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Simulating field-aligned diffusion of a cosmic ray gas
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ABSTRACT

The macroscopic behaviour of cosmic rays in turbulent magnetic fields is discussed. An im-
plementation of anisotropic diffusion of cosmic rays with respect to the magnetic field in
a non-conservative, high-order, finite-difference magnetohydrodynamic code is discussed. It
is shown that the standard implementation fails near singular X-points of the magnetic field,
which are common if the field is random. A modification to the diffusion model for cosmic rays
is described and the resulting telegraph equation (implemented by solving a dynamic equa-
tion for the diffusive flux of cosmic rays) is used; it is argued that this modification may better
describe the physics of cosmic ray diffusion. The present model reproduces several processes
important for the propagation and local confinement of cosmic rays, including spreading per-
pendicular to the local large-scale magnetic field, controlled by the random-to-total magnetic
field ratio, and the balance between cosmic ray pressure and magnetic tension. Cosmic ray
diffusion is discussed in the context of a random magnetic field produced by turbulent dynamo
action. It is argued that energy equipartition between cosmic rays and other constituents of the
interstellar medium does not necessarily imply that cosmic rays play a significant role in the
balance of forces.
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1 I N T RO D U C T I O N

The importance of cosmic rays for the dynamics of the interstellar
medium (ISM) has long been recognized (Parker 1966; Berezinskii
et al. 1990). Spatial gradients of the cosmic ray pressure can con-
tribute significantly to the force balance in the ISM. If cosmic rays
are confined within magnetic flux tubes, then the tendency towards
pressure equilibrium reduces gas pressure within the tubes. Depend-
ing on the efficiency of cooling, either temperature or entropy will
be approximately uniform across the tube, but in both cases density
inside the tube will be decreased relative to the exterior, making the
tube buoyant. This process is similar to magnetic buoyancy. There-
fore, cosmic rays facilitate disc–halo connections in spiral galaxies
by enhancing the buoyancy of magnetic structures in the interstellar
gas. In the Sun, magnetic buoyancy drives magnetic flux tubes to
the surface to form bipolar regions. In galaxies, magnetic buoyancy
is believed to be strongly assisted by cosmic rays.

The effects of cosmic ray driven buoyancy are believed to be
important for the operation of the galactic dynamo (Parker 1992;
Moss, Shukurov & Sokoloff 1999). This can help to speed up the
growth of the magnetic field and maintain strong field amplifica-
tion and regeneration, especially in the non-linear regime (Hanasz
et al. 2004). Many studies of the Parker instability as well as re-
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cent simulations of the galactic dynamo rely on a hydrodynamic
description of cosmic rays (Schlickeiser & Lerche 1985), which is
especially convenient in models involving the large-scale dynamics
of the ISM. In this approach, the cosmic ray transport equation for
the phase-space distribution function is integrated over particle mo-
menta which results in a hydrodynamic-type equation for the cosmic
ray energy density or pressure. Our aim here is to use this approach
in order to clarify the relation between cosmic ray energy density
and properties of the ISM.

Energy equipartition (or pressure balance) between cosmic rays
and magnetic fields is a common assumption in radio astronomy,
where it is used to estimate magnetic field strength from synchrotron
intensity. A physical basis for this idea remains elusive and only
qualitative arguments, related to cosmic ray confinement by mag-
netic fields, are used to justify this concept. The assumption comes
into question since the spatial distribution of cosmic rays may not
precisely follow that of magnetic field strength. Furthermore, the
idea of overall (statistical) pressure balance in the ISM would be
more difficult to maintain if both magnetic and cosmic ray pres-
sures are enhanced or reduced at the same positions simultaneously.
Recent arguments of Padoan & Scalo (2005) suggest that, if the
streaming velocity of cosmic rays is proportional to the Alfvén speed
(Felice & Kulsrud 2001; Farmer & Goldreich 2004, and references
therein), the local cosmic ray density is independent of the local
magnetic field strength, and rather scales with the square root of
the (ionized) gas density. Indeed, if both the magnetic flux and the
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cosmic ray flux are conserved, BS = constant and ncUS = constant
(where B is the magnetic field strength, S is the area within a fluid
contour, nc is the number density of cosmic rays and U is their
streaming velocity), one obtains ncU/B = constant, which yields
nc ∝ n1/2

i , given that U = VA ∝ Bn−1/2
i , with ni the ion number

density and VA the Alfvén speed.
We use a two-fluid model, where cosmic rays are described by an

equation for their pressure (or energy density) and an equation of
state. The cosmic rays are assumed to act directly on the back-
ground gas via their pressure gradient. We do not include any explicit
means of exciting hydromagnetic waves by cosmic rays leading to
their confinement (for a discussion of confinement issues, see Ce-
sarsky 1980), but instead parametrize these processes by choosing
an appropriate advection velocity (as a superposition of the gas and
Alfvén velocities). There are several interesting questions regarding
high-energy cosmic rays and their acceleration (e.g. Hillas 2005),
which we are not attempting to address here. Instead, we want to
know which process is mainly responsible for limiting the cosmic
ray energy density and what is the relation of cosmic ray energy
density with the magnetic field. Is there local equipartition, or is
there only global equipartition on the scale of the galaxy? Finally,
we are interested in studying those effects in the ISM dynamics that
only arise in the presence of cosmic rays. We begin with the gov-
erning equations and discuss issues that arise in connection with the
numerical implementation of cosmic ray diffusion along magnetic
field lines.

2 M E T H O D

2.1 Basic equations

The hydromagnetic equations, supplemented by the advection–
diffusion equation for the cosmic ray energy density, and the cosmic
ray pressure in the momentum equation, are

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ec

∂t
+ ∇ · (ecu) + pc∇ · u = Dc + Qc, (2)

∂eg

∂t
+ ∇ · (egu) + pg∇ · u = Dg + Qk + Qm, (3)

∂ρu

∂t
+ ∇ · (ρuu) + ∇(pg + pc) = J × B + f + F, (4)

∂B

∂t
= ∇ × (u × B − ημ0 J), (5)

where ρ, u and pg are the gas density, velocity and pressure; ec and
pc are the cosmic ray energy density and pressure, B is the magnetic
field, J = ∇ ×B/μ0 is the electric current density, η is the magnetic
diffusivity, Dg = ∇ · (K∇T) is the thermal diffusion term (treated
here isotropically; thermal diffusion is unimportant in the present
context, but weak diffusion is necessary for numerical reasons).
Further, T is the temperature related to the internal energy density
(per unit volume), eg, via eg = ρcvT , and Dc is the divergence of the
diffusive cosmic ray energy flux taken with the opposite sign, that
is,

Dc = −∇ · F c. (6)

The usual approach is to treat this term as Fickian diffusion, that is,
to assume that the flux is proportional to the instantaneous gradient

of the cosmic ray energy density,

F ci = −Ki j∇ j ec (Fickian diffusion), (7)

where Ki j is the diffusion tensor. The latter can be written as

Ki j = K⊥δi j + (K‖ − K⊥)B̂i B̂ j , (8)

where B̂ = B/|B| is the field-aligned unit vector (e.g. Berezinskii
et al. 1990; Hanasz & Lesch 2003). Here, K‖ and K⊥ are the cos-
mic ray diffusion coefficients along and perpendicular to the field,
respectively.

We assume ideal-gas equations of state for both the cosmic rays
and the gas, that is, pc = (γ c − 1)ec and pg = (γ g − 1)eg, where
γ c and γ g are the ratios of the total number of degrees of freedom
to the number of translational degrees of freedom for the cosmic
rays and the gas. Unless stated otherwise, we assume γ c = 4/3 and
γ g = 5/3. Other choices for γ c include 5/3 and 14/9 (e.g. Ryu et al.
2003, and references therein).

The system can be driven by an external force f in the momentum
equation (4), and F in that equation includes additional forces such
as the viscous force, ∇ · (2νρ)S, where ν is the viscosity and Si j =
1
2 (ui, j + u j,i ) − 1

3 δi j uk,k is the traceless rate of strain tensor, where
commas denote partial differentiation. Furthermore, Qk = 2ρνS2

and Qm = ημ0 J2 denote the viscous and Joule heating, and Qc is a
cosmic ray energy source.

2.2 Non-Fickian diffusion

Typical values of the diffusivity along the magnetic field are of the
order of 1028 cm2 s−1 (e.g. Berezinskii et al. 1990). Such large values
would severely limit numerical modelling since a large diffusivity
requires that the computational time-step is small to ensure numer-
ical stability; for example, simulations with a resolution of 1 pc
would require a time-step of 10 yr or less (e.g. Hanasz & Lesch
2003 reduced K‖ by a factor of 10 to make the system tractable
numerically). This problem could be circumvented by employing
an implicit numerical scheme. In the context of cosmic ray propa-
gation, one would expect the advection speed to be not too much
larger than the Alfvén speed. Before discussing a possible remedy
to this problem, we note that, in the case of field-aligned diffusion,
the problem can be even more severe. If we use the product rule and
write Dc = ∇i (Ki j∇ j ec) in the form

Dc = −U c · ∇ec + Ki j∂i∂ j ec, (9)

we see that Uci = −∂Ki j/∂xj plays the role of a velocity transport-
ing cosmic rays perpendicular to curved field lines. This term is
proportional to the divergence of the dyadic product of unit vectors,
∇ · (B̂B̂). At magnetic X-points, this term is singular, as explained
below (we note that O-type singular magnetic points do not cause
difficulties).

We illustrate this complication using a simple magnetic field con-
figuration B = (x, − y, 0)T with a null point at the origin, which leads
to the singular behaviour of ∇ · (B̂B̂), and hence to a singularity of
|U c|:

∇ · (B̂B̂) = 1

r 4

⎛⎜⎝(3y2 − x2)x
(3x2 − y2)y

0

⎞⎟⎠ , (10)

where r2 = x2 + y2. This expression diverges at the origin and leads
to infinite propagation speed which would, technically speaking,
limit to zero the length of the time-step of an explicit time-stepping
scheme. In spite of this singularity, the cosmic ray energy density
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must stay finite. In fact, one can show that, in a closed or periodic
domain, the maximum cosmic ray energy density, max(ec), can only
decrease with time. This is a well-known general property of the
diffusion operator; in Appendix A we derive this result for the form
of the diffusion tensor appropriate for cosmic rays. The reason that
max(ec) can remain finite, despite ∇·(B̂B̂), and hence U c, becoming
infinite, is that the parabolic system of equations can adjust itself
instantaneously so that ∇ec tends to zero where U c diverges. A
numerically convenient remedy to this problem will be discussed
in Section 2.3, where a non-Fickian diffusion model is used. In the
following, we describe this approach in more detail.

A physically appealing, and widely adopted way to improve the
diffusion equation so as to limit the propagation speed to a finite
value involves a more accurate description of the diffusive flux. This
generalization has been applied, for example, to turbulent diffusion.
In turbulence, the classical turbulent diffusion equation, ∂n/∂t =
D∂2n/∂x2, arises if the turbulent velocity field is assumed to be
δ-correlated in time; this approximation is consistent with equa-
tion (7) or its simplifications. In order to ensure finite propagation
speed of the diffusing substance, it is sufficient to allow for a finite
correlation time τ of the velocity field. This leads to equation (11)
for the diffusive flux. The corresponding equation for the diffusing
quantity reduces to the telegraph equation ∂n/∂t + τ ∂2n/∂t2 =
D ∂2n/∂x2, or its generalizations. These arguments have been re-
cently discussed by Bakunin (2003a,b). The telegraph equation has
been used to correct acausal cosmic ray diffusion models (e.g. Gom-
bosi et al. 1993). This type of non-Fickian diffusion also emerges
quite naturally in turbulent diffusion of passive scalars (Blackman
& Field 2003) and has been confirmed in direct simulations (Bran-
denburg, Käpylä & Mohammed 2004). On long enough time-scales,
or for sufficiently small values of τ , the non-Fickian description of
diffusion reduces to the Fickian limit.

Thus, we replace equation (7) by

∂Fci

∂t
= −K̃i j∇ j ec − Fci

τ
(non-Fickian diffusion), (11)

where Ki j = τ K̃i j corresponds to the original diffusion tensor.
Similarly to equation (8), we write

K̃i j = K̃⊥δi j + (K̃‖ − K̃⊥)B̂i B̂ j . (12)

Quantitatively, the deviation from Fick’s law is controlled by the
dimensionless parameter

St = K̃ 1/2
‖ τ

	
= (K‖τ )1/2

	
, (13)

where 	 is the typical length-scale of the initial structure. In the
context of turbulent diffusion, this dimensionless parameter is often
referred to as the Strouhal number (Krause & Rädler 1980; Landau &
Lifshitz 1987). The larger the Strouhal number, the more important
are non-Fickian effects resulting in a wave-like behaviour of the
solution. Unlike the solution of the classical diffusion equation,
where an initial perturbation to the trivial solution has an effect at
every position for any t > 0, solutions with non-Fickian diffusion
remain unperturbed ahead of a propagating front.

A suitable estimate of the Strouhal number can be obtained as-
suming that the relevant correlation time is of the order of the
Alfvén crossing time for magnetic structures of scale 	, that is, St �
(K‖/VA 	)1/2. This yields (for gas number density 0.1 cm−3)

St � 20

(
K‖

4 × 1028 cm2 s−1

)1/2 (
B

5 μG

)−1/2 (
	

10 pc

)−1/2

. (14)

In Fig. 1, we illustrate the one-dimensional spread of an initial Gaus-
sian distribution of cosmic rays, ec = exp(− 1

2 x2/	2) after t = τ for

Figure 1. The spread of an initial Gaussian distribution of cosmic ray energy
density (of a half-width 	): the distribution at a time t = 1 is shown, as a
function of x/	, for three values of the Strouhal number St. Note that the
behaviour of the solution becomes more wave-like as St increases.

three values of St. For small values of St, the solution evolves sim-
ilarly to that of the diffusion equation (solid and dotted lines in
Fig. 1). For large values of St, the distribution of cosmic rays devel-
ops two local maxima of ec that propagate outwards as shown with
dashed line, a typical wave-like behaviour. In the limiting case of
very large values of St, the governing equation reduces to the wave
equation, and the classical diffusion is recovered for St → 0.

In some sense, the extra time derivative in the non-Fickian for-
mulation plays a role similar to that of the displacement current
in electrodynamics. In simulations of hydromagnetic flows at low
density, where the Alfvén speed can be very large, the displace-
ment current can be included with an artificially reduced value of
the speed of light in order to limit the Alfvén speed to numerically
acceptable values (Miller & Stone 2000).

A comment regarding centred finite difference schemes is here in
order. In the steady state, the discretization of the cosmic ray diffu-
sion model given by equations (6) and (11) corresponds essentially
to a conservative formulation of the diffusion term. (A conservative
formulation involving a direct discretization of ∇2 is not possible
with a non-staggered mesh, because two first-order derivatives oc-
cur in two separate equations.) As is well known, the discretization
of the diffusion term on a centred non-staggered mesh means that
structures at the mesh scale cannot be diffused (the discretization
error for first derivatives becomes infinite). Therefore, we need to
include weak Fickian diffusion in the cosmic ray energy equation.
We refer to the corresponding (isotropic) diffusion coefficient as
KFick, and it will be chosen to be comparable to or less than the
viscous and magnetic diffusivities.

In the following, we use the PENCIL CODE,1 a non-conservative,
high-order, finite-difference code (sixth order in space and third or-
der in time) for solving the compressible hydromagnetic equations.
The non-Fickian diffusion formulation is invoked by using the COS-
MICRAYFLUX module. Whenever possible, we display the results in
non-dimensional form, normalizing in terms of physically relevant
quantities. In all other cases, we display the results in code units,
which means that velocities are given in units of the sound speed
cs, length is given in units of k−1

1 (related to the scale of the box),
density is given in units of the average density ρ0, and magnetic
field is given in units of

√
μ0ρ0 cs. The units of all other quanti-

ties can be worked out from these. For example, the unit of Qc is

1 http://www.nordita.dk/software/pencil-code.
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ρ0c3
s k1. For the ISM with ρ0 = 10−24 g cm−3, cs = 10 km s−1, and

k1 = 2π/100 pc, the unit of the cosmic ray injection rate is 3 ×
10−26 erg cm−3 s−1, which is about 10 per cent of the rate of energy
injection by supernovae in the galactic disc (Mac Low & Klessen
2004). The unit for diffusivity is csk−1

1 ≈ 5 × 1025 cm2 s−1.

2.3 Cosmic ray diffusion near a magnetic X-point

We test the field-aligned diffusion procedure by simulating in two
dimensions a magnetic field configuration similar to the X-point
discussed in Section 2.2. In order to be able to impose normal-field
boundary conditions, n̂ × B = 0 at the domain boundaries, we
modify the field to B = (sin k1x, − sin k1y, 0)T , where k1 is the
smallest wavenumber in a periodic domain. So, for k1 = 1 we con-
sider the domain −π < (x, y) < π. The initial distribution of the
cosmic ray energy density is ec = x, which has a constant gradient
and therefore, with Fickian diffusion, Dc = ∇ · (B̂B̂) would have
a singularity initially. However, in the non-Fickian approach Dc is
not calculated as in equation (9), which resolves this problem. The
evolution of ec for τ = 0.1 is shown in Fig. 2 together with vectors
showing the magnetic field. Note that the gradient of ec becomes
small in the neighbourhood of the singularity of ∇ · (B̂B̂) at the
origin, so the otherwise singular term that multiplies ∇ec has no ef-
fect on ec, as desired. In the case of the Fickian diffusion, the same
final solution would have been obtained, but the initial reduction
of the gradient in ec would have involved an infinitely large advec-
tion speed U c. In the non-Fickian approach, the maximum prop-
agation speed is K̃ 1/2

‖ , thereby alleviating the numerical time-step
problem.

Another example of field-aligned diffusion is shown in Fig. 3,
where the magnetic field is given by B = B0 + ∇ ×A with
B0 = 0.1x̂ and A = 0.1ẑ cos(kx x) cos(ky y) with kx = 4k1 and
ky = k1. Again, this magnetic field is held constant in time. The
initial profile of ec ∝ exp(−r2/2σ 2), with r2 = x2 + (y + 0.5)2, is a
two-dimensional Gaussian of a half-width of σ = 0.07, positioned
at (0, − 0.5). We confirm that our implementation of cosmic ray
diffusion allows us to model reliably rather complicated magnetic
configurations. The lower panel of Fig. 3 confirms that, for large val-
ues of the Strouhal number, the wave nature of the telegraph equa-
tion manifests itself and ec develops two waves propagating away
from the initial maximum (similar to the dashed line in Fig. 1).

3 M AC RO S C O P I C E VO L U T I O N O F T H E

C O S M I C R AY G A S

3.1 Energy considerations

In a closed domain, mass is conserved, that is, 〈ρ〉 ≡ ρ0 = 1,
where angular brackets denote volume averaging. The hydromag-
netic equations coupled with cosmic ray dynamics then lead to the
following set of equations for the cosmic ray energy Ec = 〈ec〉, the
gas energy Eg = 〈eg〉, the kinetic energy Ek = 〈 1

2 ρu2〉, and magnetic
energy Em = 〈B2〉/2μ0:

dEc

dt
= −Wc + 〈Qc〉, (15)

dEg

dt
= −Wg + 〈Qk〉 + 〈Qm〉, (16)

dEk

dt
= Wc + Wg + Wm + Wf − 〈Qk〉, (17)

Figure 2. Evolution of the cosmic ray energy density near a magnetic
X-point: snapshots of ec (shown as contours and shades of grey/colour)
for field-aligned diffusion along a fixed magnetic field B = (sin k1x, −
sin k1y, 0)T (shown as vectors) displayed for three times indicated at the top
of each frame.

dEm

dt
= −Wm − 〈Qm〉. (18)

Here, all the energies are referred to the unit volume. The terms
Wc = 〈pc∇ · u〉, Wg = 〈pg∇ · u〉, Wm = 〈u · (J ×B)〉, and W f =
〈u · f 〉 result from work done against cosmic ray pressure, gas
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Figure 3. Magnetic field vectors together with a grey/colour scale represen-
tation of ec in a kinematic calculation with 1282 mesh points, for different
values of K1/2

‖ τ/σ , with K̃⊥ = 0, K̃‖ = 10−1, and KFick = 10−3, at time
t/τ = 1 for two different values of τ (=1 and 3, respectively). (Only part of
the computational domain in the y-direction is shown).

pressure, the Lorentz force, and the external forcing, respectively.
Terms responsible for viscous and Joule heating and the cosmic ray
energy source are simply given by the volume-integrated terms in the
original equations. Equations (15)–(18) imply that the total energy,
Etot = Ec + Eg + Ek + Em, satisfies the simple conservation law

dEtot

dt
= 〈Qc〉 + Wf. (19)

Thus, the only sources of energy are the injection of cosmic rays and
the external forcing of the turbulence. In the following section, we
demonstrate how Ec can be enhanced by the conversion of kinetic
energy.

3.2 Compressional enhancement of cosmic ray energy

We assume Qc = W f = 0 and that there is initially kinetic energy that
is later redistributed among gas and cosmic rays. We investigate,
using a simple one-dimensional model (∂/∂y = ∂/∂z = 0), how
much energy can be converted into cosmic ray energy via the Wc

term responsible for work done against cosmic ray pressure. As the
initial condition, we use a sinusoidal perturbation of ux and ln ρ

with unit amplitude and Ec = Ec0 = 1, Eg = 1.8, and Ek = 0.21.
The evolution of velocity, cosmic ray and gas energies, as well as
the entropy of the gas are shown in Fig. 4. Here, the entropy s is
defined as s = cv ln(c2

s /ρ
γ−1
g ), where c2

s = γ (γ − 1)eg is the gas
sound speed squared. It turns out that in this case about 78 per cent
of the kinetic energy is transformed into cosmic ray energy and only
22 per cent into thermal energy. This result is, however, sensitive to
the phase shift between density and velocity: if the density is initially
uniform (keeping all other parameters unchanged), the fractional
energy going into cosmic rays is only 23 per cent, whilst 77 per cent
converts into thermal energy.

These results demonstrate that, at least in principle, a sizeable
fraction of the kinetic energy can be converted into cosmic ray en-

Figure 4. Velocity, cosmic ray and gas energy densities, and entropy in an
experiment with a non-linear sound wave that piles up to a shock (γ c =
5/3). Note the significant conversion of kinetic energy into cosmic ray en-
ergy. The conversion into gas energy is comparatively small even though
there is notable entropy enhancement due to the shock. Curves obtained for
different times are shown with different line types as labelled in the first
panel. Time is given in units of k−1

1 (Ec0/ρ0)−1/2.

ergy. Similar experiments have been made in earlier work with a
similar model in the context of shock acceleration of cosmic rays
(see, e.g. Drury & Völk 1981; Jun, Clarke & Norman 1994). In
particular, Kang & Jones (1990) showed that the efficiency of con-
version varies strongly with γ c. However, the conversion of kinetic
energy into cosmic ray energy requires a background of cosmic ray
energy. Decreasing Ec from 1 to 0.1 lowers the fraction of compres-
sionally produced cosmic ray energy density from 78 to 21 per cent.
In contrast to dynamo theory where a weak seed magnetic field is
sufficient to produce equipartition magnetic fields (albeit only in
three dimensions), there is no such mechanism for the cosmic ray
energy. This is related to the anti-dynamo theorem for scalar fields
(Krause 1972). However, for three-dimensional compressible flows,
an exponential dynamo-like amplification of a passive scalar is, in
principle, possible if the passive scalar is represented by inertial par-
ticles (Elperin, Kleeorin & Rogachevskii 1996). Such a mechanism
can work because inertial particles do not feel a pressure gradi-
ent. This can lead to particle accumulation in temperature minima
(Elperin, Kleeorin & Rogachevskii 1997) and in vortices (Barge
& Sommeria 1995; Hodgson & Brandenburg 1998; Johansen,
Andersen & Brandenburg 2004). However, in this paper cosmic
ray particles are treated as non-inertial particles.

3.3 Effect of cosmic ray pressure

Cosmic rays can be confined at large scales by magnetic ten-
sion, where a strong magnetic field can more easily withstand
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Figure 5. Cosmic ray energy density at times indicated at the top of each
panel. Cosmic rays expand from two sources (with injection rate Qc = 10 for
each), one inside a magnetic flux tube and the other one outside. Magnetic
lines are shown with white solid curves whose density is proportional to the
field strength.

deformation driven by cosmic ray pressure gradients. This could
provide a natural mechanism for producing equipartition between
cosmic rays and the magnetic field. This feature can be simulated
in two dimensions in a doubly periodic domain −π < (x, y) < π,
with k1 = 1. The results are illustrated in Fig. 5, where we have
a magnetic tube in 1 < y < 2 with its axis along the x-direction.
We have implemented two local cosmic ray sources with energy
injection profiles

Qc = Qc0

2∑
i=1

exp

[
− x2 + (y − yi )2

2R

]
, (20)

that is, both located on the y-axis, centred at y1 = 0 and y2 = π/2; the
initial half-width for both sources is R = 0.13, so that one source is
within the magnetic tube and the other, outside it. In this experiment,
cosmic ray diffusion is negligible (K̃‖ = K̃⊥ = 0 and KFick = 0.01)
as we intend to explore the effects of cosmic ray pressure alone.
As expected, expansion proceeds nearly isotropically outside the
magnetic structure, but the cosmic ray energy density is channelled
preferentially along field lines inside the tube. At the end of the run,
the aspect ratio of the cosmic ray distribution is about 2:1 inside
the tube. For values of Qc significantly larger than about 10, the gas
density decreases strongly so as to maintain pressure equilibrium
and oppose expansion driven by cosmic rays.

This confirms that cosmic ray dynamics can be strongly affected
by the approximate pressure balance in the ISM.

3.4 Cosmic rays in a partially ordered magnetic field

In this section, we briefly explore the effects of a random magnetic
field on the evolution of the cosmic ray gas. A random component

Figure 6. Cosmic ray energy density (colour/grey-scale coded, with
darker/blue shades corresponding to smaller values) together with magnetic
field lines (solid) in a two-dimensional simulation with a fixed magnetic flux
tube centred around x = 1.5 and a random magnetic field superimposed on
it. Here, K̃‖ = 0.1, K̃⊥ = 0, and τ = 3.

of the interstellar magnetic field can facilitate the isotropic spread-
ing of cosmic rays across the large-scale, preferentially horizontal
magnetic field in the Galactic disc. In addition, a turbulent mag-
netic field can enhance cosmic ray diffusion by destroying the com-
pound diffusion effect (Ptuskin 1979; Kóta & Jokipii 2000, and ref-
erences therein) due to the exponential local divergence of magnetic
lines.

To allow for cosmic ray losses through the x-boundaries, we re-
lax the assumption of periodicity in that direction. At x = ±π, we
assume ec = 0, together with ∂ρ/∂x = ∂eg/∂x = 0. This implies
that cosmic rays may be lost from the domain but gas may not. In
the y-direction, we again use periodic boundary conditions.

We consider a two-dimensional system with a regular magnetic
field B0 directed along the y-axis and confined to a flux tube
as shown in Fig. 6, where the field strength has a profile B0 ∝
sech2[(x − 1.5)/0.5]. An isotropic random magnetic field δB is
superimposed on B0, with δB2/B2

0 = 1 at x = 1.5 where B0 is max-
imum; the magnetic field does not evolve. The random magnetic
field is implemented in terms of a magnetic vector potential given
as white noise with Gaussian probability density which, because of
two dimensions, implies a k3 power spectrum for the magnetic en-
ergy. We also assume zero velocity for all times, so we just advance
equations (2) and (11) in time, using equation (6). Cosmic rays are
injected at a constant rate across the domain, Qc = constant.

In Fig. 6, we show the result of such a calculation with K̃⊥ = 0;
the distribution of cosmic rays in x is asymmetric reflecting the
asymmetry in the relative amount of disorder of the magnetic field,
δB2/B2

0 . This asymmetry can be seen more clearly in Fig. 7 which
shows the evolution of cosmic ray energy density averaged in the y-
direction. (Note, however, that the steady state is only attained after
very long times. Here, t = 2000 corresponds to tτ K̃‖k2

1 = 600.)
The effective perpendicular diffusivity due to the randomness of

the magnetic field, K(eff)
⊥ (x), can be obtained from the steady-state
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Figure 7. Cosmic ray energy density from the model of Fig. 6 averaged in
the y-direction for times 125 × 2n with n = 0, . . . , 4. The magnetic tube
is located at x = 1.5 leading to an asymmetric distribution of cosmic ray
energy density.

Figure 8. The profile of K(eff)
⊥ (solid) obtained from equation (22) using

ec corresponding to the upper curve of Fig. 7, and χ = 3B2
x /B2

y (dashed),
where By has both large-scale and random parts, whereas Bx is a purely

random magnetic field. Here, Kmax = 0.023 is the maximum value of K(eff)
⊥ .

equation

d

dx

[
K (eff)

⊥ (x)
dec

dx

]
= −Qc, (21)

which can be integrated to obtain

K (eff)
⊥ (x) = (x0 − x)Qc

(
dec

dx

)−1

, (22)

where x0 is the position where dec/dx = 0. The resulting profile of
K(eff)

⊥ , shown in Fig. 8 along with

χ = δB2

B2
0 + (1/3)δB2

= 3
B2

x

B2
y

, (23)

confirms that the effective perpendicular diffusion is controlled by
the degree of randomness of the magnetic field (see e.g. Chuvilgin
& Ptuskin 1993).

4 C O S M I C R AY S I N A M AG N E T I C F I E L D

P RO D U C E D B Y DY NA M O AC T I O N

Three-dimensional turbulence is capable of dynamo action for
sufficiently large magnetic Reynolds numbers, and the dynamo-
generated magnetic field organizes itself into random flux tubes or
sheets (e.g. Zeldovich, Ruzmaikin & Sokoloff 1990; Brandenburg,
Procaccia & Segel 1995; Brandenburg & Subramanian 2005, and
references therein). Most studies of cosmic ray dynamics neglect
the specific features of the magnetic fields produced by turbulent
dynamos. We provide here a preliminary discussion of cosmic ray
evolution in a magnetic field generated by a turbulent flow of electri-
cally conducting fluid. The magnetic field structure of these simula-
tions is realistic enough to include important physical effects, such

as the enhancement of cosmic ray diffusion by turbulent fields, as
mentioned in Section 3.4.

Magnetic field produced by the dynamo action is rather differ-
ent from that prescribed as, say, a random vector field with given
spectrum and Gaussian statistical properties of the components.
In contrast to such ad hoc models, dynamo magnetic fields can
be strongly intermittent (i.e. dominated by intense magnetic fila-
ments, ribbons and sheets) and varying in time (see Brandenburg &
Subramanian 2005, and references therein); both features can af-
fect the propagation of charged particles. Moreover, since both gas
flow and magnetic field are random (in space and time), any rela-
tion between cosmic ray energy density and other parameters of the
medium (e.g. magnetic energy density or gas density) can only be
statistical. Therefore, we expect that the energy density of cosmic
rays can locally (and at any given moment) significantly exceed,
say, the magnetic energy density. However, one would expect that
some form of equipartition between energy densities of (or forces
due to) cosmic rays and magnetic fields can be maintained on av-
erage. We note, however, that simulations have not fully confirmed
these expectations; see also Padoan & Scalo (2005).

Our model is realistic with respect to modelling fully non-linear
dynamo action as we simulate consistently both a randomly forced
flow and the magnetic field produced by it, by solving both the
Navier–Stokes and induction equations (with the Lorentz force in-
cluded in the former, and the velocity field obtained from the Navier–
Stokes equation in the latter). The turbulent motions in our model are
driven by a random force explicitly included in the Navier–Stokes
equation. In reality, interstellar turbulence is driven by supernova ex-
plosions that produce strongly compressible flows with very large
Mach numbers locally (some aspects of the relevant models are re-
viewed by Mac Low & Klessen 2004). However, we deliberately
restrain ourselves from a detailed discussion of such more realis-
tic models here (which would also include stratification, disc–halo
connections, velocity shear, etc.), but instead explore just the ef-
fects of magnetic intermittency and variability. We believe that our
simulations capture at least some of the most important effects of
interstellar dynamo action on the cosmic ray propagation (within
the limits of our model for the cosmic rays).

The turbulence in our simulations is driven helically by a forcing
function f in the Navier–Stokes equation, as was done in the sim-
ulations of Brandenburg (2001), for example. At x = ±π, we use
stress-free normal field boundary conditions (as was also done in
Brandenburg & Dobler 2001), and assume ec = 0 on the bound-
aries as in Section 3.4. In the other directions, we take periodic
boundary conditions. Our analysis of the results presented below
only uses positions that are some distance away from the domain
boundaries (Lx/8 on both boundaries) to reduce their influence. (In-
cluding boundary points merely tends to decrease the magnitude
of the correlation coefficients between the various energy densities,
but it does not change the results qualitatively.) The forcing function
is given in Appendix B and its (dimensionless) amplitude for the
simulation shown here is chosen to be f 0 = 2, which produces an
rms Mach number of about 1.2.

The forcing wavenumber is chosen to be kf = 1.5 k1. This value
is close to the wavenumber corresponding to the box size, k1 =
2π/Lx , so we do not expect to have clearly distinct large-scale and
small-scale magnetic fields. Generally, the flow helicity allows us
to obtain dynamo action at relatively small values of the magnetic
Reynolds number defined as Rm = urms/(ηkf). However, because of
the non-periodic boundaries in the x-direction, and also because of
the weak scale separation (kf/k1 is not very large), the critical value
of Rm with respect to the onset of dynamo action is still around
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Figure 9. Time-series of magnetic (Em), kinetic (Ek) and cosmic ray (Ec)
energies in a dynamo simulation. Here, time is given in turnover times
(urms kf)−1, and ec0 = L2

x Qc/K‖ is used to normalize energies per unit
volume. The thermal energy of the gas is constant with Eg/ec0 ≈ 0.7.

Rm,cr = 30, which is similar to what would be expected for a non-
helical random flow in a periodic domain. The simulation presented
here has Rm ≈ 150. The kinematic growth rate of the rms magnetic
field is about 0.06 urmskf. In Fig. 9, we show the evolution of the
magnetic energy together with kinetic and cosmic ray energies. We
see that the magnetic field grows exponentially for t � 150/(urms kf)
and then saturates – in agreement with earlier simulations quoted
above. We note that the energy density of cosmic rays is much larger
than magnetic energy density at these early times; nevertheless, the
cosmic ray energy increases rather slowly after t � 50/(urmskf). The
steady-state energy density of cosmic rays is controlled by their
injection rate Qc and their diffusivity: solutions of equation (21)
are proportional to Qc/K (eff)

⊥ . However, the effective diffusivity of
cosmic rays is controlled by the degree of tangling of the magnetic
field rather than by the field strength itself; see, for example, equa-
tion (23). It is not surprising, then, that even a weak magnetic field
can confine cosmic rays at early times in this model. The linear de-
pendence of the steady-state energy density of cosmic rays on their
injection rate is a direct consequence of the (almost) linear nature
of the cosmic ray dynamics as described by equation (2); the only
non-linearity here is that the cosmic ray energy density affects the
flow through the pressure term, and then the velocity field enters
the induction equation and the advection term for the cosmic rays.
However, this non-linearity is not very strong, and our simulations
confirm a linear dependence of ec on Qc within a broad range of
the latter (at least two orders of magnitude). The magnetic field part
B0 is understood, in the present context, as an average over a scale
smaller than the domain size but larger than, say, the gyroradius of
cosmic ray particles.

For the simulation shown here, we have chosen Qc = 0.01,
which yields a steady-state cosmic ray energy of Ec ≈ 1 in units of
L2

x Qc/K‖. The other parameters of the simulation presented here are
K̃⊥ = 0, K̃‖ = 0.3, KFick = 2 × 10−2, τ = 0.3, η = 5 × 10−3, ν =
0.5. Furthermore, because the Mach number is slightly larger than
unity, an additional bulk viscosity proportional to the negative ve-
locity divergence has been included. This is usually referred to as
a shock viscosity; see Haugen, Brandenburg & Mee (2004) for de-
tails and the definition of a non-dimensional parameter cshock which
is here chosen to be 10. The value of K̃‖ is chosen to be close to the

Figure 10. Cosmic ray energy density (colour/grey-scale coded, with lighter
shades/redder colour corresponding to larger values) and magnetic field vec-
tors in a slice taken from a dynamo simulation. The magnetic field vectors
are more numerous where magnetic field strength is larger.

maximum Alfvén speed squared. The magnetic field produced by
the dynamo has pronounced magnetic filaments whose half-width
(radius) is about 	 = 0.2, which is consistent with the estimate 	 �
πk−1

f R−1/2
m,cr suggested by Subramanian (1999). For τ = 0.3 and 	 =

0.2, we have St ≈ 1 from equation (13). The steady-state mean ki-
netic energy density depends directly on the intensity of the forcing.
On the other hand, the ratio of magnetic to kinetic energy densities is
controlled by the nature of the dynamo action. The above parameter
values have been chosen so as to ensure that the energy densities of
magnetic field and cosmic rays are of the same order of magnitude
in the statistically steady state.

In Fig. 10, we show a typical cross-section of the cosmic ray en-
ergy density and magnetic field vectors from the three-dimensional
dynamo simulation of Fig. 9 at t = 250/(urmskf). The cosmic ray
energy density declines towards the boundaries at k1x = ±π, where
the boundary condition ec = 0 is imposed, and shows some moderate
variation inside the domain. There is no pronounced correlation with
magnetic field strength even though imprints of the field-aligned dif-
fusion can clearly be seen, for example, between (x, y)k1 = (−1,
−1) and (0, 0). We show in Fig. 11 a two-dimensional joint proba-
bility density function of log B2 and ec (normalized to unit integral
as usual), which demonstrates the lack of any notable correlation
between these variables. The finite lifetime of magnetic structures
produced by the dynamo must be one of the reasons of the lack
of correlation between the two variables. There is some correlation
between gas density and cosmic ray energy density, as shown in
Fig. 12, but the cross-correlation coefficient is only 0.54, with the
best-fitting dependence ec/ec0 � ρ/ρ0.

If the injection rate of cosmic rays is reduced by a factor of 10
to Qc = 10−3, the resulting steady-state mean value of the cosmic
ray energy density is found to be reduced by about the same factor.
The relation between cosmic ray energy density and gas density still
appears to be nearly linear, but the cross-correlation coefficient is
now larger, varying with time in the range 0.7–1.
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Figure 11. Two-dimensional histogram (or joint probability density) of
magnetic pressure and cosmic ray energy density. Here, ec0 = L2

x Qc/K‖
is used to normalize ec. The two-dimensional probability density is calcu-
lated using only points at a distance greater than Lx/8 from the boundaries
in an attempt to avoid the regions where the distribution of ec is affected by
the boundary conditions.

Figure 12. As in Fig. 11, but for gas density and cosmic ray energy density,
showing a modest correlation between the two. The correlation coefficient
is r = 0.54, and the straight line is a best-fitting line.

We have also explored a run with a Mach number of 0.2 (achieved
by using a weaker driving force; f 0 = 0.05) but with the same
injection rate of cosmic rays as above, Qc = 0.01. The resulting
steady-state mean energy density of cosmic rays exceeds those
of magnetic field and turbulence, Ec/ec0 � 1, Ek/ec0 � 0.02 and
Em/ec0 � 0.01. This produces significant anticorrelation between
cosmic ray energy density and gas density (cross-correlation coef-
ficient of −0.94), with a linear dependence between ec and ρ.

The latter anticorrelation may be attributed to the average pressure
equilibrium in the domain, while a positive correlation in the super-
sonic flow may arise as both gas and cosmic rays are compressed by
the gas flow. We have confirmed that no positive correlation between
cosmic rays and gas density occurs if the cosmic ray advection is
neglected.

The model illustrated in Figs 9 and 10 is close to energy equipar-
tition between cosmic rays, magnetic field and turbulence. We note,

however, that the Lorentz force and the cosmic ray pressure gradi-
ent have very different magnitudes because the field-aligned cos-
mic ray diffusivity is much larger than the magnetic diffusivity.
As a result, the cosmic rays are distributed more uniformly than
the magnetic field and the gas density and so the cosmic ray pres-
sure gradient is comparatively small. For the values of the diffu-
sivities given above, the ratio of the rms cosmic ray pressure gra-
dient, Fc, and the rms Lorentz force Fm, is typically about 0.1 of
the ratio of the corresponding mean energy densities; this also ap-
plies if the Lorentz force is replaced by the gradient of kinetic
energy density. The typical length-scale of the magnetic field is
about 	 � l0R−1/2

m,cr and Fm � em/	, with l0 � 100 pc the turbu-
lent scale and Rm,cr ≈ 30 the critical magnetic Reynolds number
for the onset of dynamo action (see above). The length-scale of
the cosmic ray distribution can be estimated as the diffusion scale
over the confinement time τ c � 107 yr, lc � (K‖τ c)1/2; then, for
K‖ = 1028 cm2 s−1,

Fc

Fm
� 	

lc

Ec

Em
� 1

30

Ec

Em
.

This conclusion appears to be model-independent and suggests that
energy equipartition between cosmic rays and other constituents
of the ISM does not necessarily imply that cosmic rays play an
important role in the dynamical balance.

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have presented a preliminary analysis of cosmic ray propaga-
tion in a magnetic field produced by dynamo action of a turbulent
flow. The confinement of cosmic rays resulting from their scat-
tering by magnetohydrodynamic waves can be modelled with an
equation similar to equation (2), where the advection velocity is
a linear combination of gas velocity and Alfvén velocity (Skilling
1975). Our results are based on advection with the local gas veloc-
ity. Padoan & Scalo (2005) considered local variations in cosmic
ray density in the case where the advection velocity is given by the
Alfvén velocity. They predicted that ec ∝ n1/2

i , with ni the ion den-
sity. This scaling is expected if the diffusive streaming velocity, −
K‖∇ec, and the effects of cosmic ray pressure are negligible. Our
model can be adapted to test and generalize these results; the anti-
correlation between ec and gas density in one of our models (with
low Mach number) seems to be a direct consequence of pressure bal-
ance, while a positive correlation (obtained at larger Mach number)
may reflect the fact that both cosmic rays and thermal gas experi-
ence similar compression by the gas flow. We have shown that our
model captures naturally the dependence of the effective diffusivity
of cosmic rays on the ratio of random to ordered magnetic field,
δB2/B2

0.
The diffusivity of cosmic rays along the magnetic field is rather

large; the corresponding Strouhal number, defined in equation (13)
may significantly exceed unity, as shown in equation (14). For com-
parison, a similar estimate yields St � 1 for the turbulent kinetic and
magnetic diffusivities in the ISM. This motivates our suggestion that
the standard Fickian diffusion model, which leads to the classical
diffusion equation, may be a poor approximation for cosmic rays,
and a more accurate description leading to some form of the tele-
graph equation might be more appropriate. Formally, the difference
between the two approximations consists of retaining, in the latter
approximation, higher-order terms in the correlation time of the ran-
dom process underlying diffusion. We have introduced this effect
to alleviate numerical problems, but it can be a real physical effect
which deserves further careful study.
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In summary, we have found that the cosmic ray distribution can be
more uniform than the distributions of magnetic field and gas den-
sity. Consequently, we may argue that energy equipartition between
cosmic rays and other constituents of the ISM does not necessar-
ily imply that cosmic rays play a significant role in the dynamical
balance.
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A P P E N D I X A : B O U N D E D N E S S O F C O S M I C

R AY E N E R G Y D E N S I T Y

In this section, we show that, in a closed or periodic domain, max (ec)
can only decrease as a result of (tensorial) diffusion. This is useful
for showing that the diverging behaviour of Uc does not produce a
singularity in ec; cf. Section 2.2. In order to avoid interference from
other effects, we assume that the evolution of ec is only governed
by diffusion, that is,

∂ec

∂t
= ∇i (Ki j∇ j ec). (A1)

Note also that max(ec) = 〈en
c〉1/n for n → ∞. Here, angular brackets

denote volume averages. Thus, using integration by parts, we have

d

dt
〈en

c 〉 = n
〈

en−1
c

∂ec

∂t

〉
= n

〈
en−1

c ∇i
(

Ki j∇ j
)〉

= −n(n − 1)
〈
en−2

c Ki j (∇i ec)(∇ j ec)
〉

� 0 (for any value of n > 1).
(A2)

The last inequality assumes that the diffusion tensor is positive def-
inite, which is true in our case, because

Ki j (∇i ec)(∇ j ec)= (K‖−K⊥)(B̂ · ∇ec)
2+K⊥(∇ec)

2 (A3)

is positive. Therefore, max (ec) must decrease with time.

A P P E N D I X B : T H E F O R C I N G F U N C T I O N

For completeness we specify here the forcing function used in the
present paper. It is defined as

f (x, t) = Re{N f k(t) exp[ik(t) · x + iφ(t)]}, (B1)

where x is the position vector. The wavevector k(t) and the ran-
dom phase −π < φ(t) � π change at every time-step, so f(x, t) is
δ-correlated in time. For the time-integrated forcing function to be
independent of the length of the time-step δt, the normalization fac-
tor N has to be proportional to δt−1/2. On dimensional grounds, it
is chosen to be N = f 0ρ0cs(|k|cs/δt)1/2, where f0 is a dimensionless
forcing amplitude. At each time-step, we select randomly one of
many possible wavevectors in a certain range around a given forc-
ing wavenumber. The average wavenumber is referred to as kf. Two
different wavenumber intervals are considered: 1–2 for kf = 1.5
and 4.5–5.5 for kf = 5. We force the system with transverse helical
waves,

f k = R · f
(nohel)
k with Ri j = δi j − iσεi jk k̂k√

1 + σ 2
, (B2)

where σ = 1 for positive helicity of the forcing function,

f
(nohel)
k = k × ê√

k2 − (k · ê)2
, (B3)

is a non-helical forcing function, and ê is an arbitrary unit vector
not aligned with k; note that | f k|2 = 1.
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