
THERMAL INSTABILITY IN SHEARING AND PERIODIC TURBULENCE

Axel Brandenburg,
1
Maarit J. Korpi,

2
and Antony J. Mee

3

Received 2006 April 11; accepted 2006 September 7

ABSTRACT

The thermal instability with a piecewise power law cooling function is investigated using one- and three-dimensional
simulations with periodic and shearing-periodic boundary conditions in the presence of constant thermal diffusion and
kinematic viscosity coefficients. Consistent with earlier findings, the flow behavior depends on the average density,
h�i. When h�i is in the range (1Y5) ; 10�24 g cm�3, the system is unstable and segregates into cool and warm phases
with temperatures of roughly 100 and 104 K, respectively. However, in all cases the resulting average pressure h pi is
independent of h�i and just a little above the minimum value. For a constant heating rate of 0.015 ergs g�1 s�1, the
mean pressure is around 24 ; 10�14 dyn (corresponding to p/kB� 1750 K cm�3). Cool patches tend to coalesce into
bigger ones. In all cases investigated, there is no sustained turbulence, which is in agreement with earlier results.
Simulations in which turbulence is driven by a body force show that when rms velocities of between 10 and 30 km s�1

are obtained, the resulting dissipation rates are comparable to the thermal energy input rate. The resulting mean pres-
sures are then about 30 ; 10�14 dyn, corresponding to p/kB � 2170K cm�3. This is comparable to the value expected
for the Galaxy. Differential rotation tends to make the flow two-dimensional, that is, uniform in the streamwise di-
rection, but this does not lead to instability.

Subject headinggs: hydrodynamics — instabilities — ISM: general — turbulence
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1. INTRODUCTION

The importance of thermal instability (TI) has been extensively
studied in the context of the generation and regulation of structures
in the atomic interstellar medium (the so-called cold and warm
atomic phases usually denoted as CNM and WNM; for a review
see, e.g., Cox 2005). The core idea was presented by Field et al.
(1969, hereafter FGH) in their famous two-phasemodel: two ther-
mally stable phases (cold and cloudy; warm and diffuse) coexist in
pressure equilibrium regulated by the presence of a thermally un-
stable phase at an intermediate temperature. After the observa-
tional determination of the existence of significant amounts of hot
gas in theGalaxy, the FGHmodel was complementedwith a third,
hot, phase by McKee & Ostriker (1977), in which model most of
interstellar space was occupied by million-kelvin gas produced in
supernova explosions. Since then, the estimates of the filling fac-
tor of the hot component have been reduced to 10%Y30% near
the Galactic midplane, being larger at larger heights. Moreover,
most of the hot gas seems to be confined in large bubbles created
by clustered supernova activity, rather than being distributed ho-
mogeneously around the Galaxy. In this light, therefore, it seems
justified to neglect the hot component and return to the simpler
FGH picture when modeling the colder and denser phases of the
interstellar medium (ISM).

There have been a number of numerical investigations of the
interaction of turbulence and TI. In most papers the turbulence
is forced by sources other than the TI itself : random turbulent
forcing at varying scales and Mach numbers (e.g., Gazol et al.
2005), localized injections of energy mimicking stellar winds (e.g.,
Vázquez-Semadeni et al. 2000), themagnetorotational instability
(e.g., Piontek&Ostriker 2005), and systematic large-scalemotions

such as propagating shock fronts (e.g., Koyama& Inutsuka 2002)
and converging flows (Audit & Hennebelle 2005) have been
considered. One of the major findings from these models is that,
because of the turbulence present in the system, large pressure
deviations are generated and significant amounts of gas can exist
in the thermally unstable regime. These results suggest that the
FGH picture of the ISM exhibiting ‘‘discrete’’ temperatures and
densities and a unique equilibrium pressure should be modified
in the direction of a ‘‘continuum’’ of states with an overall pres-
sure balance but with large deviations from it.

In recent years, the possibility of driving turbulence by the TI
itself has received some revived attention. Contrary to Kritsuk &
Norman (2002a), who found turbulence to die out as a power law,
Koyama & Inutsuka (2006) find the turbulence to be sustained—
at least for times up to 0.1 Gyr. The possibility of TI-induced
turbulence is potentially similar to the Jeans instability in a self-
gravitating medium that is able to maintain a statistically steady
state in which the instability drives the turbulence and turbulent
heating prevents the disk from cooling into a static equilibrium.
Simulations by Gammie (2001) have shown that such a state of
self-sustained ‘‘gravito-turbulence’’ is indeed possible. Wada et al.
(2000) found a similar result for the case of the combined action
of gravitational and thermal instabilities. The possibility of driv-
ing turbulence by means of instabilities is indeed quite common
in astrophysics. Especially popular is the magnetorotational in-
stability that is known to drive turbulence in disks (Hawley et al.
1995; Brandenburg et al. 1995), but there is also the Rayleigh-
Benard instability, which leads to turbulent convection (e.g., Kerr
1996).

In this paper, we focus on the interaction between turbulence
and the nonlinear stages of the TI, starting from one-dimensional
calculations and extending them to three dimensions. Following
an approach similar to those of Koyama & Inutsuka (2004) and
Piontek &Ostriker (2005), we include thermal conduction, which
stabilizes the gas at wavelengths smaller than the critical wave-
number of the condensation mode (Field 1965). This wavelength
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is usually referred to as the Field length; it allows the structures
generated by the TI to be resolved by the chosen numerical grid.
Other approaches have also been used: In the model of Sánchez-
Salcedo et al. (2002), a nonuniform grid was used to resolve all
the scales down to the cooling length, but nevertheless the required
amount of grid points restricted the calculations to one dimension.
In some models (e.g., Gazol et al. 2005), no bulk viscosity or ther-
mal conduction is used, but they are replaced by local resolution-
dependent artificial viscosities dampingNyquist-scale unresolvable
structures.

2. MODEL

2.1. Governing Equations

We consider the governing equations for a compressible per-
fect gas,

D ln �

Dt
¼ �: = u; ð1Þ

�
Du

Dt
¼ �:pþ: = (2��S ); ð2Þ

T
Ds

Dt
¼ 2�S2þ 1

�
: = (cp��:T )� L; ð3Þ

where u is the velocity, � is the density, s is the specific entropy,
with Sij =

1
2
(ui; j þ uj;i)� 1

3
�ij: = u being the traceless rate-of-strain

tensor, � is the kinematic viscosity, � is the thermal diffusivity, and
L is the net cooling or heating, that is, the difference between
cooling and heating functions, with

L ¼ ��� �; ð4Þ

where � = const is assumed for the heating function. Here we
consider the photoelectric heating by interstellar grains caused
by the stellar UV radiation field, for which Wolfire et al. (1995)
give a value of 0.015 ergs g�1 s�1 at n = 1 cm�3.

Following common practice, we adopt a perfect gas, for which
� and s are related to pressure p and temperature T by the relations

p ¼ R
�
�T ; s ¼ cv ln p� cp ln �þ s0; ð5Þ

whereR = 8.314 ; 107 cm2 s�2 K�1 is the universal gas constant,
� is the mean molecular weight (here we assume � = 0.62 in all
cases and neglect the effects of partial ionization), and R/� =
cp � cv, with cp and cv being the specific heats at constant pres-
sure and volume, respectively; � = cp /cv = 5/3 is their assumed
ratio. The adiabatic sound speed cs and the temperature are re-
lated to the other quantities via c 2

s = �RT /�. The specific entropy
is defined up to a constant s0, whose value is unimportant for the
dynamics.

We adopt a parameterization of the cooling function approxi-
mately equal to that given by Sánchez-Salcedo et al. (2002), which
has been obtained by fitting a piecewise power law function of
the form

�(T ) ¼ Ci; iþ1T
� i;iþ1 for Ti � T < Tiþ1 ð6Þ

to the equilibrium pressure curve of the standardmodel of Wolfire
et al. (1995) for the ISM in the solar neighborhood.When thermal
equilibrium with the chosen background heating function � is
assumed and a continuity requirement for �,

Ci�1; i ¼ Ci; iþ1T
� i; iþ1�� i�1; i

i ; ð7Þ

is taken into account, we arrive at the values of the coefficients
listed in Table 1. The coefficientsCi;iþ1 given by Sánchez-Salcedo
et al. (2002) deviate from this condition by 4%Y8%. It turned out
that with their original coefficients, the flow amplitude showed
spurious oscillations in time, which disappeared when we used
the revised coefficients.
It is convenient to measure time in gigayears, speed in kilo-

meters per second, and density in units of 10�24 g cm�3. Pressure
is therefore measured in units of 10�14 dyn. Our unit of length
is therefore 1 km s�1 ; 1 Gyr = 1.02 kpc; in the following, we
denote the unit of length for simplicity as 1 kpc, keeping in mind
that it should really be 1.02 kpc. Viscosity and thermal diffusivity
are measured in units of Gyr km2 s�2.
We use periodic boundary conditions in all three directions

for a computational domain of size (200 pc)3, which is the typ-
ical domain size employed in simulations of supernova-driven
turbulence in the interstellar medium. However, smaller domains
would be more suitable to resolve the smaller scales, as has been
done by Kritsuk&Norman (2002a), for example.We use the Pen-
cil Code,4 which is a nonconservative, high-order, finite-difference
code (sixth-order in space and third-order in time) for solving the
compressible hydrodynamic equations. Because of the nonconser-
vative nature of the code, diagnostics giving the total mass and
total energy (accounting for heating/cooling terms) are monitored,
and simulations are only deemed useful if these quantities are
in fact conserved to reasonable precision. The mesh spacings in
the three directions are assumed to be the same, that is, �x = �y =
�z.
We emphasize that no shock or hyperviscosity has been used

in the present simulation. Therefore, the only means of stabiliz-
ing the code is through regular viscosity � and thermal diffusiv-
ity �. In order to damp unresolved ripples at the mesh scale �x in
a trail of structures moving at speed U, the minimum viscosity
and minimum diffusion must be on the order of 0.01U �x (see
Brandenburg & Dobler 2002). In all our simulations the veloc-
ities are subsonic, so the fastest pattern speed is given by the
sound speed. In the following we quote the mesh Reynolds num-
ber based on the mean (volume averaged) sound speed, c̄s, and
the mesh size �x,

Remesh ¼ c̄s �x=�: ð8Þ

The minimum viscosity quoted above corresponds to a largest
permissible value of Remesh of about 100. However, in the pres-
ence of strong converging flows and shocks, the largest per-
missible value may be of order unity.
Since we want to use minimal values for � and � in both the

warm and cold components, we keep � and� constant rather than,
for example, the dynamical viscosity or the quantity K � ���
(see, e.g., Piontek & Ostriker 2004). In the latter case, � would
vary by 2 orders of magnitude between warm and cold phases. If

TABLE 1

Coefficients for the Cooling Curve Given by Equation (6)

i Ti Ci; iþ1 �i; iþ1

1...................................... 10 3.70 ; 1016 2.12

2...................................... 141 9.46 ; 1018 1.00

3...................................... 313 1.185 ; 1020 0.56

4...................................... 6102 2 ; 108 3.67

5...................................... 105 7.96 ; 1029 �0.65

4 See http://www.nordita.dk/software/pencil-code.
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the mesh were sufficiently fine, one could allow for a physically
motivated dependence of � on T, but this is neglected here.

In the calculations, we have adopted two different values of �
and � (5 ; 10�3 and 5 ; 10�4 Gyr km2 s�2), keeping their ratio,
the Prandtl number Pr = � /�, fixed to unity. The corresponding
Field lengths, calculated from equation (12) using the initial cool-
ing timescale of approximately 1 Myr, are 24 and 7.7 pc, respec-
tively. Compared with the average value of the thermal diffusion
in the neutral ISM, roughly 6 ; 1020 cm2 s�1� 2 ; 10�6 Gyr km2

s�2, corresponding to a Field length of about 0.5 pc, the adopted
values are larger by 2Y4 orders of magnitude. The cooling length
lcool � �coolurms is close to the physical Field length, being roughly
0.4 pc. Our chosen values of �, due to the preference of a large
domain size, are therefore too large to resolve the fine structure
in the accretion fronts that result from the cooling process. This is
a similar setup to the one investigated by Piontek & Ostriker
(2004, 2005); models achieving Field lengths smaller than the
cooling length include, for example, Sánchez-Salcedo et al. (2001),
Kritsuk & Norman (2004), and Koyama & Inutsuka (2004).

2.2. Stability Properties

The first thorough stability analysis was done by Field (1965),
who also included the stabilizing effect of thermal diffusion. As-
suming the solutions to be proportional to exp (nt + ik = x), the
dispersion relation can be written in the form

n(nþ n�)(nþ �n� þ n�)þ !2
ac

�
nþ (� �1)n�þ n�

�

�
¼ 0; ð9Þ

where we have also included the effect of kinematic viscosity.
Here!ac = csk is the acoustic frequency and � = d ln � /d ln T is
the local logarithmic slope of the cooling function. We have re-
stricted ourselves to cases where � is constant and � depends
only on T. The cooling time is characterized by the quantity

n� ¼ �0L�=(cvT ); ð10Þ

which is to be evaluated for the equilibrium solution. Here
L� = (@L/@�)T = �. Note that n� is just the inverse cooling time
defined by Piontek & Ostriker (2004). The subscript � follows
from a similar notation used by Field (1965), who defined in-
stead a wavenumber k� = n� /cs, which is also referred to as the
cooling wavenumber. Viscous and diffusive effects are charac-
terized by the corresponding rates

n� ¼
4

3
�k 2; n� ¼ ��k 2: ð11Þ

Thermal instability is only possible for � < 1. This condition cor-
responds to the isobaric instability criterion of Field (1965). The
isochoric and isentropic criteria,� < 0 and� <�1/(��1) =�3/2,
respectively, are less strict in that the isobaric criterion for in-
stability is then automatically satisfied.

When thermal diffusivity is included, the gas can be stabilized
(even though � <1) provided the largest possible wavenumber
in the system (which we denote as k1) is larger than the Field
wavenumber, kF, defined as

k 2
F ¼ (1� � )n�=(��) (for � < 1): ð12Þ

The instability has, therefore, the character of an ordinary long-
wave instability requiring k1 < kF . The corresponding dispersion
relation is shown in Figure 1 for various values of n� using � = �
(top) and � = 0 (bottom). The value of � is given in terms of the

ratio n� /(cskF), for which three values have been chosen to illus-
trate this dependence. As expected, the presence of kinematic
viscosity has a stabilizing effect. Setting � = 0 leads to some-
what larger growth rates, especially when n� /(cskF) is large and
n/(cskF) is small. For n� /(cskF) = 2, for example, the normalized
growth rate for � = � is the largest among the three cases shown
in Figure 1, but it hardly increases when � ! 0, inwhich case the
growth rate is actually the smallest among the three cases.

In the limit kTkF, which is relevant when diffusive effects
are negligible, the unstable branch of the dispersion relation re-
duces to

n¼ c iso k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��1 � 1

p
; ð13Þ

wherewe have introduced the isothermal sound speed c iso � cs/
ffiffiffi
�

p
.

Note that in the thermally stable case with � 31, we obtain the
usual dispersion relation for isothermal sound waves, ! = cisok,
where ! = in is the frequency. For � = 1

2
this approximation

yields n = cisok, as stated by Field (1965) in his equation (36).
For � = 0.56 this approximation is shown in Figure 1 as a di-
agonal dash-dotted line.

2.3. Saturation Properties

In the absence of thermal diffusion, thermal equilibrium is given
by the condition L = 0. Pressure equilibrium between the cold and
warm phases requires that equilibrium is achieved under the con-
straint of constant pressure. Such an equilibrium would however

Fig. 1.—Dispersion relation n(k) in the unstable regime with � = 0.56, ob-
tained by solving eq. (9) for a representative range of values of n� /(cskF). The
n(k) curves are normalized in terms of kF and cskF. In the range n� /(cskF) = 0.2Y2
(solid lines), the maxima of n/(cskF) are monotonically increasing. The curves for
n� /(cskF) = 5 (dashed line) and n� /(cskF) = 10 (dotted line) deviate from this trend.
The diagonal dash-dotted line indicates the approximation valid for small wave-
numbers (eq. [13] ).
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only be stable if a temperature increase would lead to correspond-
ingly more cooling, that is, if

�
@L
@T

�
p

> 0 (stability); ð14Þ

where the subscript p indicates that the pressure is held constant.
In Figure 2, we plot L as a function of T for constant p. Three
values are considered: p = 25, 35, and 50, all in units of [ p] �
10�14 dyn. This figure shows that there can be two stable states,
at about 102 and 104 K.We denote these values by TC and TW for
the cold and warm phases. At T � 103 K there is an unstable
equilibrium, whose temperature is denoted TU . The densities of
the three equilibria, obtained by solving L(T ; p) = 0 for T numer-
ically for a given p and then expressing the result in terms of � =
� (T, p), are plotted in Figure 3.

When setting up a simulation, the density is particularly useful
because its mean value in a certain volume is proportional to the
mass, which is constant for closed and periodic boundary condi-
tions, such as those considered here. Thus, one can ask the ques-
tion what is the resulting mean pressure as a function of themean
density. Of course, as long as the gas is thermally stable, the den-
sity will be uniform and hence its mean value is always equal
to the actual value at any point, so it is given by combining the
equation of state with the condition of thermal equilibrium. As is

evident from Figure 3, when the density is in the range (1Y5) ;
10�24 g cm3, there is no stable solution. This means that the gas
will fragment into cold patches of temperature T = TC with den-
sity �C , and the rest of the ambient gas warms up to the stable
solution branchT = TW with density �W. As a direct result of mass
conservation in our periodic domain, the filling factor of the cold
component can be expressed in terms of the mean density, h�i,
which is known from the initial condition. Using the definition of
the filling factor,

f �C þ (1� f )�W ¼ h�i; ð15Þ

the value of f is given by

f ¼ h�i � �W
�C � �W

: ð16Þ

A similar analysis can also be adopted for calculating hT i. This
allows us to calculate the correlation coefficient 	 in the relation

h�T i ¼ 	h�ihT i; ð17Þ

where

	 � 1

f (1� f )

TW

TC
� 0:013

f (1� f )
: ð18Þ

The correlation coefficient is small because h�Ti decreases
slightly and h�ihT i increases strongly as the system segregates,
as demonstrated below (in connection with Fig. 4). The expres-
sion h�ihT i is almost entirely determined by the product of the
volume-weighted density (or relative mass) in the cold phase,

Fig. 2.—Net cooling vs. temperature for three values of p, given in units of
[ p] = 10�14 dyn.

Fig. 3.—The two stable solution branches, �C and �W (solid lines), and the
unstable solution branch, �U (dotted line), as a function of p. On the top axis the
pressure is normalized by the Boltzmann constant, p/kB.

Fig. 4.—Evolution of ln T in a space-time diagram (top) and of the mean
pressure (bottom) in a one-dimensional simulation with 1024 mesh points and
� = � = 5 ; 10�4 Gyr km2 s�2. During early times, the rms velocity grows ex-
ponentially at a rate of about 220 Gyr�1. [See the electronic edition of the Journal
for a color version of this figure.]
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f �C , and the volume-weighted temperature in the warm phase,
(1 � f )TW , so both factors are large compared with their re-
spective average values.

The segregation phenomenon has already been studied in a
one-dimensional model (Sánchez-Salcedo et al. 2002). Here, ex-
cept for an additional perturbation, the initial condition is assumed
uniform, � = �0 � h�i, and the value of �0 is varied between
different simulations. In all the runs presented below, the initial
perturbation is Gaussian noise with an rms fluctuation amplitude
of 10�26 g cm�3. When �0 (in units of 10

�24 g cm�3) is between
0.96 and 5.1, the gas is thermally unstable and segregates into
cold and warm components. As time goes on, some of the cold
spots may move because of slight pressure imbalance until they
coalesce into bigger fragments. This coalescence was also found
by Sánchez-Salcedo et al. (2002) andKoyama& Inutsuka (2004).

In Figure 4, we plot the evolution of ln T in a space-time
diagram (top) and that of themean pressure in a one-dimensional
simulation. Here � = � = 5 ; 10�4 Gyr km2 s�2, which, together
with the initial values of cs = 7.5 km s�1 and n� = 980 Gyr�1,
yields kF = 720 kpc�1 = 23k1 and hence n� /(cskF) � 0.2.

During early times, the rms velocity grows exponentially at a
rate of about 210 Gyr�1, which is consistent with the peak value
of n/(cskF) � 0.04 for our set of parameters. Note that the mean
pressure settles around 24 ; 10�14 dyn once the instability has
saturated. At that time, smaller structures may still coalesce into
larger ones, but the total filling factor remains approximately con-
stant. During the evolution away from the unstable homogeneous
state, themean pressure ( proportional to h�T i) decreases by about
a factor of 2, but the product h�ihT i increases by almost a factor
of 4. When �0 is between 5.2 and 11 (in units of 10

�24 g cm�3),
the gas is marginally stable (� = 1; see Table 1), so in that range
there will be no segregation into different phases.

When the mean density is outside the range between 0.96 and
5.1 (in units of 10�24 g cm�3), the gas is thermally stable and
remains uniform. The dependence of the pressure on the density
can be obtained in parametric form by calculating, using tem-
perature as a parameter, �(T ) and p(T ), that is,

�(T ) ¼ �

�(T )
; p(T ) ¼ RT

�

�

�(T )
; ð19Þ

and plotting the two against each other (see Fig. 5, dotted line).
The numerically obtained values for the mean pressure hpi, for
different mean densities h�i, agree with those obtained under the
assumption of homogeneity.

In the unstable regime the pressure is, surprisingly, indepen-
dent of h�i and always around h pi� 24.2 ; 10�14 dyn. (Fig. 5
shows slight variations about this value; this is probably a conse-
quence of the fact that the coefficientsCi; iþ1 are only implemented
up to three or four significant figures, so the cooling curve is still
not perfectly continuous.) Figure 3 shows that for hpi � 24.2 ;
10�14 dyn, the warm and cool phases have �W � 0.19 and �C �
14.3, respectively. This allows us to determine the filling factor
as a function of h�i (see Fig. 6). In most of the runs consid-
ered below we expect h�i = 2, so f � 13%. In practice we esti-
mate the filling factor as the fraction of mesh points for which T <
TU , whereTU � 420K (corresponding to�U = 4.3 ; 10�24 g cm�3

in Fig. 3) for h pi = 24.2 ;10�14 dyn. The filling factors de-
termined in this way are quoted for the simulations presented
below.

There is a tendency for cool patches to travel and to coalesce
into bigger ones (see, e.g., Sánchez-Salcedo et al. 2002). This
property is reminiscent of earlier work in the context of the ther-
mal instability. Elphick et al. (1991, 1992) found traveling-front
solutions and also themerging of smaller patches into bigger ones,
which they associated loosely with an inverse cascade behavior.
However, in their work they only discuss the energy equation and
not dynamical processes. In the case they discuss, the kink and
antikink fronts always travel toward or away from each other,
thus resulting in the annihilation and creation of denser clouds.
This is not seen in the present work. Also, they discuss much
smaller objects of size�0.02 pc, which have considerably shorter
sound crossing times. Furthermore, early on in their evolution
our clouds tend to accelerate toward each other, as can be seen
from the curved trajectories.

3. THREE-DIMENSIONAL SIMULATIONS

3.1. Fully Periodic Boundary Conditions

In this sectionwe discuss the results of three-dimensional sim-
ulations. The basic properties of the one-dimensional simulations,
presented in x 2.3, carry over to the three-dimensional regime. As
expected, the growth rates are the same as those found in the one-
dimensional case. The resultingmean pressure h pi and hence the
filling factor, as given by equation (16), are also quite similar to
those of the one-dimensional case. Nevertheless, even though

Fig. 5.—Mean pressure vs. mean density in a one-dimensional simulation
(solid line), comparedwith the values obtained for a homogeneous system (dotted
line). The dotted line (which agrees with the solid line in the stable regime and
hence cannot be seen there) was obtained by plotting p(T ) vs. �(T ) using T as a
parameter in eq. (19). On the right axis, the pressure is normalized by the Boltzmann
constant, p/kB, and at the top the number density is given. The simulation has
128 mesh points and � = � = 5 ; 10�3 Gyr km2 s�2.

Fig. 6.—Filling factor f as a function of the mean density, as predicted by
eq. (16).
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significant amounts of turbulent heating are being produced at
the most violent phase of the instability, there is in our case al-
ways a subsequent relaxation phase in which the flow speed tends
to vanish on a long timescale (see Fig. 7). This agrees with earlier
findings by Kritsuk & Norman (2002a). The energy decay is con-
sistent with a t�1:2 law, just as in ordinary turbulence (e.g., Mac
Low et al. 1998; Haugen & Brandenburg 2004). This is also con-
sistent with the results of Kritsuk&Norman (2002a), who reported
decay exponents in the range 1Y2 for box sizes between 5 and
500 pc, using also a more detailed cooling curve in tabular form.
On the other hand, Koyama & Inutsuka (2006) find that turbu-
lence remains self-sustained for times up to 0.1 Gyr.

We emphasize again that we have used constant kinematic
viscosity and constant thermal diffusivity in our simulations.
For the runs shown in Figures 7Y13, we have used � = � = 5 ;
10�3 Gyr km2 s�2 until t = 0.1Gyr (corresponding toRemesh = 2).
This corresponds to kF = 230 kpc�1 = 23k1, and hence n� /(cskF) �
0.6, so the initial growth rate is 160 Gyr�1. This is again consistent
with Figure 4, yielding a peak value of n/(cskF) � 0.09 for our set
of parameters.

However, after having reached the peak velocity, the flow has
become sufficiently quiescent that it is possible to decrease the
viscosity by a factor of about 10, corresponding to Remesh = 20.
Figure 8 shows images of ln Ton the periphery of the simulation
domain at a few selected times after having lowered the viscosity
and thermal viscosity. Animations of temperature and density5

show that late in the simulation, cold patches of gas are still

moving about, but this is presumably just a response to small-
amplitude, small-wavenumber variations in overall pressure re-
quiring a much longer timescale to equilibrate.
During the course of the simulation, the value of kF (based on

the averaged value of n�) increases between the initial value be-
fore saturation of the instability (kF�x � 0.2) and the saturated
state (kF�x �1 with the higher viscosity and kF�x � 3 with the
lower viscosity). At the end of the simulation the gas is sharply
segregated into warm and cool phases in almost perfect pressure
equilibrium. This can be seen clearly from probability density
functions of the various quantities that are discussed in x 3.3.

3.2. Shearing-periodic Boundary Conditions

The shearing sheet approximation simulates the local condi-
tions in a disk with strong radial differential rotation in the limit
of large radii. Curvature can thus be neglected and the shear
can be assumed linear in radius, so that we only have an underly-
ing linear shear flow U0 = (0, Sx, 0)T, where S is constant. The
Coriolis force, 26 < u, is added, where6 = (0, 0, �) is the an-
gular velocity vector. It is assumed that S scales with the angular
velocity, so here we take S = ��, which is appropriate for galac-
tic disks with a constant linear velocity law. The combined ef-
fects of shear and Coriolis force can be subsumed into a single
vector,

f (u)¼
2�uy

�(2�þ S )ux

0

0
B@

1
CA ð20Þ

(Brandenburg et al. 1995), which is then added on the right-hand
side of equation (2). After this modification the velocity u de-
scribes the deviation from the shear flow and does thus not in-
clude the basic shear. The basic shear flow still appears explicitly
as an additional advection operator of the form U0 = : = Sx@y.
In the following we consider the case � = 100 Gyr�1, but

we have also considered the case � = 25 Gyr�1 (appropriate for
our Galaxy). The difference between the two simulations is small.
The main thing that happens in all these simulations is a ten-
dency for the flow to become sheared out, so any variations in the
streamwise direction become sheared out and the flow becomes
essentially two-dimensional (see Fig. 9). However, shear does
not seem to lead to instability, even though the kinematic growth
rate of the thermal instability is apparently somewhat increased
(190 Gyr�1 instead of 160 Gyr�1). This absence of sustained
turbulence is somewhat disappointing, because one might have
hoped that the thermal instability would have led to condensation
in the streamwise direction and thus to new structures that could
then be sheared out again. This seems to be prevented by the
general tendency of coalescence, preventing breakup into new

Fig. 7.—The rms velocity and kinetic energy for a three-dimensional run with
� = � = 5 ; 10�3 Gyr km2 s�2 and 2563 mesh points. The dashed line represents a
solution with � = � = 5 ; 10�4 Gyr km2 s�2, which was restarted at t = 0.1 Gyr
from a run with 10 times higher viscosity. Here h�i�1.7 ; 10�24 g cm�3,
h pi� 24.3 ; 10�14 dyn, and hT i � 8200 K.

5 See http://www.nordita.dk /~brandenb/movies / thermal_inst.

Fig. 8.—Visualization of ln T on the periphery of the box at different times, for � = � = 5 ; 10�4 Gyr km2 s�2 with 2563 mesh points; h�i�1.7 ; 10�24 g cm�3,
h pi � 24.3 ; 10�14 dyn, hT i� 8200 K, and f =11%. For this run, kF /k1 = 130 and n� /(cskF) = 0.37. Prior to t = 0.1 Gyr, both viscosity and thermal diffusivity were
10 times larger, � = � = 5 ; 10�3 Gyr km2 s�2 with kF /k1 = 41 and n� /(cskF) = 1.2. The growth rate is about 160 Gyr�1. Note the isolated cool patches (dark-shaded )
compared with the extended warm background (light shades). As time goes on, the dark patches merge with each other and grow. [See the electronic edition of the Journal
for a color version of this figure.]
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structures in the streamwise direction. However, it may still be
interesting to reconsider this issue in the future at significantly
higher resolution and larger Reynolds number.

3.3. Forced Simulations

Given that the TI did not produce sustained turbulent flows,
we consider now the case in which turbulence is driven by an
additional body force in the momentum equation. We consider
here a forcing function consisting of plane waves whose wave-
vector is chosen randomly at each time step and has length be-
tween 2.5 and 3.5 times the smallest wavenumber in the box,
k1 = 2
/(0.2 kpc). This forcing function is therefore �-correlated
in time and approximately monochromatic in space (see also
Sánchez-Salcedo et al. [2002] for simulations in one dimension).

It turns out that when the flow is driven sufficiently strongly to
produce rms velocities of around 10Y30 km s�1, the turbulent
energy that is dissipated into heat is only about comparable to the

energy needed to balance the losses from cooling (see Fig. 10).
The mean pressure is increased slightly to about 30 ; 10�14 dyn,
corresponding to p/kB � 2170 K cm�3. In both cases the spectra
of u (kinetic energy) and � (density) are similar, except that the
unforced run shows more relative power in the density spectra at
large scales (see Fig. 11). Over a small range of wavenumbers,
the local slope of the kinetic energy spectra is around �5/3. By
comparison, Kritsuk & Norman (2004) found shallower spectra
with spectral slope close to �1 in their decaying simulations
with TI, but this could be a feature of the numerical dissipation
used in their code. The dissipation wavenumber, kd = (!rms /�)

1/2,
where !rms is the rms of the vorticity w = : < u, is shown for
the unforced run. For the forced run the adopted viscosity is crit-
ically low, as evidenced by the small rise in the kinetic energy at
large wavenumbers. In fact, the dissipation scale for this run is

Fig. 9.—Visualization of ln T on the periphery of the box at different times, for � = � = 5 ; 10�4 Gyr km2 s�2 and 2563 mesh points; h�i� 1.74 ; 10�24 g cm�3,
hpi � 24.2 ; 10�14 dyn, and hT i�8200 K. Here � = 100 Gyr�1 and S = ��. For this run, kF /k1 = 32 and n� /(cskF) = 1.5. The growth rate is about 190 Gyr�1, which is
somewhat larger than for the corresponding nonshearing run. Note that the initially produced structures are quickly sheared out. [See the electronic edition of the Journal
for a color version of this figure.]

Fig. 10.—Comparison of the rms velocity (top), dissipation rate 	K (middle),
and mean pressure (bottom), for a forced simulation (solid lines) and a non-
forced simulation (dotted lines; same run as in Fig. 8). Both cases have � =
� = 5 ; 10�4 Gyr km2 s�2 and 2563 mesh points.

Fig. 11.—Comparison of time-averaged kinetic energy spectra (top) and den-
sity spectra (bottom) for the forced and unforced runs shown in Fig. 10. The ki-
netic energy and density spectra for the unforced case are scaled so as to make them
overlap at intermediate wavenumbers. For the forced run the forcing wavenumber,
kF = 2.5k1, is indicated,while the dissipationwavenumber, kd = (!rms /�)

1/2, is shown
for the unforced run.
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just outside the plot range. It is perhaps because of the presence
of cooling, which contributes to energy removal, that this run has
still been successful.

As in the unforced case, the gas is segregated into warm and
cool phases, but now they are only in approximate pressure
equilibrium; in Figure 12, we show probability density functions
(PDFs) of ln �, ln T, and ln p. The turbulent increase of themean
pressure has only a small effect on the preferred temperatures in
the warm and cold phases, whereas the density peaks are shifted
toward higher densities, as expected if the system were still fol-
lowing the equilibrium pressure-density relation. The turbulence
forced at relatively small scales has the most drastic effect on the
cold cloudy component, the distribution of which has become
significantly wider while the high-density wing was developing.
The maximum density in the forced case is roughly an order of
magnitude larger than in the pure TI case. A similar wing is ob-
served at low temperatures, reaching values down to the cool-
ing cutoff of 10 K in the highest-density regions. While in the
pure TI case the pressure in the saturated state shows a very nar-
row distribution around the mean, in the forced cases the distribu-
tion is broad with extrema that vary by almost 1 order of mag-
nitude. In addition to this broadening of the pressure distribution,
already pointed out in several previous studies (e.g., Gazol et al.
2005), the amount of gas in the ‘‘forbidden’’ (thermally unstable)
regime has been observed to increase; in our calculations this is
seen as a systematic increase of the level of the PDFs between the
two preferred states, while the peaks themselves become less pro-

nounced. In the forced case, about 6% of the gas is found in the
unstable range where � is between 1 and 5 times 10�24 g cm�3. In
the pure TI case, on the other hand, only 2% is in this range. In
addition, there is a significant fraction of cold, high-density over-
pressured gas that is in the thermally stable regime. Nevertheless,
even in the highly turbulent regime the signatures of pure TI are
still clearly visible in the density and temperature PDFs (better for
warm,worse for cold); the pressure PDFdevelops broadwings, as
is familiar from supernova-driven turbulence simulations (e.g.,
Korpi et al. 1999; Mac Low et al. 2005) and some earlier TI sim-
ulations with forced turbulence (e.g., Gazol et al. 2005). Still, the
mean pressure determines the preferred densities and temperatures
in the warm and cold phases as though the system followed the
equilibrium pressure-density relation.
It is customary to discuss scatter plots of pressure versus

density (Sánchez-Salcedo et al. 2002; Piontek & Ostriker 2004,
2005), which allow one to discuss the degree to which the gas is
locally in equilibrium. In Figure 5 we showed that the mean pres-
sure, that is, averaged over the entire box, is �24 ; 10�14 dyn
when the mean density is in the unstable range, h�i = (1Y5) ;
10�24 g cm�3. It turns out that this result also holds locally, as
can be seen from a scatter plot of pressure versus density and,
more conveniently, froma two-dimensional PDF (Fig. 13) showing
the logarithm of the probability density as a function of both ln �
and ln p for both forced and unforced runs. In the unforced case
the local pressure is concentrated sharply around 24 ;10�14 dyn
over a broad range of local densities, � = (0.2Y20) ;10�24 g cm�3.

Fig. 12.—Comparison of the probability density functions of ln �, ln T, and
ln p at the last snapshot for forced (dotted lines) and unforced (solid lines) cases.

Fig. 13.—Two-dimensional probability density functions of ln � and ln p for
forced (top) and unforced (bottom) simulations. The solid line indicates the thermo-
dynamic equilibrium solution. Dark shades indicate large values of the probability
density. [See the electronic edition of the Journal for a color version of this figure.]
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In the forced case, the distribution is broadened around the average
pressure for � = (0.2Y20) ; 10�24 g cm�3, but there are also dense
spots with �k 20 ; 10�24 g cm�3 where the gas follows the equi-
librium distribution quite sharply, confirming earlier findings of
Sánchez-Salcedo et al. (2002) and Piontek&Ostriker (2004, 2005).

4. CONCLUSIONS

Our results confirm the basic findings of Kritsuk & Norman
(2002a) in that the TI does not lead to self-sustained turbulence.
In the cases considered in this paper, the instability just leads to
segregation into two different phases and produces only small
velocities in response to the remaining pressure fluctuations. While
the growth of the instability occurs over relatively short timescales
of a few tens of millions of years, the kinetic energy of these mo-
tions decays exponentially with a slope consistent with�1.2, lead-
ing to insignificant rms velocities after a few hundredmillion years.
Thus, in agreement with Kritsuk&Norman (2002a), the TI alone
does not lead to self-sustained turbulence. This is somewhat dif-
ferent from the purely two-dimensional TI cases investigated
by Piontek & Ostriker (2004), who report weak (�0.5 km s�1)
nondecaying turbulence over timescales of roughly 0.5 Gyr. This
behavior seems to carry over into three dimensions (Piontek &
Ostriker 2005; see their Fig. 11).

Similar results have also been found recently by Koyama &
Inutsuka (2006), who also include an explicit dynamical viscos-
ity. For times up to 0.1 Gyr their results are nevertheless quali-
tatively similar to ours, in that they also report rms velocities in
the range 0.1Y0.4 km s�1, and their flow topology is similar to
ours at early times. They also study smaller box sizes, but their
highest turbulence levels occur for their largest box size of L =
144 pc, which is similar to ours. In both cases the Field length is
about 1/100 of the box size. However, if there is really a difference
in sustaining turbulence over long times, then this might be due
to a different formulation of thermal conduction, which varies
here with density but is constant in the simulations of Piontek &
Ostriker (2004, 2005) and Koyama& Inutsuka (2006). In the lat-
ter case a constant dynamical viscosity is included, while in our
case a constant kinematic viscosity is used. Another difference is
the discontinuous nature of the transitions in the previously used
cooling function. (The latter was observed to lead to spurious os-
cillatory motions in some of our preliminary investigations that
are not reported here.) However, if the turbulence case is real,
then this could perhaps be understood as an analogy to the TI-
driven turbulence found by Kritsuk & Norman (2002b) in the
presence of a time-dependent heating rate. The idea would be
that a variable heating rate could perhaps be simulated by intro-
ducing nonlinear feedbacks in some of the coefficients.

Another possibility for driving turbulence has been discussed
by Murray et al. (1993). They find that a system segregated into
two phases by the TI could developKelvin-Helmholtz secondary
instabilities if cold clouds move at transonic speeds relative to a
warm background. They speculate that such motions could be
the result of buoyancy forces or some pressure imbalance. How-
ever, this scenario does not seem to apply to our simulations,
where pressure imbalances become quite small at late times. A
related possibility would be secondary instabilities caused by dif-
ferential rotation. Again, in the present simulations this did not
occur either. Instead, shear mainly causes the flow to become two-
dimensional, that is, uniform in the streamwise direction. How-
ever, in the simulations the TI shows no tendency of subsequent
fragmentation of structures in the streamwise direction. There
might still be some hope that the fragments could be susceptible
to a baroclinic instability, but this may require substantially higher
resolution than what we have considered in the present paper.

In the pure TI cases, the system develops into a new segre-
gated state in which each phase is stable. The cold patches have a
tendency to coalesce into bigger ones that are more resistant to
the possibility of breaking up. It is conceivable that the process
of coalescence is slowed down when the value of � is decreased.
This might become more plausible when realizing that, because
of the thermal instability, the energy equation is essentially of the
type of a reaction-diffusion equation. Under the assumption of
perfect pressure equilibrium at all times, Elphick et al. (1991)
showed that this equation permits traveling-kink solutions. If a
front were to travel into an unstable equilibrium state, the front
speed would be proportional to the square root of the product of
diffusivity and the growth rate of the instability. In the present case,
however, warm and cold equilibrium states ‘‘compete’’ against
each other, so fronts would not propagate. Only in two and three
dimensions, where fronts are in general curved, do they tend to
be driven diffusively toward the direction of the center of cur-
vature; see Shaviv & Regev (1994), as well as Brandenburg &
Multamäki (2004), for similar results in a different context. How-
ever, the assumption of perfect pressure equilibrium is problematic,
because then the density is assumed to be inversely proportional
to the temperature, so mass conservation is generally not obeyed.
In our cases there is no perfect pressure equilibrium, and one may
argue that the coalescence is primarily the result of individual
dense spots moving with the flow toward local and global pres-
sure minima.

It is in principle possible that the amount of viscous heating
might suffice to heat the cold patches enough to make them un-
stable again. However, the amount of viscous heating is insuf-
ficient in all the cases that we have investigated. Only when an
external forcing function is added to give the flow an rms veloc-
ity of 10Y30 km s�1 does the total amount of heating become
comparable to �, that is, the level of the imposed uniform heat-
ing. Obviously, we cannot exclude the possibility of TI-driven
turbulence for smaller viscosity, smaller thermal diffusivity, or
both. It may therefore be useful to revisit this issue in the future
when simulations at higher resolution become more affordable.

Detailed models of the heating and cooling properties of the
warm and cold components of the ISM have been used to calcu-
late the equilibrium curves, which in practice predict the range of
stable versus unstable densities, temperatures, and pressures in
the ISM (see, e.g., Wolfire et al. 1995, 2003). Calculations, such
as those presented in this paper, of the onset and nonlinear stages
of the TI are needed in order to investigate the actual equilibrium
pressure realized in a system described by a certain equilibrium
curve; from this, the characteristic densities, temperatures, and
filling factors for thewarm and cold phases can also be determined.

Our one-dimensional calculations (Fig. 5) of the standardmodel
of Wolfire et al. (1995) show that the mean pressure realized in
the unstable regime remains roughly constant at1750K cm�3 over
the whole range of unstable densities, h�i = (1Y5) ; 10�24 g cm�3,
and that the pressure is close to the minimal value of 1540 K cm�3.
We note, however, that the equilibrium curve differs from the orig-
inal one because we have used � = 0.62 instead of � = 1, and it
also differs somewhat from Sánchez-Salcedo et al. (2002), as we
have used revised coefficients based on more accurate continuity
considerations. The corresponding temperatures and number den-
sities at this equilibrium pressure are TC = 126 K, nC = 8.6 cm�3

and TW = 9430K, nW = 0.1 cm�3. This behavior carries over into
the three-dimensional regime. The calculations with forced turbu-
lence, where the strongest forcing results in turbulent pressures
exceeding the thermal pressure by a factor of P3, show that the
mean pressure increases only by about 25%, even though the level
of turbulence is relatively strong. Themean pressure obtained in this
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case in the three-dimensional calculations is roughly 2170 K cm�3,
which is in agreement with the observed median pressure of p/kB �
2250 K cm�3 from Jenkins & Tripp (2001).
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