6 Mm in x, y, and
z respectively. To account for the varying resolution of the nu-
merical grid during the benchmark series, the viscosity is ap-
propriately adjusted. The simulation box is periodic in both x
and y, even if the boundary condition for the radiative cooling
rate is non-periodic as it is the case for half of the benchmark
runs.

Furthermore, we use an equation of state that accounts for
hydrogen ionization but ignores the negative hydrogen ion,
H−, and hydrogen molecule formation. The hydrogen ioniza-
tion fraction is obtained iteratively from entropy and density
by solving Saha’s equation. The H− opacity is then calculated
from the number density of H−, which is again calculated from
the number density of electrons and neutral hydrogen. The
number density of H− is very small, so even though H− is the
most important (and, in this simulation, only) contributor to
the opacity, ignoring it in the equation of state is justified.


