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ABSTRACT
In an attempt to model the accretion on to a neutron star in low-mass X-ray binaries, we present

2D hydrodynamical models of the gas flow in close vicinity of the stellar surface. First, we

consider a gas pressure-dominated case, assuming that the star is non-rotating. For the stellar

mass we take Mstar = 1.4 × 10−2 M� and for the gas temperature T = 5 × 106 K. Our

results are qualitatively different in the case of a realistic neutron star mass and a realistic gas

temperature of T � 108 K, when the radiation pressure dominates. We show that to get the

stationary solution in a latter case, the star most probably has to rotate with the considerable

velocity.
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1 I N T RO D U C T I O N

Low-mass X-ray binaries (LMXBs) are luminous X-ray sources

composed of a late-type optical companion (mass less than about 1

M�) and a neutron star. About 100 LMXBs are known now. Neutron

stars in such objects are most probably old and have a rather weak

magnetic field so that an accretion disc can extend down to the

neutron star surface. The rapidly rotating gas is decelerating due

to viscous friction. The gas then spreads over the stellar surface

and forms a boundary layer. Here most of the energy is emitted

in the form of X-rays, whilst its amount is comparable with the

energy generated in the accretion disc (Sunyaev & Shakura 1986;

Sibgatullin & Sunyaev 1998).

LMXBs can be divided into two different classes. Very lumi-

nous Z-sources (L ∼ 0.1–1 Ledd) have relatively soft, two-component

spectra, while both components can be approximated by black bod-

ies with colour temperatures of about 1 and 2.5 keV, respectively

(Gilfanov, Revnivtsev & Molkov 2003). The other less luminous

sources (L ∼ 0.01–0.05 Ledd) are observed in two states: the high/soft

and low/hard states. The radiation spectra in the soft state are similar

to those of the Z-sources, while in the hard state they are close to the

spectra of the Galactic black holes in the hard states (Barret et al.

2000).

The soft component can be associated with the radiation from

the accretion disc, while the hard one is produced in the bound-

ary layer (Mitsuda et al. 1984; Gilfanov et al. 2003). On the other

hand, the spectra from the spreading layer depend on the neutron star

compactness (mass/radius ratio), which determines the gravitational

field at the surface. Therefore, one can get independent constraints

on the equation of state of the matter at extreme densities, calcu-
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lating the spectra and comparing them with the observational data

(Suleimanov & Poutanen 2006).

A study of the motion of the matter very close to the neutron star

is also important for understanding the production of quasi-periodic

oscillations (QPOs) observed in the kHz range from a number of

accreting neutron stars in LMXBs (van der Klis 2000). These QPOs

may provide direct ways of measuring effects that are unique to the

strong gravitational field regime. However, the question about the

nature of QPOs is still open, partly because of the complexity of

hydrodynamical flows in close vicinity of a neutron star surface.

Thus, detailed studies of the structure of the boundary layer play the

key role in understanding the physics in the vicinity of a compact

object.

The first model of the boundary layer was proposed by Pringle

(1977), who considers it as part of the accretion disc. In his model the

gas is moving parallel to the disc mid-plane and is decelerating due to

differential rotation and viscous forces. The effective temperature of

the boundary layer appears to be higher than the maximum accretion

disc temperature, because the size of the BL is smaller than that

of the disc, whereas their luminosities are comparable. Popham

& Narayan (1992) identified non-physical aspects of the standard

α-viscosity prescription and developed a more physically realistic

model of viscosity. Narayan & Popham (1993) proposed a self-

consistent model of a boundary layer on the surface of a white

dwarf and accounted for the hard X-rays observed in cataclysmic

variables. Medvedev (2004) studied the radiative accretion on to

a rapidly spinning neutron star. They considered a quasi-spherical

hot settling accretion flow and presented an analytical self-similar

solution describing the boundary layer.

Inogamov & Sunyaev (1999) considered the boundary layer as a

spreading layer on the surface of the neutron star. They proposed

that matter spirals along the neutron star surface towards the poles

due to turbulent friction between matter and stellar surface. They

used a 1D approach, averaging all values in the radial direction and
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assuming azimuthal symmetry. To describe the turbulent viscosity

they used the Prandtl–Karman universal logarithmic dependence

of the mean velocity on the distance from the stellar surface and

introduced a turbulent viscosity to characterize turbulent velocity

and turbulent pressure fluctuations. They also assumed that the dis-

sipation of rotational kinetic energy causes a strong energy release

near the bottom of the boundary layer. With these simplifications

they constructed a semi-analytical model and showed that the ki-

netic energy of the gas is mostly liberated in two belts above and

below the equator of the neutron star.

In order to solve the 1D spreading layer problem, Inogamov &

Sunyaev (1999) assumed that the initial rotational velocity in the

equatorial plane is very close to Keplerian. However, because of

the presence of the boundary layer associated with the accretion

disc, this velocity can significantly deviate from the Keplerian value.

There is no doubt that the behaviour of the gas at higher latitudes

in the spreading layer strongly depends on the conditions in the

equatorial plane. Therefore it is important to describe the gas flow

near the equatorial point more accurately. As a first step we present

here 2D numerical hydrodynamic solutions in the neighbourhood

of the equatorial point.

2 E QUAT I O N S A N D C O O R D I NAT E S

The full non-stationary system of the hydrodynamical equations is

as follows. The continuity equation is solved in the form

D ln ρ

Dt
= −∇ · U , (1)

where ρ and U are density and velocity of the gas, and D/Dt =
∂/∂t + U · ∇ is the advective derivative. The conservation of mo-

mentum can be written in the form

DU
Dt

= − 1

ρ
∇ p + Fgr + Fvs + κF rad

c
, (2)

where Fgr = −GMstarr/r3 is the gravitational force (where Mstar is

a stellar mass, r is a radius vector), Fvs = ρ−1 ∇ · (2ν t S) is the

viscous force, ν t is the turbulent viscosity, F rad is a radiative flux,

κ is the opacity and c is the speed of light. The energy equation is

formulated in terms of specific entropy s,

T
Ds

Dt
= 2νt S2 − 1

ρ
∇ · F rad, (3)

where T is the temperature and S = (1/2)(Ui,j + Uj,i ) −
(1/3)δi j ∇ · U is the traceless rate of strain tensor and commas

denote partial differentiation. In the following we assume that the

gas is optically thick and can therefore treat radiation in the diffusion

approximation, so the radiative flux is given by

F rad = −K∇T , (4)

where K = 16σ SBT3/(3κρ) is the radiative conductivity.

A sketch of the boundary layer on the surface of the neutron star

is presented in Fig. 1. The gas is accreting in the disc mostly in the

radial direction R and turns in the Z direction near the equatorial

point E. Since the purpose of this paper is to study the gas flow in

the vicinity of E, we use cylindrical coordinates, and neglect the

curvature of the stellar surface. We consider a 2D domain limited

in the radial direction by the surface of the star and the disc zone,

where the rotational velocity U	 is close to the Keplerian value UK

(see Fig. 2).

Figure 1. Sketch of the boundary layer on the surface of the neutron star.

Figure 2. Sketch of the calculated domain and of the buffer zones.

3 B O U N DA RY C O N D I T I O N S A N D BU F F E R
Z O N E S

The boundary conditions represent an integral part of the overall

solution in that the values on the boundaries both determine and de-

pend themselves on the final solution. They must allow the accretion

on to the stellar surface and the emission of energy. They must also

simulate the compression of gas near the surface and allow this gas

to become part of the surface, while the gas settling depends itself on

the input parameters of incoming gas and conditions on the stellar

surface. The rotational velocity of the gas in the disc part is close to

Keplerian, but cannot be exactly Keplerian, because otherwise ac-

cretion would stop and the boundary layer would disappear. On the

other hand, the deviation from the Keplerian velocity is determined

by the conditions on the stellar surface. To cope with these com-

plications we use so-called buffer zones, which are narrow regions

just outside the domain (of the size of typically five grid points; see

Fig. 2), where additional terms are added to the hydrodynamical

equations. This type of approach has proven to be useful in earlier

simulations of disc outflows and star–disc coupling (von Rekowski

et al. 2003). We use three different buffer zones that are charac-

terized by the three profile functions ζ (R) for the disc buffer zone,
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Table 1. Parameters.

Quantity Case 1 Case 2

Rstar 106 cm 106 cm

Mstar 1.4 × 10−2 M� 1.4 M�
Tstar 3 × 106 K 108 K

Tdisc 1.5 × 106 K 108 K

ρdisc(0) 0.1 g cm−3 4 g cm−3

νt 107, 108 cm2 s 1010 cm2 s−1

α 0 1

Rstar is a stellar radius, Mstar is stellar mass, Tstar and Tdisc

are temperatures of the star surface and the gas in the disc

zone, ρdisc(0) is the gas density at the mid-plane in the disc

zone, νt is a turbulent viscosity.

λ(R) for the star buffer zone, and η(Z) for the surface buffer zone.

In the following we describe the properties of these three zones

separately.

In the disc buffer zone, where ζ (R) = 1, the gas is accelerated

close to the Keplerian speed due to an additional source term in the

equation for Uφ , while UR adjusts itself to the conditions inside the

domain. Thus, the φ and R components of equation (2) are modified

by additional terms on their right-hand sides,

DU	

Dt
= · · · − U	 − UK(R)

τ
ζ (R), (5)

DU j
R

Dt
= · · · − U j

R − U j−1
R

τ
ζ (R), j = 1, . . . , NR, (6)

where j denotes the meshpoint in the R direction, NR is total number

of the grid points in the R direction, and dots indicate the presence

of terms that where already specified in equation (2). We take τ =
5δt, where δt is the length of the time-step.

In the buffer zone near the star, where λ(R) = 1, the radial gas

velocity goes down to zero at the stellar surface. To describe the

rotation of the star we introduce the parameter 0 � α � 1, which

equals zero if the star is non-rotating one, and unity if it rotates with

the corresponding Keplerian velocity. Thus the φ and R components

of equation (2) are modified further by the terms

DU	

Dt
= · · · − U	 − αUK

τ
λ(R), (7)

DUR

Dt
= · · · − UR

τ
λ(R), (8)

where λ(R) = 1 in the buffer zone, and zero outside.

The surface buffer zones will be discussed separately in the fol-

lowing two sections, because they have to be treated differently for

gas and radiation pressure-dominated regimes.

The temperatures on the stellar surface and the disc (left- and

right-hand boundaries of the domain) are fixed by Tstar and Tdisc,

respectively, while the gas density is extrapolated on both sides.

On the lower boundary of the domain (mid-plane of the disc) we

use antisymmetric boundary conditions for the Z component of the

velocity and symmetric boundary conditions for all other quantities,

while on the upper domain boundary all quantities are extrapolated.

The turbulent viscosity ν t is assumed to be constant everywhere in

the domain.

For all simulations presented here we use the PENCIL CODE,1 which

is a high-order finite-difference code (sixth order in space and third

1 http://www.nordita.dk/software/pencil-code.

order in time) for solving the compressible hydrodynamic equations

(Brandenburg & Dobler 2002).

4 G A S P R E S S U R E - D O M I NAT E D C A S E

As a first test we consider a gas pressure-dominated case and choose

the gas temperature in the disc to be Tdisc = 1.5 × 106 K. This

means that the radiation pressure is about two orders of magnitude

smaller than the gas pressure. Also, we take the stellar mass to be

Mstar = 10−2 M� so as to balance the gravity force near the sur-

face by the gas pressure force. In addition, we assume that the star

does not rotate (α = 0). We consider two cases with ν t = 107 and

108 cm2 s−1 (see Table 1).

Since initially the disc is assumed to be in vertical hydrostatic

equilibrium, the vertical velocity should be close to zero. In addition,

we let the gas density ρ approach a certain vertical profile ρdisc(Z),

where the value at the disc mid-plane is ρdisc(0) = 0.1 g cm−3, and

assume that ρ decreases exponentially with Z. However, since the

temperature profile results from a thermal balance between viscous

heating and radiative cooling, the local sound speed cs in equation (9)

is recalculated at each time-step. This allows the vertical density

profile to adjust to the conditions inside the domain. Thus, we have

in the disc buffer zone

D ln ρ

Dt
= · · · − ln ρ − ln ρdisc

τ
ζ (R), (9)

DUZ

Dt
= · · · − UZ

τ
ζ (R), (10)

where

ρdisc(Z ) = ρdisc(0) exp

(
− Z 2

2H 2

)
and

1

H 2
= γ G Mstar

R3c2
s

, (11)

where ζ (R) = 1 in the disc buffer zone, and zero outside.

In the surface buffer zone, where η(Z) = 1, we assume vanishing

first derivatives for all three velocity components Ui (i = 1, . . . , 3)

and for the specific entropy. We also correct the density profile to ac-

count for the resulting artificial pressure force which works against

the vertical gravity. Due to this term, the gas flows out through the

surface boundary rather than coming into the domain at the begin-

ning of the calculation. Thus, we add the terms

D ln ρ j

Dt
= · · · − ln ρ j − ln ρ j−1 + Z 2/(2H 2)

τ
η(Z j−1), (12)

DU j
i

Dt
= · · · − U j

i − U j−1
i

τ
η(Z j ), (13)

Ds j

Dt
= · · · − s j − s j−1

τ
η(Z j ), j = 1, . . . , NR . (14)

We consider two runs with ν t = 107 and 108 cm2 s−1 and show in

Fig. 3 two cross-sections respectively for R − Rstar = 1.25 and 2 m,

ν t = 107 and 108 cm2 s−1, and Z = 5 m in both cases. In Fig. 4 we

show velocity and density. One can see that the accreting gas comes

to the stellar surface and turns towards the poles of the neutron

star.

We find that the size of the boundary layer, where the rotational

velocity Uφ of the gas decreases from the Keplerian value down

to zero, strongly depends on the value of the turbulent viscosity.

The boundary layer becomes 3.5 times thicker if one increases ν t

by a factor of 10. This is consistent with the classical theory of a

boundary layer, according to which the thickness of the boundary
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Figure 3. Gas velocity, density and temperature as a function of R and Z for the gas pressure-dominated case (Mstar = 1.4 × 10−2 M�). The dotted and solid

lines correspond to νt = 107 and 108 cm2 s−1, respectively. Left-hand panel: fixed Z = 50 m, right-hand panel: fixed R − Rstar = 12.5 m for νt = 107 and R −
Rstar = 20 m for νt = 108 cm2 s−1 cases.

layer is inversely proportional to the square root of the Reynolds

number,
√

Re ∼ 1/
√

ν t (see e.g. Shih-I Pai 1962). The increase of

viscosity also leads to a growth of the gas temperature, resulting from

a balance between turbulent viscous friction and radiative cooling.

One can see that the temperature achieves its maximal value in

the middle of the boundary layer, where the velocity gradient and

therefore the heating rate are maximum.

Note that the solution for our test case looks similar to the spread-

ing layer model for the white dwarf case. We find that the Z com-

ponent of the gas velocity VZ = 106 cm s−1 is very close to that

obtained by Piro & Bildsten (2004). Unfortunately, we cannot com-

pare other quantities because the values in the spreading layer model

are averaged along the R direction.

5 R A D I AT I O N P R E S S U R E - D O M I NAT E D C A S E

Let us now consider a realistic neutron star mass, Mstar = 1.4 M�.

We find that, in order to balance the gravity force by the gas pressure

gradient near the stellar surface, the gas temperature must attain a

value of 3 × 1012 K, which is unrealistic. Therefore, in the case of a

non-rotating star, the only force which can work against gravity is the

radiation pressure gradient. Indeed, if one takes the gas temperature

to be T = 3 × 108 K and ρ � 0.3 g cm−3, the radiation pressure

force becomes comparable to the gravitational force (i.e. GMstar/

R2 � σ SBT4
star/(cρ), where σ SB is the Stefan–Boltzmann constant).

Using standard disc theory, we estimate the turbulent viscosity

near the stellar surface ν t = αdHcs � 1010 cm2 s−1, where αdisc �
0.01 is a viscosity parameter, H �0.01Rstar and cs �108 cm s−1. Note

that the radiative viscosity νr = 4σ SBT4mp/(κc2ρ) � 108 cm2 s−1

(where mp is a proton mass) is much smaller than the turbulent one,

and can be neglected.

We find that the description of buffer zones must be modified

in the radiation pressure-dominated case. For simplicity we use a

similar density profile in the disc buffer zone as it was in the gas

pressure-dominated case. However, we now take ρdisc(0) = 4 g cm−3

and fix the gas temperature Tdisc to avoid large radiation pressure

gradients and therefore the generation of large velocities, which

lead to strongly non-stationary behaviour in the buffer zone and

eventually to numerical instability. Also, we use a softer condition

for the Z-velocity by assuming vanishing first derivatives. Thus, we

set

D ln ρ

Dt
= · · · − ln ρ − ln ρdisc

τ
ζ (R), (15)

DU j
Z

Dt
= · · · − U j

Z − U j−1
Z

τ
ζ (R), j = 1, . . . , NR (16)

Ds

Dt
= · · · − T /Tdisc − 1

τ
ζ (R). (17)

In the course of the calculation we find that inside the domain

cold low-density patches surrounded by denser hot gas appear spo-

radically. Such patches are dispersed due to motion of the gas from

the core of the patch outward through the radiation pressure gradi-

ent. However, if we were to fix the Z and R velocities in the star

buffer zone to zero, such a patch cannot disappear, while the density

inside this patch is going to decrease together with the temperature,

and a numerical instability develops. To avoid this we use symmetry

conditions relative to the inner boundary of the buffer zone R = R0

(see Fig. 2) for ln ρ, s and UZ . In addition we assume UZ = 0 at

R = R0. Thus, we have in the star buffer zone

D ln ρ(R)

Dt
= · · · − ln ρ(R) − ln ρ(2R0 − R)

τ
λ(R), (18)

DUZ (R)

Dt
= · · · − UZ (R) − UZ (2R0 − R)

τ
λ(R), (19)

Ds(R)

Dt
= · · · − s(R) − s(2R0 − R)

τ
λ(R). (20)

Since the main goal of this paper is to consider the gas flow in

the vicinity of the equatorial point E, we consider a domain located
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Figure 4. Density and velocity fields in a vicinity of a star in a gas pressure-

dominated case (Mstar = 1.4 × 10−2 M�). The domain is limited in the

radial direction by the surface of a neutron star and in the disc mid-plane. The

surface and disc buffer zones are excluded. The viscosity is νt = 107 cm2 s−1,

the density scale is ρ0 = 10−2 g cm−3.

inside the disc with a vertical size smaller than the height where the

gas becomes cold and optically thin. To imitate a disc photosphere

in the surface buffer zone we include an additional cooling term to

create a vertical temperature gradient and to allow gas to escape

through the surface boundary.

First, we attempt to consider a non-rotating star. It turns out that in

this case the initial distribution of the main quantities (temperature,

density and velocity) have to be close to the final state, because oth-

erwise inhomogeneities in the temperature result in large radiation

pressure gradients which, in turn, generate large local velocities.

Such velocity perturbations may produce a local decrease of den-

sity, which will lead to a decrease in radiative cooling, and hence to

an increase in temperature. The resulting radiation pressure gradient

will decrease the density even further, which leads therefore to an

instability. (Note that this does not happen in the case of a smaller

gas temperature because then the gas pressure dominates over the

radiation pressure.)

Figure 5. Temperature and velocity fields in a vicinity of a neutron star in

a radiation pressure-dominated case (Mstar = 1.4 M�). The domain is the

same as in Fig. 4 for νt = 1010 cm2 s−1.

Finding suitable initial conditions is a difficult task. It turns out

that it is easier to consider first a rotating star, and then to decrease its

rotational velocity down to the necessary value. However, the final

rotational velocity still has to be considerable so that centrifugal

and gravitational forces are of the same order of magnitude. In the

opposite case, i.e. when the star is almost non-rotating, the gravity

force has to be balanced by the radiation pressure gradient, which,

in turn, should be negative near the stellar surface. However, it is

not clear how to realize this, because the main heating mechanism

is due to viscous friction which is maximum in the middle of the

boundary layer rather than at the stellar surface.

At the current stage we assume that the rotational velocity of the

star corresponds to the Keplerian velocity at the stellar radius (i.e.

α = 1). All other parameters are presented in Table 1. Also, we take a

uniform initial distribution of temperature in the R direction. In that

case, at the beginning of the calculation, the huge gravitational force

near the stellar surface is balanced by the centrifugal force. Depend-

ing on the temperature gradient, the R component of the radiation

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 386, 1038–1044
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pressure force nearly vanishes and the resulting R component of the

velocity appears to be small.

While the Z component of the gravitational force is much smaller

than the R component, its influence on the gas motion in the Z
direction is crucial and leads to strong flow of gas into the domain

through the surface boundary and to an accumulation of gas near the

equatorial point E. To avoid numerical problems, we assume that

initially the Z component of gravitational force is balanced by the

corresponding component of the radiation pressure force. Therefore,

the initial distribution of temperature takes the form

T (Ri ) = T (Ri−1) − 3G Mstarcρ(Ri )Zi

16σSB R3
i T 3(Ri )

�R, i = 1, . . . , NR, (21)

where �R is the size of the mesh in the R direction. We use the

same initial density distribution as in the gas pressure-dominated

case (see Section 4).

In Fig. 5 we present temperature and velocity fields (see also the

sketch in Fig. 1). Here we show temperature rather than density (as

was done in Fig. 4), because in the radiation pressure-dominated case

the flow of the gas is mostly determined by the radiation pressure

force and hence by the temperature distribution. In addition, we take

a larger domain size because the thickness of the boundary layer now

appears to be an order of magnitude larger than that in Section 4.

The results of the calculation are also presented in Fig. 6, where

density, temperature and velocity of the gas are shown as functions

of R for three different distances from the mid-plane, Z = 10, 50 and

110 m. We find that at higher latitudes the gas rotates with a veloc-

ity that is comparable to the rotational velocity of the star, while in

the equatorial plane its rotational velocity is smaller than the stellar

surface speed. This means that in the equatorial plane the centrifu-

gal force is larger than the gravitational force, while at the higher

latitudes the centrifugal force is smaller than the gravitational force.

Figure 6. Gas velocity, density and temperature as a function of R for the

fixed Z = 10 m (dotted curve), Z = 50 m (solid curve) and Z = 110 m (dashed

curve). The star buffer zone is excluded.

Figure 7. The sum of the gravitational, centrifugal and radiation pressure

forces in the R direction as a function of R for values of Z as in Fig. 6.

Such a relation between the main forces would result in accretion in

the equatorial plane and excretion at higher latitudes, provided the

gas pressure was much larger than the radiation pressure. However,

since now the radiation pressure dominates, we obtain the oppo-

site result: the gas accretes only at higher latitudes, while in the

equatorial plane it is excreting.

In Fig. 7 we present, as a function of R, the sum of the R com-

ponents of gravitational, centrifugal and radiation pressure forces,

Ftot = Fgr +U 2
	/R +κF rad/c. One can see that at a higher latitudes

the total force is at some radius negative, Ftot < 0, so the generated

radial velocity is negative (UR < 0), which means accretion, while in

the equatorial plane Ftot > 0 and UR > 0, so the gas is excreting. The

dominant role of the radiation pressure in driving the velocity field

is also clear from analysing the temperature in Fig. 5. One can see

that the temperature decreases outward in the equatorial plane and

increases outward at Z � 110 m near the disc buffer zone. Note that

along the stellar surface the temperature is almost constant, so the

Z component of the gravitational force dominates here, and causes

the gas to sink towards the equatorial plane.

6 C O N C L U S I O N S

We have studied the gas flow in close vicinity of a neutron star in

an LMXB and have assumed that the magnetic field is negligible.

The main purpose of this work was to investigate the flow near the

equatorial plane between disc and star, so the curvature of the stellar

surface in the latitudinal direction was neglected and cylindrical

coordinates were used.

In the unrealistic, gas pressure-dominated case the gas tempera-

ture is T � 5 × 106 K (which is about an order of magnitude smaller

than the observed value). If the star does not rotate, the gravitational

force at a radius close to the stellar surface should be balanced by

the gas pressure force. To have gas pressure and gravitational forces

of the same order of magnitude, the stellar mass was chosen to be

about two orders of magnitude smaller than the real mass of a neu-

tron star. In this case the maximum release of energy occurs in the

middle of the boundary layer, where the gas velocity gradient (and

hence the viscous heating) reaches a maximum, while the radiation

pressure force at the stellar surface is directed inward.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 386, 1038–1044
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For a realistic neutron star mass, Mstar = 1.4 M�, the gas pres-

sure gradient at the stellar surface becomes negligible compared

with the gravitational force. The latter is balanced by the radiation

pressure, so the gas temperature is about T � 108 K. Unlike the gas

pressure-dominated case, the radiation pressure force is directed

outward rather than inward. Thus, the maximum energy release oc-

curs directly at the stellar surface. However, it is not clear how to

realize such a scenario, where the gas is heated by viscous friction

between the differentially rotating gas layers.

The picture becomes crucially different if one considers a rotat-

ing neutron star: the gravitational force can now be balanced by the

centrifugal force. Here we have assumed that the neutron star rotates

with the Keplerian velocity at the stellar radius. Alternatively, one

might find a solution for smaller rotational velocities by gradually

decreasing it down to the required value, using the result of calculat-

ing it for a larger velocity as an initial approximation for calculation

with the smaller value.

We find that at higher latitudes the centrifugal force is larger than

the gravitational force, while at the equatorial plane the gas rotates

with a velocity that is considerably smaller than the corresponding

Keplerian value. It would be reasonable to assume that the gas is ac-

creting near the equator and excreting at higher latitudes. However,

we find the opposite: the accretion occurs only at higher latitudes,

while in the equatorial plane the gas is excreting. This is related to

the temperature distribution, and therefore, to the radiation pressure

force, which is now dominant. We find that near the equatorial plane

the temperature decreases outward, so the gas is pushed away from

the surface by radiation pressure. At higher latitudes, some distance

away from the surface, the temperature decreases inward, resulting

in accretion. The circulation of the gas is closed by a flow along the

stellar surface from high to low latitudes, because the temperature is

almost constant in this direction and the gas flow is controlled only

by the tangential component of gravity.

Finally, one should note that, since we have considered only a

laminar 2D model of the boundary layer at the neutron star surface,

we have assumed that the turbulent viscosity is constant everywhere

and that it can be treated as an input parameter. Future 3D simu-

lations will allow us to model turbulent processes more accurately.

However, even the results of the 2D simulations give us some clues

for understanding the physical processes near the neutron star sur-

face. These results can in principle be used for a more detailed

description of the vertical structure of the boundary layer and for

calculating spectra of neutron star radiation. Furthermore, the pre-

sented results may be useful for understanding the nature of QPOs.

AC K N OW L E D G M E N T S

This work was supported by the Academy of Finland grant 110792

and the Magnus Ehrnrooth Foundation. We acknowledge the allo-

cation of computing resources provided by the Centre for Scientific

Computing in Finland.

R E F E R E N C E S

Barret D., Olive J. F., Boirin L., Done C., Skinner G. K., Grindlay J. E.,

2000, ApJ, 533, 329

Brandenburg A., Dobler W., 2002, Comput. Phys. Commun., 147, 471

Gilfanov M., Revnivtsev M., Molkov S., 2003, A&A, 410, 217

Inogamov N. A., Sunyaev R. A., 1999, Astron. Lett., 25, 269

Medvedev, 2004, ApJ, 613, 506

Mitsuda K. et al., 1984, PASJ, 36, 741

Narayan R., Popham R., 1993, Nat, 362, 820

Piro A. L., Bildsten L., 2004, ApJ, 610, 977

Popham R., Narayan R., 1992, ApJ, 394, 255

Pringle J. E., 1977, MNRAS, 178, 195

Shih-I Pai, 1962, Introduction to the Theory of Compressible Flow. Van

Nostrand, Princeton

Sibgatullin N. R., Sunyaev R. A., 1998, Astron. Lett., 24, 774

Suleimanov V., Poutanen J., 2006, MNRAS, 369, 2036

Sunyaev R. A., Shakura N. I., 1986, Sov. Astron. Lett., 12, 117

van der Klis M., 2000, ARA&A, 38, 717

von Rekowski B., Brandenburg A., Dobler W., Shukurov A., 2003, A&A,

398, 825

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 386, 1038–1044


