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1 The context of the solar dynamo

At the moment we do not really know the location of the
solar dynamo. It is widely assumed that it is located at the
bottom of the convection zone, or that at least its toroidal
field resides mostly at the bottom. However, this may not be
the case, and instead a major part of the toroidal field may
reside in the bulk of the convection zone – possibly even as
high up as the near-surface shear layer, corresponding to the
outer 35 Mm of the Sun (Brandenburg 2005). In this intro-
ductory section we discuss certain problems and properties
associated with this proposal.

A particularly exciting possibility is to associate the
equatorward migration of sunspot activity with the negative
radial shear in the near-surface shear layer. This, together
with a positive α effect in the northern hemisphere, could,
according to standard mean-field theory (Krause & Rädler
1980), give rise to equatorward migration of the mean field.
An obvious problem associated with this proposal is the fact
that the near-surface shear layer is rather thin, and so the re-
sulting aspect ratio of the container would favour solutions
with many toroidal flux belts in one hemisphere (Moss et al.
1990).

Another potential problem might be the fact that the lo-
cal turnover time in the near-surface shear layer is rather
short (1 day compared to 12 days in the lower part of the
convection zone). This is sometimes thought to be a diffi-
culty if one wants to explain cycle times many times longer
than this. However, it may not be justified to draw such a
conclusion based on conventional mean field theory that ig-
nores the effects of magnetic helicity conservation. This is
true not only for near-surface shear layer dynamos, but even
for what is now usually referred to as the Babcock-Leighton
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dynamo (Dikpati & Charbonneau 1999), which is based on
a nonlocal α effect (the field at the bottom of the convec-
tion zone affects the electromagnetic force at the surface);
see Brandenburg & Käpylä (2007) for an explicit demon-
stration. Even mean-field effects other than those based on
an α effect, e.g. the so-called shear-current effect of Ro-
gachevskii & Kleeorin (2003), produce magnetic helicity in
the mean field and tend to generate also magnetic helicity of
suitable sign in the small scale field in order to quench the
dynamo. The latter drives a magnetic α effect that affects
the mean electromotive force in a way which quenches the
shear–current effect even if there is no kinetic α effect in the
usual sense (Brandenburg & Subramanian 2005).

Quite generally, when the magnetic Reynolds number is
large, mean field dynamos are only able to operate on time
scales faster than the resistive time provided the resulting
small scale magnetic helicity is shed from the dynamo do-
main. That the Sun sheds significant amounts of magnetic
helicity through active regions and coronal mass ejections is
now well known (Démoulin et al. 2002). Thus, it seems that
an important ingredient of any solar dynamo model should
be a penetrable surface that allows magnetic helicity to es-
cape from the dynamo domain. An important aim of future
work is therefore to improve our understanding of dynamos
that are controlled by magnetic helicity fluxes.

Considerable progress has recently been made by using
direct simulations of the solar dynamo. The simulations of
Brun et al. (2004) and Browning et al. (2006) suggest that
dynamo action in the lower overshoot layer leads to cyclic
reversals. However, there is at present no clear evidence for
migratory behaviour. On the other hand, current mean field
modelling assumes that the magnetic field propagates equa-
torward due to the meridional circulation that flows equa-
torward at the bottom of the convection zone (e.g. Dikpati
& Charbonneau 1999). However, this approach only works
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by assuming that the turbulent magnetic Prandtl number is
about 100, which is hard to understand, because both theory
and simulations suggest that this value should be around
unity (Yousef et al. 2003). More importantly, circulation–
dominated models neglect the effects of small scale mag-
netic helicity that contributes to the quenching of dynamo
action. It is therefore useful to establish details of magnetic
helicity conservation in spherical geometry. In the present
work we consider both direct three-dimensional simulations
and two-dimensional mean field models.

2 The magnetic helicity constraint

In order to make contact between what has been learnt
from Cartesian and spherical systems it is important to start
with simple cases. This means closed (perfectly conducting)
boundaries and fully helical turbulence in homogeneous (or
nearly homogeneous) domains. At the level of mean field
theory, this means a spatially constant α effect.

Of course, real systems are not uniform and the α effect
changes sign across the equator. Nevertheless, for testing
and illustrative purposes it is useful to consider a uniform
α effect in spherical geometry (Krause & Rädler 1980). If
there is only the α effect and turbulent diffusivity, ηt, in
addition to microscopic diffusivity, η, the mean magnetic
field, B, is governed by the equation

∂B

∂t
= ∇ × αB + ηT∇

2B, (1)

where ηT = ηt + η is the total magnetic diffusivity.1 In a
Cartesian domain of size L the critical value of α for dy-
namo action (i.e. exponentially growing solutions) is

α/ηT > k1 ≡ 2π/L. (2)

For a full sphere the critical value is related to the first zero
of the lowest order spherical Bessel function, i.e.

α/ηT > k1,eff ≡ 4.49/R. (3)

In the present paper we are particularly interested in per-
fectly conducting boundary conditions, because in that case
the magnetic helicity is conserved. This fact yields an inter-
esting quantitative connection between the magnetic ener-
gies contained in large scale and small scale fields, as will
be explained in the following. In a closed domain whose
boundaries are not crossed by any field lines the evolution
equation of magnetic helicity is given by

d

dt

∫
A · B dV = −2η

∫
J · B dV, (4)

where J = ∇ × B is the current density (in units where
the permeability is unity) and B = ∇ × A is the magnetic
field expressed as the curl of the magnetic vector potential.
The integral on the rhs of Eq. (4) is referred to as the current
helicity. Remarkably, in the steady state we then have∫

J · B dV = 0, (5)

1 Both α and ηT are in this section assumed to be constants.

even though there can be strong driving of current helicity
due to the helical nature of the forcing.

Such forcing produces primarily helical fields at the
scale of the driving (we call the associated wavenumber kf ).
If this scale is small compared with the system size (associ-
ated wavenumber k1), we can have current helicity of finite
magnitude at small and large scales.

To elaborate on this further, we define mean fields by
averaging over one or two coordinate directions and denote
the result by an overbar, i.e. we have J = ∇×B and B =
∇ × A. The corresponding fluctuating fields are indicated
by lower case symbols, i.e. b = B − B, etc., so the idea is
then that
〈J · B〉 = −〈j · b〉 �= 0, (6)
where angular brackets indicate volume averages. The wave
numbers (inverse length scales) associated with large and
small scale fields, km and kf , respectively, can be given as
k2
m ≡ 〈J · B〉/〈A · B〉, k2

f ≡ 〈j · b〉/〈a · b〉. (7)

For a fully helical field we also have 〈J · B〉 = ±km〈B
2
〉,

〈j · b〉 = ∓kf〈b
2〉, where the signs depend on the sign of

the helicity. If the large and small small scale fields are not
fully helical we have instead

εm ≡ 〈J · B〉/(km〈B
2
〉), εf ≡ −〈j · b〉/(kf〈b

2〉), (8)
where εm and εf quantify the fractions of the large and small
scale fields that are helical. Inserting this into Eq. (6) yields

〈B
2
〉 =

εfkf

εmkm
〈b2〉, (9)

which shows that the saturation amplitude of the mean
field is proportional to the ratio of the scale separation, i.e.
kf/km, and that lowering the fractional helicity of the small
scale field lowers the saturation amplitude of the large scale
field. Moreover, lowering the fractional helicity of the large
scale field actually enhances the saturation field strength.

All these aspects have been confirmed in Cartesian do-
mains using numerical simulations; see Brandenburg &
Subramanian (2005) for a review. Most surprising is per-
haps the last aspect, i.e. that lowering the fractional helicity
of the large scale field (|εm| < 1) increases the saturation
field strength. Simulations in a Cartesian box, where the
boundaries in one direction are not periodic but perfectly
conducting, show that the energy of the large scale mag-
netic field can exceed the kinetic energy (which is approxi-
mately the energy of the small scale field, denoted by B2

eq)
by a factor that is equal to the scale separation ratio kf/km

(Brandenburg 2001).
In the following we give a brief preliminary discussion

of both helically forced simulations in spherical shell seg-
ments as well as mean field models in spherical shells.

3 Turbulence in spherical shell segments

Three dimensional turbulence simulations in spherical shell
segments have been performed using an experimental ver-
sion of the PENCIL CODE2, which is a non-conservative,

2 http://www.nordita.org/software/pencil-code
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Fig. 1 (online colour at: www.an-journal.org) Visualization of the three magnetic field components in an arbitrarily chosen meridional
plane for a turbulent dynamo in a spherical segment with fully helical forcing with Rm = 30 (see text for boundary conditions).

high-order, finite-difference code (sixth order in space and
third order in time) for solving the compressible hydrody-
namic equations.

In Fig. 1 we show a visualization of the three compo-
nents of a snapshot of the magnetic field after it has reached
saturation. In this run the magnetic Reynolds number is
Rm = 30, where

Rm = urms/(ηkf), (10)

with kf/km = 5, and km = k1 with

k1 = 2π/(R − Rin), (11)

where R − Rin is the the thickness of the shell whose in-
ner and outer radii are given by R and Rin. In the simu-
lations presented here we have used Rin = 0.7 R, which
gives k1 = 21 and kf = 105. The latitudinal and longitudi-
nal extent of the domain is π/10, so the domain is roughly
cubical. This run uses periodic boundary condition along
the azimuthal direction and perfectly conducting boundary
conditions along the other two.

The azimuthal component, Bφ, is particularly promi-
nent and shows a segregation of large scale positive and
negative components in the radial direction, and a pattern
in the latitudinal component that is shifted in the radial di-
rection by 1/4 of the thickness of the shell.

The temporal evolution of the magnetic field is shown
in Fig. 2. The energy of the total magnetic field exceeds
the kinetic energy by about a factor of 3, most of which is
contained in the mean field. These results are similar to be-
haviours observed in simulations in periodic Cartesian do-
mains (see Brandenburg 2001).

4 Mean field models

We next consider 2-dimensional axisymmetric simulations
of Eq. (1) in spherical shells, but with a dynamical α effect
that obeys its own time-dependent differential equation,

∂α

∂t
= −2ηtk

2
f

(
αB

2
− η2

t J · B

B2
eq

+
α − αK

Rm

)
(12)

Fig. 2 Saturation behaviour of the normalized magnetic ener-
gies of the total field, 〈B2〉, and the mean field, 〈B

2

〉, in a three-
dimensional turbulence simulation with Rm = 30, i.e. the same
run as in Fig. 1.

(Kleeorin et al. 1995; Blackman & Brandenburg 2002). The
mean field models were computed using a modified ver-
sion of the finite-difference code described in Käpylä et
al. (2006). Note that α is now no longer constant, but it is
quenched locally relative to the kinematic value, αK, which
is still spatially constant. In closed domains, such as those
considered in this paper, the amount of quenching depends
sensitively on the value of the magnetic Reynolds number,
Rm ≡ ηt/η. Note also that there are no additional free pa-
rameters emerging from this type of nonlinearity.

We begin by considering first the saturation behaviour
of the magnetic field in such a model. Figure 3 shows

the evolution of 〈B
2
〉/B2

eq for a model with Rm = 1000,
kfR = 100, and Rin = 0.5 R, as well as a case with Rm =
30 and Rin = 0.7 R (inset). Also shown is the fit

〈B
2
〉

B2
eq

=
εfkf

εmkm

[
1 − e−2ηk2

1,eff
(t−tsat)

]
, (13)

where tsat is approximately the time when the small scale
field has saturated, and k1,eff is a new effective wavenumber
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Fig. 3 Saturation behaviour of a mean field model with perfect
conductor boundary condition for Rm = 1000, kfR = 100, and
Rin = 0.5 R. The inset shows the result for Rm = 30 and Rin =

0.7 R. Dashed lines give the fit (13).

Fig. 4 Comparison of the saturation behaviours of a mean field
model for perfect conductor (solid line) and vertical field (broken)
boundary conditions.

that might be related to that defined in Eq. (3), or even k1

defined in Eq. (11), but otherwise this is just treated as a
fit parameter. For details regarding the derivation of this fit
formula see Brandenburg (2001).

It turns out that, as the value of Rm is increased, the final
saturation field strength of the large scale field decreases;
see Fig. 4. This behaviour is familiar in the case of open
boundary conditions, but it is unexpected in the case of per-
fectly conducting boundaries. The only difference between
these two cases is that the energy is larger by a factor of
about 10 when the boundaries are perfectly conducting.

Also depicted in Fig. 5 are the time traces of 〈B
2
〉/B2

eq

for different values of Rm. Note that for models with Rm >

300 there is a tendency for a decline of 〈B
2
〉 after having

reached an initial maximum.

5 Conclusions

We have briefly presented preliminary results comparing di-
rect simulations in spherical shell segments with their Carte-

Fig. 5 Saturation behaviour of a mean field model with perfect
conductor boundary condition with different values of Rm, kfR =

300, and Rin = 0.5 R.

sian analogues, on the one hand, and mean field models in
spherical shells, on the other.

Simulations in Cartesian boxes and spherical shell seg-
ments both show qualitatively similar features in the mean
magnetic field as well as similar saturation behaviour in the
normalized mean magnetic field. On the other hand the sat-
uration value is lower in mean field models than in the three-
dimensional simulations.

Clearly more work is needed to clarify further the rela-
tion between these models, before we can proceed to the
arguably more realistic case with a penetrable boundary.
Work is in progress in this direction and will be reported
elsewhere.
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