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ABSTRACT

A gauge-invariant and hence physically meaningful definition of magnetic helicity density for random fields
is proposed, using the Gauss linking formula, as the density of correlated field line linkages. This definition is
applied to the random small-scale field in weakly inhomogeneous turbulence, whose correlation length is small
compared with the scale on which the turbulence varies. For inhomogeneous systems, with or without boundaries,
our technique then allows one to study the local magnetic helicity density evolution in a gauge-independent
fashion, which was not possible earlier. This evolution equation is governed by local sources (owing to the mean
field) and by the divergence of a magnetic helicity flux density. The role of magnetic helicity fluxes in alleviating
catastrophic quenching of mean field dynamos is discussed.

Subject headings: MHD — Sun: magnetic fields — turbulence

1. INTRODUCTION

Large-scale magnetic fields produced by dynamo action
tend to have some degree of magnetic helicity. A simple
example is the interlocking of poloidal and toroidal fields in
one hemisphere of a star, seen from stellar dynamo models.
However, in the case of the Sun, there is explicit evidence of
magnetic helicity being present in or coming from active
regions (Seehafer 1990; Pevtsov et al. 1995; Bao et al. 1999;
Berger & Ruzmaikin 2000), coronal mass ejections (De´mou-
lin et al. 2002), and the solar wind (Matthaeus et al. 1982;
Lynch et al. 2005). While the investigation of magnetic he-
licity in the Sun and in the solar wind is interesting in its
own right, there is now also a direct connection with dynamo
theory with the realization that large-scale dynamos must
transport and shed small-scale magnetic helicity in order to
operate on a dynamical timescale rather than the much longer
resistive time-scale (see the review of Brandenburg & Sub-
ramanian 2005a for references). A major difficulty with this
picture is the absence of a meaningful definition for magnetic
helicity density, even for small-scale fields. Magnetic helicity
is a volume integral, usually defined as ,H p A · B dV∫M

where is the vector potential and is the mag-A B p � � A
netic field. However, under a gauge transformation′A p

, which leaves invariant, one has ′A � �L B H p H �
. So H is only gauge-invariant if the -field has noLB · dS B∫

component normal to the boundary or if it vanishes suffi-
ciently rapidly at the boundary of the integration volume. In
most practical contexts, like the Sun or galaxies, however, the
field does not vanish on the boundaries. A possible remedy
might be to consider instead the gauge-invariantrelative mag-
netic helicity, defined by subtracting the helicity of a reference
vacuum field in the same gauge (Berger & Field 1984; Finn
& Antonsen 1985). But the flux of relative helicity is cum-
bersome to work with for arbitrarily shaped boundaries. Also,
the concept of a density of relative helicity is not meaningful,
since it is defined only as a volume integral. Indeed, there is
simply no way that the quantity itself can be gauge-A · B
invariant.

On an earlier occasion, Subramanian & Brandenburg (2004,
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hereafter SB04) considered the evolution of the current helicity
density, , where is the current densityH p J · B J p � � B/mC 0

and is the vacuum permeability (we set in whatm m p 10 0

follows). Note that as well as its flux are locally well defined,HC

explicitly gauge-invariant, and observationally measurable.
Furthermore, from a closure model, Pouquet et al. (1976) show
that thea-effect needed for large-scale dynamos has a nonlinear
addition due to the small-scale contribution to . The buildupHC

of this small-scale current helicity then goes to cancel the ki-
netic part of thea-effect and causes catastrophic quenching of
the dynamo, unless one can have a helicity flux out of the
system. This formed the motivation for the work of SB04. The
major disadvantage in working with , however, is that oneHC

loses the conceptually simple form of the magnetic helicity
conservation law. We propose here instead an alternative means
to define magnetic helicity density for the random small-scale
field, using the more basic Gauss linking formula for helicity,
which can be directly applied to discuss magnetic helicity den-
sity and its flux even in inhomogeneous systems with bound-
aries. The technique applied in calculating the magnetic helicity
evolution, however, is very similar to that employed in SB04.

In the following, we define random small-scale quantities
as departures from the corresponding mean field quantity, e.g.,

for the magnetic field, for the current¯ ¯b p B � B j p J � J
density, and for the velocity. Throughout this¯u p U � U
Letter, we adopt ensemble averages that, in practice, are com-
monly approximated as spatial averages over one or two co-
ordinate directions (see, e.g., Brandenburg & Subramanian
2005a). However, the approach developed below applies also
to the case without a mean magnetic field. Therefore, specific
applications to the mean field dynamo (MFD) will be post-
poned until the end of this Letter.

2. MAGNETIC HELICITY DENSITY

Given the random small-scale magnetic field , one canb(x, t)
also define the magnetic helicity directly in terms of the field,
as the linkage of its flux, using Gauss’s linking formula (Berger
& Field 1984; Moffatt 1969):

1 x � y 3 3h p b(x) · b(y) � d x d y, (1)G �� [ ]34p Fx � yF
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where both integrations extend over the full volume. Suppose
we define an auxiliary field

1 x � y 3a(x) p b(y) � d y, (2)� 34p Fx � yF

then this field satisfies , and , and one can� � a p b � · a p 0
write . This is the origin of the textbook def-3h p a · b d x∫G

inition of magnetic helicity in what is known as the Coulomb
gauge for the vector potential. Provided the field is closed over
the integration volume, this definition can be applied in any
other gauge. Note, however, that for an open system with
boundaries, it isnot useful to go to the definition involving the
vector potential, which is now of course gauge-dependent. We
therefore take the point of view here that the magnetic helicity

defined by equation (1) is the more basic definition of thehG

topological property determining the links associated with mag-
netic fields, and not the definition in terms of the vector po-
tential. We will see below that this then also allows us to define
naturally a gauge-invariant magnetic helicity density for ran-
dom fields, as long as the correlation scale of the field is much
smaller than the size of the system, as the density of correlated
links of the field.

For this, consider to be a random field with a correlationb
function . Here we have defined theb (x, t)b (y, t) p M (r, R)i j ij

difference and the mean , keeping inr p x � y R p (x � y)/2
mind that, for weakly inhomogeneous turbulence, the two-point
correlation and, in fact, all two-point correlations be-M (r, R)ij

low vary rapidly with but vary slowly with . Taking ther R
ensemble average of , we havehG

1 rk3 3h̄ p d R d re M (r, R) . (3)G � � ijk ij 34p r

Next, we suppose that the correlation scalel of the random
small-scale field is much smaller than the system scale ;b RS

i.e., we suppose that there exists an intermediate scaleL such
that with as . Then onel K L K R M (r, R) r 0 FrF r L k lS ij

can do the integral even by restricting oneself to the inter-r
mediate scaleL and still capture all the dominant contributions
to the integral. This then motivates us to define the magnetic
helicity density h of the random small-scale field as̄h pG

. Here,3d R h(R)∫

1 rk3h(R) p d re M (r, R) , (4)� ijk ij 34p r3L

where we can formally let . The above expression forL r �
in equation (4) is our proposal for the helicity density ofh(R)

the random small-scale fieldb. Evidently, is explicitlyh(R)
gauge-invariant. A qualitative description would be to say that
the magnetic helicity density of a random small-scale field is
the density of correlated links of the field. We can now derive
the evolution equation for and also meaningfully (in ah(R)
gauge-invariant manner) talk about its flux. Note that this has
not been possible before, although many papers (e.g., Blackman
& Field 2000; Kleeorin et al. 2000; Vishniac & Cho 2001)
have appealed to the notion of a magnetic helicity flux density
in some qualitative fashion. We will see that the magnetic
helicity evolution equation that we derive reproduces the
known evolution equation for homogeneous turbulence and
generalizes it to the inhomogeneous case by introducing pos-
sible fluxes of helicity.

3. MAGNETIC HELICITY DENSITY EVOLUTION

It is much simpler to work out the evolution equation for
by first going to Fourier space, using the two-scale approachh(R)

of Roberts & Soward (1975), where all two-point correlations are
assumed to vary rapidly with and slowly with . Consider ther R
equal time, ensemble average of the product . The com-f (x )g(x )1 2

mon dependence off andg on t is assumed and will not explicitly
be stated. Let and be the Fourier transforms off andˆ ˆf(k ) g(k )1 2

g, respectively. We can express this correlation asf (x )g(x ) p1 2

, withik·r 3ˆ ˆF(f, g, k, R)e d k∫

1 1 iK·R 3ˆ ˆˆ ˆF(f, g, k, R) p f(k � K)g(�k � K)e d K. (5)� 2 2

Here, and . We define in Fourier1k p (k � k ) K p k � k1 2 1 22

space the correlation and cross-correlation tensors of the - andu
-fields; , ,ˆ ˆˆ ˆb v (k, R) p F(u , u , k, R) m (k, R) p F(b , b , k, R)i j ij i jij

and . In MFD theory, the turbulentˆˆx (k, R) p F(u , b , k, R)jk j k

electromotive force (EMF) is given by , whose com-Ē p u # b
ponents are . Furthermore, in Fourier3Ē (R) p e x (k, R)d k∫i ijk jk

space, we have for the magnetic helicity density

1 1 2 iK·R 3 3ˆ ˆh(R) p e b (k � K)b (�k � K)(ik /k )e d k d K.�� ijk i j k2 2

(6)

We should remark that for an inhomogeneous system, the
Coulomb gauge magnetic helicity density, say ,h̃ p a · b
would have replacing in the Fou-2 2(k � K /2)/(k � K/2) k /kk k k

rier space expression of equation (6). The two expressions
are identical for the homogeneous case, and even in the
weakly inhomogeneous case up to first-order terms in ,K/k
but not in general. So, in general.˜h(R) ( h(R)

In order to compute the magnetic helicity evolution, we use
the induction equation for in Fourier space, pˆb �b (k)/�ti

� . Here is the Fourier transform of the small-scaleˆ ˆe ik e eipq p q q

electric field , which is given by (e.g., Moffatt 1978)eq

¯ ¯e p �u � B � U � b � u � b � u � b � h j. (7)

Substituting this in the time derivative of equation (6), we get,
after some straightforward algebra,

�h(R) 1 1ˆˆp �2 e (k � K)b (�k � K)�� � q q2 2{�t

1 12 ˆˆ� 2(K k /k )e (k � K)b (�k � K)j q q j2 2

1 12 ˆˆ� (K k /k )e (k � K)b (�k � K)}s s q q2 2

iK·R 3 3# e d K d k. (8)

We denote the integrals over the three terms in curly brackets
above as , , and , respectively. From the definition ofA A A1 2 3

F in equation (5), the first term is simply , orA p �2e · b1

¯ ¯¯A p 2b · (u � B) � 2hj · b p �2E · B � 2hj · b, (9)1

where is the turbulent EMF. Note that for homo-Ē p u � b
geneous turbulence, only the term survives. This is becauseA1
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the other two terms, which involve a large in the integrand,Ki

will introduce a large-scale derivative when evaluating theRi

integral over , and this vanishes in the homogeneous case.K
So, for the homogeneous case, we recover a local generalization
(without volume integration) of the magnetic helicity conser-
vation equation (Brandenburg & Subramanian 2005a):

¯¯�h/�t p �2E · B � 2hj · b (from A term only). (10)1

In the inhomogeneous case, since the terms and areA A2 3

scalars that depend on in the integrand, and hence a large-Ki

scale derivative, they will contribute purely to the flux ofRi

helicity. The only term that involves volume generation of the
helicity density is the term, which we see involves corre-A1

lations no higher than the two-point one. This is in contrast to
the current helicity evolution, which involved undetermined
triple correlations in their volume generation (see SB04).

Let us now evaluate the helicity fluxes given by andA2

. This involves straightforward but tedious algebra. We alsoA3

work out the flux to the lowest order in theR derivative. There
are again three main types of contributions due to different
parts of the electric fielde. First there is a contribution pro-
portional to due to that part . In Fourier¯ ¯B e p �u � B � …
space, this gives . We sub-′ ′ ′ˆ̄ˆ ˆe (k) p e u (k � k )B (k )dk∫q qlm m l

stitute this into the expressions for and , change the var-A A2 3

iables to , use the definition for , and evaluate′ ′K p K � k x ij

the integrations over and , retaining only terms to lowest′ ′K k
order in theR derivatives. We then get andVC¯A p �∇F2 j j

, where the mean field–dependent fluxesA VC¯ ¯A p �∇F F3 j j j

and are given byAF̄j

VC �2 3¯F̄ p e B (R) ik x k d k,i qlm l � q mi

A �2 3¯F̄ p �e B (R) ik x k d k. (11)i qlm l � i mq

Note that only depends on the antisymmetric part of theAF̄i

cross-correlation , whereas is sensitive to the symmetricVC¯x Fmq i

part as well. Now consider the contribution proportional to the
mean velocity from the part of the electric field ¯e p �U �

. The evaluation of this follows the same steps as inb � …
evaluating equation (11), except that one can map andu r bm l

. This gives , where the flux duebulk¯ ¯ ¯B r U A � A p �∇Fl m 2 3 j j

to bulk motions is given by

bulk �2 3¯F̄ p e U (R) (2ik m � ik m )k d k. (12)i qlm m � q li i lq

Indeed, if the magnetic correlations were isotropic, then it is
easy to simplify this further, and one gets , exactlybulk ¯F̄ p hUi i

as one should for an advective flux!
The contribution to the fluxes from (seee p �u � b

eq. [7]) introduces triple correlations in the flux, which then
need a closure theory to evaluate. We denote this flux term as

. However, since this triple correlation comes only in thetripleF̄i

flux, and not the volume generation term, it is likely that its
value can be constrained by a conservation law. This will be
examined in more detail in the future. Note also that the con-
tribution to the helicity flux from is zero ande p u � b � …
that the resistive contribution from is likely to bee p h j � …
negligible compared to the terms that we retain.

Putting all our results together, we can write for the evolution
of the magnetic helicity density

¯ ¯¯�h/�t � � · F p �2E · B � 2hj · b, (13)

where the flux is . We shouldVC A bulk triple¯ ¯ ¯ ¯ ¯F p F � F � F � Fi i i i i

emphasize that equation (13) is alocal magnetic helicity con-
servation law. If one were unable to define a gauge-invariant
magnetic helicity density, one would only have an integral
(global) conservation law, as in previous studies. Further sim-
plification of the helicity fluxes for use in, say, MFD models
requires the evaluation of the turbulent EMF tensor , whichx ij

can be done only under a closure scheme and will be presented
elsewhere. It turns out that is a generalization of the mag-VCF̄i

netic helicity flux obtained by Vishniac & Cho (2001), which
is particularly important in the presence of strong shear (Bran-
denburg & Subramanian 2005b). The fluxes used by Kleeorin
et al. (2000) can arise from both and the contributions ofAF̄i

the antisymmetric parts of the correlations to . The mag-VCF̄i

netic helicity fluxes also vanish if the turbulence is homoge-
neous. For isotropic but inhomogeneous turbulence, alsoVCF̄i

depends purely on the antisymmetric part of , just like .A¯x Fij i

Furthermore, the VC andA fluxes are proportional to two-point
correlations ( ) and the mean field (see eq. [11]); this is¯x Bij

unlike the two-dimensional case (Silvers 2006).
Since the small-scale magnetic helicity opposes the kinetic

part of the a-effect (Pouquet et al. 1976), its loss through
corresponding magnetic helicity fluxes can alleviate this
quenching effect (Blackman & Field 2000; Kleeorin et al. 2000;
Vishniac & Cho 2001). Note that thea-effect quantifies the
contribution of that is aligned with the mean field; i.e.,Ē

for the simplest case of a scalara-effect. For a¯Ē p aB � …
closed system, equation (10) applies, and, in the stationary
limit, this predicts , which tends to zero as¯Ē · B p �hj · b

for any reasonable spectrum of current helicity. Thish r 0
leads to a catastrophic quenching of the turbulent EMF parallel
to . In the presence of helicity fluxes, however, we haveB̄

in the stationary limit, and so1 ¯¯ ¯¯ ¯E · B p � � · F � hj · b E · B2

need not be catastrophically quenched. The turbulent magnetic
helicity fluxes worked out here are therefore crucial for the
efficient working of the mean field dynamo. Numerical work
in determining thea-effect did show a 30-fold increase in
simulations that allowed helicity fluxes to develop (Branden-
burg & Sandin 2004). However, a more convincing demon-
stration of the importance of helicity fluxes comes from a dy-
namo simulation in the presence of shear showing that only
with open boundaries can a significant large-scale field of equi-
partition field strength develop (Brandenburg 2005).

4. CONCLUSIONS

We have proposed here a local gauge-invariant definition of
magnetic helicity density for random fields in weakly inho-
mogeneous systems, which can also have boundaries. This is
particularly useful in the context of MFDs since one can then
meaningfully discuss magnetic helicity fluxes and the local
effect of Lorentz forces. We have derived an evolution equation
for the local magnetic helicity density and showed that they
naturally involve helicity fluxes, which may alleviate the prob-
lems associated with MFDs (Shukurov et al. 2006). Our work
therefore lays the conceptual foundation for the many discus-
sions of the effects of helicity fluxes already existing in the
literature and for future explorations.

Future applications might include the use of equation (4)
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together with an assumption of isotropy to estimate the spatial
variation of magnetic helicity density by measuring at least one
of the off-diagonal components of . This type of ap-M (r, R)ij

proach has been adopted by Matthaeus et al. (1982) to deter-
mine the magnetic helicity in the solar wind by measuring just
a time series of an off-diagonal component of under theM (r)ij

Taylor hypothesis. However, no dependence on the large-scale
coordinate has been determined. In principle, similar ideasR
could be applied to determine on the solar surface withouth(R)

necessarily having access to the dependence of the magnetic
field with depth.
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