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1 Introduction

In a seminal paper, Pouquet al al. (1976) showed that in the
nonlinear regime the alpha effect in mean field magnetohy-
drodynamics is no longer governed by the kinetic helicity
(Steenbeck et al. 1966), but there is an additional contribu-
tion from the current helicity, so

α = 1
3τ

(−ω · u + ρ−1
0 j · b)

, (1)

where τ is a correlation or relaxation time, u is the small
scale velocity, ω = ∇ × u is the small scale vorticity, b is
the small magnetic field, and j = ∇ × b/µ0 is the small
scale current density. Overbars denote some suitable form
of averaging. Equation (1) has been used to explain cata-
strophic (magnetic Reynolds number dependent) quenching
of the alpha effect in the nonlinear regime (Gruzinov & Dia-
mond 1994; Bhattacharjee & Yuan 1995; Field & Blackman
2002). Technically, the j · b term arises naturally when the
τ approximation is used (Kleeorin & Rogachevskii 1999;
Rädler et al. 2003; Blackman & Field 2002, 2003; see re-
view by Brandenburg & Subramanian 2005a).

In a recent paper, Brandenburg & Subramanian (2005b,
hereafter BS05) presented results of numerical simulations
that demonstrate the rise of the j · b term with magnetic
Reynolds number in the presence of a finite imposed mag-
netic field, B0. Recently, Rädler & Rheinhardt (2007) have
pointed out that for finite values of B0 it may be important
to consider instead the appropriate anisotropic expression,
which can be written in the form

αip = τεijk

(−ukuj,p + ρ−1
0 bkbj,p

)
. (2)

The purpose of the present paper is to demonstrate that the
values for both expressions, (1) and (2), are almost identical
in the cases presented by BS05. We also show that the value
of τ , expressed in units of the turnover time, is in all cases
close to unity, and in some cases better so than in BS05.

� Corresponding author: brandenb@nordita.dk

2 Formalism

As in BS05 we consider cases where the flow is driven ei-
ther by a random body force in the momentum equation, or,
alternatively, by random externally imposed currents in the
induction equation. We calculated the isotropic expressions

α̃K = − 1
3ω · u, α̃M = 1

3ρ−1
0 j · b, (3)

in the presence of an imposed mean field B0, where the tilde
indicates the absence of the τ factor, so α = τ(α̃K + α̃M).
As in BS05, we use additional superscripts k and m to in-
dicate cases with kinetic or magnetic driving. The result-
ing values of α̃

(k)
K , α̃

(m)
K , α̃

(k)
M , and α̃

(m)
M , presented below,

are identical to those of BS05. In addition, we consider the
appropriate component of the anisotropic expressions for
the same simulation data. Since in our case the mean field
points in the y direction, and because we use volume av-
erages and periodic boundary conditions in all three direc-
tions, we can write the anisotropic expressions for α̃yy in
the form

α̃
(a)
K = −2uxuz,y, α̃

(a)
M = 2ρ−1

0 bxbz,y, (4)

where the superscript (a) indicates anisotropy. Again, we
consider cases with kinetic and magnetic driving and thus
obtain the 4 values, α̃

(ak)
K , α̃

(am)
K , α̃

(ak)
M , and α̃

(am)
M . The

resulting values are normalized with respect to the corre-
sponding rms turbulent velocities,

ã
(k,m)
K,M = α̃

(k,m)
K,M /

[
kfurmsu

(k,m)
rms

]
, (5)

where urms = [u(k)
rmsu

(m)
rms]1/2 is the geometrical mean of

the rms velocities for kinetically and magnetically driven
runs. This particular normalization emerges naturally when
deriving the time scale τ in Eq. (2). In the following we only
consider the case of a statistically steady state, so bxbz,y and

uxuz,y , and hence also α̃
(a)
M and α̃

(a)
K , have converged to a

stationary value.
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Fig. 1 Dependence of α̃
(k)
K and α̃

(k)
M on Rm in the kinetically

forced case. Vertical bars give error estimates. Adapted from
BS05.

3 Results

We consider the values of α̃K and α̃M and compare with
the results of the appropriate component of the anisotropic
expressions; see Figs. 1 and 2 for the kinetically driven case
and Figs. 3 and 4 for the magnetically driven case. The
straight lines in Figs. 1 and 3 denote fits to the data points,
while in Figs. 2 and 4 the same lines are just repeated as
dashed lines and still represent only the fits to the isotropic
data. This helps demonstrating that the results change very
little when the anisotropic expressions are used.

It is remarkable that the differences between the
isotropic and anisotropic expressions are rather systematic.
Generally speaking, the anisotropic expressions give either
the same or slightly smaller values than the isotropic ex-
pressions if the flow is driven hydrodynamically. The dif-
ferences are larger for stronger fields (B0 = 0.1) and es-
pecially when the forcing it at larger scales (kf = 1.5). In
that case the differences are around 15% and 25% for the
kinetic and magnetic α effects, respectively. In the magneti-
cally driven case the kinetic alpha effect tends to be smaller
for the anisotropic expressions, but the magnetic alpha ef-

Fig. 2 Same as Fig. 1, but for the relevant component of the
anisotropic expressions, α̃

(ak)
K and α̃

(ak)
M . The dashed lines rep-

resent the fit to the data of Fig. 1, not the present data!

fect is either the same or larger for the anisotropic expres-
sions.

Following BS05, we also compare the results for all
runs in tabular form; see Table 1. As in BS05, we non-
dimensionalize the measurements for kinetically and mag-
netically driven cases independently, because the root mean
square velocities, u

(k)
rms and u

(m)
rms, are different in the two

cases; see Eq. (5).
There are two important aspects of the Rm dependence

of kinetic and magnetic α effects. One is the fact that, at
least for moderate values of Rm, the two approach each
other for finite field strength and increasing strength of the
mean field. Furthermore, in the case of isotropic expres-
sions, |α̃M| could even slightly exceed the value of |α̃K|. But
when the anisotropic expressions are used, this is no longer
the case – or at least less drastically so, e.g. in the middle
panel of Fig. 2. The other aspect is the tendency for α̃K to
stay asymptotically independent of Rm, even though the ac-
tual α effect decreases like 1/Rn

m, with n = 0.5...1, as was
shown in Fig. 2 of BS05 for the same data. This property is
critical to understanding the catastrophic quenching of the
α effect for closed or periodic domains where magnetic he-
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Fig. 3 Dependence of α̃
(m)
K and α̃

(m)
M on Rm in the magneti-

cally forced case. Vertical bars give error estimates. Adapted from
BS05.

licity is a conserved quantity in the high conductivity limit.
(We recall that, in contrast to the expressions for α̃

(a)
K and

α̃
(a)
M , α itself was always calculated as α = 〈E · B0〉t/B2

0,
which does already account for the anisotropy for α. So
the results for α remain unchanged from those obtained in
BS05.) Let us also note in this connection that, within error
bars, the off-diagonal components of the α tensor are found
to be zero, i.e. |〈E × B0〉t| = 0.

Finally we address the question of the relaxation time τ .
In BS05 we calculated τ based on the values of α, α̃

(k,m)
K ,

and α̃
(k,m)
M . In the following we repeat the same analysis us-

ing the anisotropic expressions, α̃
(ak,am)
K and α̃

(ak,am)
M . We

recall that we allowed for different and unknown prefactors
gK and gM in front of α̃K and α̃M. We therefore wrote our
unknowns in the form τgK and τgM, and expressed them in
normalized form as

St gK,M = urmskfτgK,M. (6)

These unknowns can be obtained by solving a matrix equa-
tion which, in the present case, reads(

a(ak)

a(am)

)
=

(
ã
(ak)
K ã

(ak)
M

ã
(am)
K ã

(am)
M

)(
St gK

St gM

)
. (7)

Fig. 4 Same as Fig. 3, but for the relevant component of the
anisotropic expressions, α̃

(am)
K and α̃

(am)
M . The dashed lines rep-

resent the fit to the data of Fig. 3, not the present data!

The result is shown in Fig. 5 for the old case using isotropic
expressions of α̃, and in Fig. 6 for the present case using the
anisotropic expressions.

One of the most remarkable results from Fig. 6 is that
the values of the magnetic and kinetic Strouhal numbers
are in all three cases close to unity, whereas in the mid-
dle panel of Fig. 5 the Strouhal numbers were only about
0.3. In all other aspects the new results are rather similar to
the old ones. For example, the values of magnetic and ki-
netic Strouhal numbers are rather close to each other except
in the case B0 = 0.1 with kf = 1.5, where the magnetic
Strouhal numbers are somewhat larger than the kinetic ones.
This is also the parameter regime for which the largest dif-
ferences were found between Figs. 1 and 2. Furthermore,
like in BS05, we still find a drop in the Strouhal numbers in
the case where Rm is around 300. As argued in BS05, this
may be connected with these simulations not having run for
long enough.

www.an-journal.org c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 1 Comparison of the results using the isotropic and anisotropic expressions for the various values of the normalized α for
kinetically and magnetically forced runs. For kf = 1.5 the resolution varies between 643 and 5123 mesh points for η = 2 × 10−3 and
2× 10−4, corresponding to magnetic Reynolds numbers of 20 and 300, respectively, while for kf = 5 the resolution varies between 323

and 2563 mesh points for η = 5 × 10−3 and 5 × 10−4, corresponding to magnetic Reynolds numbers of 4 and 60, respectively, The
magnetic Prandtl number is always equal to unity, i.e. the viscosity ν is always equal to the magnetic diffusivity, η.

B0 η kf u
(k)
rms a(k) ã

(k)
K ã

(ak)
K ã

(k)
M ã

(ak)
M u

(m)
rms a(m) ã

(m)
K ã

(am)
K ã

(m)
M ã

(am)
M

0.01 2 × 10−3 1.5 0.10 −0.261 −0.46 −0.44 0.04 0.04 0.05 4.79 −0.11 −0.21 1.44 2.53
0.03 2 × 10−4 1.5 0.09 −0.048 −0.38 −0.33 0.46 0.36 0.06 0.29 −0.12 −0.10 2.23 1.44
0.03 5 × 10−4 1.5 0.09 −0.062 −0.37 −0.40 0.42 0.38 0.06 0.88 −0.13 −0.17 1.85 1.80
0.03 1 × 10−3 1.5 0.09 −0.099 −0.39 −0.40 0.32 0.28 0.05 0.88 −0.13 −0.18 1.31 1.29
0.03 2 × 10−3 1.5 0.09 −0.143 −0.42 −0.42 0.24 0.21 0.05 0.74 −0.14 −0.19 1.12 0.97
0.06 1 × 10−3 1.5 0.09 −0.030 −0.40 −0.39 0.36 0.28 0.06 0.23 −0.24 −0.28 0.61 0.46
0.06 2 × 10−3 1.5 0.08 −0.054 −0.40 −0.40 0.35 0.28 0.05 0.22 −0.24 −0.30 0.58 0.44
0.10 2 × 10−4 1.5 0.12 −0.003 −0.42 −0.20 0.24 0.13 0.09 0.07 −0.25 −0.23 0.41 0.25
0.10 5 × 10−4 1.5 0.10 −0.008 −0.41 −0.35 0.32 0.24 0.07 0.08 −0.29 −0.28 0.48 0.28
0.10 1 × 10−3 1.5 0.10 −0.010 −0.43 −0.33 0.32 0.23 0.07 0.08 −0.29 −0.29 0.46 0.29
0.10 2 × 10−3 1.5 0.09 −0.019 −0.43 −0.33 0.30 0.24 0.06 0.07 −0.28 −0.31 0.45 0.32
0.14 2 × 10−3 1.5 0.10 −0.009 −0.43 −0.25 0.26 0.20 0.06 0.04 −0.28 −0.28 0.45 0.26
0.20 2 × 10−3 1.5 0.11 −0.004 −0.43 −0.18 0.21 0.16 0.06 0.02 −0.27 −0.24 0.43 0.22
0.30 2 × 10−3 1.5 0.12 −0.002 −0.42 −0.14 0.18 0.13 0.06 0.01 −0.24 −0.19 0.41 0.19
0.06 5 × 10−4 5 0.16 −0.080 −0.31 −0.30 0.25 0.22 0.15 0.08 −0.25 −0.20 1.10 0.45
0.06 1 × 10−3 5 0.16 −0.121 −0.32 −0.30 0.20 0.18 0.14 0.01 −0.12 −0.09 2.03 0.17
0.06 2 × 10−3 5 0.15 −0.172 −0.49 −0.46 0.22 0.20 0.06 0.34 −0.16 −0.22 0.52 0.44
0.06 5 × 10−3 5 0.13 −0.215 −0.41 −0.37 0.10 0.11 0.08 0.54 −0.18 −0.23 0.81 0.72
0.10 5 × 10−4 5 0.16 −0.035 −0.32 −0.30 0.30 0.24 0.15 0.36 −0.20 −0.23 0.72 0.60
0.10 1 × 10−3 5 0.15 −0.058 −0.34 −0.31 0.27 0.22 0.13 0.35 −0.21 −0.25 0.70 0.57
0.10 2 × 10−3 5 0.14 −0.091 −0.36 −0.32 0.25 0.22 0.11 0.34 −0.22 −0.29 0.72 0.59
0.10 5 × 10−3 5 0.12 −0.131 −0.41 −0.35 0.18 0.19 0.08 0.31 −0.24 −0.34 0.75 0.63

4 Discussion

The work of BS05 was mainly an extension of earlier work
on passive scale diffusion (Brandenburg et al. 2004), where
certain aspects of MTA were tested. In particular, it was
shown that the relaxation time τ in the τ approximation is
of the order of the turnover time (St = τurmskf ≈ 3). In the
case with a magnetic field, the α effect was assumed to be
expressible as α = τ(α̃K + α̃M). The main result of BS05
was that St is independent of Rm. This is important because
neither α̃K nor α̃M decline with increasing values of Rm. In-
stead, −α̃M approaches α̃K, resulting in near cancellation.
Together with the finding that τ is approximately indepen-
dent of Rm, this supports the validity of the assumed for-
mula for α. It should be noted, however, that for Rm ≈ 300
the result is not convincing and our present data suggest a
drop in the Strouhal number.

However, as RR07 have pointed out, several other issues
remained open or unsatisfactory. In particular the compara-
tive use of kinetically and magnetically forced models may
be questionable. This was done to change the relative im-
portance of kinetic and magnetic α effects. The problem is
that the nature of the turbulence can change considerably in
the two cases. On the other hand, there is no reason why
the expressions for α should not apply equally well in both
regimes

Another problem is the use of isotropic expressions for
α̃K and α̃M. Surprisingly enough, as we have shown here,
the isotropic expressions are indeed good proxies for the
relevant component of the full anisotropic expressions. One
advantage of using the anisotropic expressions is that the
need for adopting (slightly) different coefficients in front of
α̃K and α̃M is now less severe, if at all present.

Finally, there is the puzzle that, on the one hand, when
using the first order smoothing approximation (FOSA), α
is given by an expression involving just the actual velocity
field while, on the other hand, according to the τ approxima-
tion, it is the sum of magnetic and kinetic α effects. Obvi-
ously, a rigorous comparison between FOSA and τ approx-
imation is only permissible when the magnetic Reynolds
number is below unity. In the present paper this is not the
case, so the neglect of the higher order (triple) correla-
tion terms under FOSA cannot be justified, given that the
Strouhal numbers are always around unity. So this compar-
ison may not have been permissible. However, the puzzle
seems to exist even in the low magnetic Reynolds num-
ber limit, when the triple correlations can be neglected al-
together. This case has been analyzed recently by Sur et al.
(2007), who showed that the formulations in terms of FOSA
and τ approximation are in fact equivalent (as they have to
be, because the starting equations are the same!), but that
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Fig. 5 Magnetic and kinetic Strouhal numbers as a function
of Rm for different values of B0 and kf . Here, kinetically and
magnetically forced runs have been used to calculate separately
gK �= gM. The horizontal lines are drawn to indicate the range over
which the Strouhal numbers are approximately constant. Adapted
from BS05.

the individual components contributing to the total α-effect
in the two formulations are different. In fact, it turns out that
in the τ approximation there is, in addition to the kinetic and
magnetic alpha effects, in general also one more term result-
ing from the correlation between the small scale magnetic
field and the forcing function. Only in the special case of
δ-correlated forcing, that is adopted in many numerical in-
vestigations, does this extra term vanish. Nevertheless, even
then the kinetic part of the alpha effect in the τ approxima-
tion is not simply related to the alpha effect obtained from
the first order smoothing approximation, even if the actual
velocity field is used in both cases. Therefore there is ac-
tually no puzzle in the limit of small magnetic Reynolds
numbers either.

5 Conclusions

We have shown that the basic conclusions obtained in BS05
carry over to the case where the anisotropic expressions for

Fig. 6 Same as Fig. 5, but for Strouhal numbers calculated from
the expressions for the anisotropic alpha coefficients. The dashed
lines represent the fits used in Fig. 5, and the solid lines represent
new fits.

α̃K and α̃M are used. The present work provides an extra
piece of evidence that the τ approximation may provide a
useable formalism for describing simulation data and for
predicting the behavior in situations that are not yet acces-
sible to direct simulations. There are currently no other ap-
proaches capable of this. The basic hypothesis that the triple
correlations are expressible as a damping term may not be
well justified, although some important properties of this
approach seem to be borne out by simulations. A number of
further practical tests of the τ approximations could be en-
visaged. One such example might be the so-called W × J
effect of Rogachevskii & Kleeorin (2003, 2004), which was
derived using the τ approximation. Direct simulations of
hydromagnetic turbulence with shear give qualitative sup-
port to this idea (Brandenburg 2005a), although it is not
clear under which conditions the anticipated effect has the
appropriate sign for dynamo action (Brandenburg 2005b;
Rüdiger & Kitchatinov 2006; Rädler & Stepanov 2006).
Further work in this direction would be worthwhile for es-
tablishing the real usefulness of the τ approximation.

www.an-journal.org c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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