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ABSTRACT

Aims. We determine the components of the Λ-effect tensor that quantifies the contributions to the turbulent momentum transport even
for uniform rotation.
Methods. Three-dimensional numerical simulations are used to study turbulent transport in triply periodic cubes under the influence
of rotation and anisotropic forcing. Comparison is made with analytical results obtained via the so-called minimal tau-approximation.
Results. In the case where the turbulence intensity in the vertical direction dominates, the vertical stress is always negative. This
situation is expected to occur in stellar convection zones. The horizontal component of the stress is weaker and exhibits a maximum
at latitude 30◦ – regardless of how rapid the rotation is. The minimal tau-approximation captures many of the qualitative features of
the numerical results, provided the relaxation time tau is close to the turnover time, i.e. the Strouhal number is of order unity.

Key words. hydrodynamics – turbulence – Sun: rotation – stars: rotation

1. Introduction

Differential rotation plays a crucial role in dynamo processes
that sustain large-scale magnetic activity in stars like the Sun
(e.g. Moffatt 1978; Krause & Rädler 1980). The internal rota-
tion of the Sun is familiar from helioseismology (e.g. Thompson
et al. 2003), but the processes sustaining the observed rotation
profile are not understood well. The angular momentum balance
of a rotating star is determined by the conservation equation

∂

∂t
(ρs2Ω) + ∇ · (ρs2Ω U + ρsuφu) = 0, (1)

where U is the meridional flow, s the cylindrical radius, ρ the
density (neglecting however its fluctuations),Ω = Uφ/s the local
angular velocity, and uφu the zonal component of the Reynolds
stress. Overbars denote averages over the azimuthal direction.

The meridional flow can also be directly affected by the
Reynolds stresses (e.g. Rüdiger 1989), but it is more strongly
determined by the baroclinic term that arises if the isocontours
of density and pressure do not coincide. Such a configuration
can appear because of latitude-dependent turbulent heat fluxes
that arise naturally in rotating convection (e.g. Rüdiger 1982;
Pulkkinen et al. 1993; Käpylä et al. 2004; Rüdiger et al. 2005a)
or from a subadiabatic tachocline (Rempel 2005) which is likely
to occur in the Sun (Rempel 2004; Käpylä et al. 2006b). The
flows due to thermodynamic effects are likely to be needed to
avoid the Taylor-Proudman balance in the Sun (e.g. Durney
1989; Brandenburg et al. 1992; Kitchatinov & Rüdiger 1995;
Rempel 2005). The overall importance of the meridional flow
in the angular momentum balance of the Sun is, however, still
unclear since no definite observational information about it is
available below roughly 20 Mm depth (e.g. Zhao & Kosovichev
2004).

� Tables B.1–B.3 are only available in electronic form at
http.//www.aanda.org

Although not much more is known about the Reynolds
stresses from observations, already this limited knowledge can
be used to gain insight into the theory of turbulent transport.
Solar surface observations indicate that there is an equatorward
flux of angular momentum, as described by the Reynolds stress
component Qθφ = uθuφ, of several 103 m2 s−2 in the latitude
range where sunspots are observable (e.g. Ward 1965; Pulkkinen
& Tuominen 1998; Stix 2002). In mean-field theory the sim-
plest approximation that can be made concerning the Reynolds
stresses is to assume them proportional to the gradient of mean
velocity (the Boussinesq ansatz):

Qi j ≡ uiu j = −Ni jklUk,l. (2)

In the Sun this ansatz turns out to be insufficient because the ob-
served Qθφ and solar surface differential rotation profile indicate
that the turbulent viscosity is negative. Thus, in analogy to mean-
field dynamo theory, additional contributions to the Reynolds
stress were conjectured to appear (e.g. Wasiutyński 1946;
Krause & Rüdiger 1974), leading to the present description

Qi j = Λi jkΩk − Ni jklUk,l, (3)

whereΛi jk is a third-rank tensor describing theΛ-effect that con-
tributes to the Reynolds stress even in the case of rigid rotation.
These terms are often referred to as “non-diffusive” contribu-
tions to the Reynolds stress. The zonal components of the stress
can be written in the form (e.g. Stix 2002)

Qθφ = ΛH cos θΩ − νt sin θ
∂Ω

∂θ
, (4)

Qrφ = ΛV sin θΩ − νt(1 − ε)r sin θ
∂Ω

∂r
, (5)

whereΛH andΛV describe the non-diffusive transport and where
νt is the turbulent viscosity. The factor 1 − ε in the latter equa-
tion indicates that the turbulent viscosity can be anisotropic.
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Furthermore, the coefficients ΛH, ΛV, and νt can vary as func-
tions of the spatial coordinates.

Much effort has been devoted to determining Reynolds
stresses from convection simulations (Hathaway & Somerville
1983; Pulkkinen et al. 1993; Rieutord et al. 1994; Brummell
et al. 1998; Chan 2001; Käpylä et al. 2004; Rüdiger et al.
2005b; Hupfer et al. 2005, 2006; Giesecke 2007). These stud-
ies have confirmed the existence of the Λ-effect and revealed
some surprising results that are at odds with theoretical consid-
erations (e.g. Kitchatinov & Rüdiger 1993, 2005) derived un-
der the second-order correlation approximation (SOCA). The
discrepancies are most prominent in the rapid rotation regime,
Ω� ≈ 10, where

Ω� = 2Ω0τto, (6)

is the Coriolis (or the inverse Rossby) number. Here, Ω0 is the
angular momentum-averaged rotation rate and τto the convec-
tive turnover time. In the solar convection zone, Ω� varies be-
tween 10−3 near the surface to ten or more in the deep layers.
Convection simulations in the latter regime show that the hor-
izontal angular momentum flux is directed toward the equator,
corresponding to positive Qθφ in the northern hemisphere, and
that it peaks very sharply near the equator (Chan 2001; Käpylä
et al. 2004; Hupfer et al. 2005). On the other hand, the ver-
tical stress Qrφ can be directed outward (Käpylä et al. 2004),
contradicting the theory for vertically dominated turbulence
(e.g. Biermann 1951; Rüdiger 1980, 1989). So far, these results
remain without proper explanation.

Often the Reynolds stress realized in the simulation is taken
to solely represent the Λ-effect. This approach seems like a rea-
sonable starting point but in an inhomogeneous system large
scale mean flows are generated when rotation becomes im-
portant. These flows affect the Reynolds stresses via the tur-
bulent viscosity. Furthermore, in the presence of stratification,
heat fluxes can also significantly affect the stresses (Kleeorin &
Rogachevskii 2006). In the present study we simplify the situa-
tion as much as possible in order to disentangle the effect of the
turbulent velocity field from other effects. Thus we neglect strat-
ification and heat fluxes by adopting a periodic isothermal setup.
Turbulence is driven by external forcing, which provides clear
scale separation between the turbulent eddies and the system
size, which is typically not achieved in convection simulations.
Further insight is sought from comparison of simple analytical
closure models with numerical data.

Preliminary results on the Λ-effect are presented in Käpylä
& Brandenburg (2007). In the present paper, numerical datasets
covering a significantly larger part of the parameter space are
analyzed, and a more thorough study of the validity and results
of the minimal tau-approximation are presented.

The remainder of the paper is organized as follows. Section 2
summarizes the model and the methods of the study, and in
Sects. 3 and 4 the results and the conclusions are given.

2. The model and methods

2.1. Basic equations

We model compressible hydrodynamic turbulence in a triply pe-
riodic cube of size (2π)3. The gas obeys an isothermal equation
of state characterized by a constant speed of sound, cs. The con-
tinuity and Navier-Stokes equations read

Dln ρ
Dt
= −∇ · U, (7)

DU
Dt
= −c2

s∇ ln ρ − 2Ω × U + f visc + f force, (8)

where D/Dt = ∂/∂t+U ·∇ denotes the advective derivative, U is
the velocity, ρ the density, f visc the viscous force, and f force the
forcing function. Due to the periodic boundaries, mass is con-
served and the average density retains its initial value ρ = ρ0 at
all times. Compressibility is retained but we consider low Mach
number flows, urms/cs ≈ 0.1− 0.2. The viscous force is given by

fvisc = ν
(
∇2U + 1

3∇∇ · U + 2 S · ∇ ln ρ
)
, (9)

where ν is the kinematic viscosity and

Si j =
1
2

(
∂Ui

∂x j
+
∂U j

∂xi

)
− 1

3δi j
∂Uk

∂xk
, (10)

the traceless rate of strain tensor. The forcing function fforce is
given by

f (x, t) = Re{N · fk(t) exp [ik(t) · x − iφ(t)]}, (11)

where x is the position vector, N = f (0)cs(kcs/δt)1/2 is a normal-
ization factor, and f (0) describes the direction-dependent ampli-
tude of the forcing (see below), k = |k|, δt is the length of the
time step, and −π < φ(t) < π a random delta-correlated phase.
The vector fk is given by

fk =
k × ê√

k2 − (k · ê)2
, (12)

where ê is an arbitrary unit vector. Thus, fk describes nonhelical
transversal waves with | fk|2 = 1, where k is chosen randomly
from a predefined range in the vicinity of the average wavenum-
ber kf/k1 = 5 at each time step, where k1 is the wavenumber
corresponding to the domain size, and kf the wavenumber of the
energy-carrying scale.

To make the resulting turbulence anisotropic the forcing
amplitude depends on direction

f (aniso)
i = (δi j f0 + ẑiẑ j cos2Θk f1) f (iso)

j (13)

where f0 and f1 are the amplitudes of the isotropic and
anisotropic parts of the forcing, ẑ the unit vector in the vertical
direction, and Θk the angle between the vertical direction and
the wave vector k. In the following we assume f1 � f0, but even
then the amount of anisotropy depends on the Reynolds number
and is in any case only quite modest (see, e.g. Table B.1).

At this point it is important to emphasize that our forcing
function is designed to capture the effects that lead to a finite
Λ-effect. The implementation of anisotropy should therefore be
a simple one. In stars, anisotropy is produced by stratification
and convection. Our goal is clearly not to simulate properties
of convection other than its tendency to make the turbulence
anisotropic.

The numerical computations were made with the Pencil-
Code1, which uses sixth-order accurate finite differences
in space, and a third-order accurate time-stepping scheme
(Brandenburg & Dobler 2002; Brandenburg 2003). Resolutions
up to 2563 grid points were used in the simulations.

1 http://www.nordita.org/software/pencil-code/

http://www.nordita.org/software/pencil-code/
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2.2. Nondimensional units

In the following we use non-dimensional variables by setting

cs = k1 = ρ0 = 1. (14)

This means that the units of length, time, and density are

[x] = k−1
1 , [t] = (csk1)−1, [ρ] = ρ0. (15)

However, in most of the plots we present the results in explicitly
non-dimensional form using the quantities above.

2.3. Coordinate system, averaging, and error estimates

The simulated domain is thought to represent a small rectangular
portion of a spherical body of gas. We choose (x, y, z) to corre-
spond to (θ, φ, r) of spherical coordinates. With this choice the
rotation vector can be written as

Ω = Ω0(− sin θ, 0, cos θ)T, (16)

where θ is the angle between the rotation axis and the local
vertical direction, i.e. the colatitude.

Since the turbulence is homogeneous, volume averages are
employed and denoted by overbars. An additional time aver-
age over the statistically saturated state of the calculation is also
taken. We define the Coriolis number as

Co =
2Ω0

urmskf
, (17)

where urms is the rms-velocity. In comparison to the commonly
used definition (6), definition (17) is smaller by a factor of 2π,
i.e. Co = Ω�/2π. The other dimensionless number relevant in
this study is the Reynolds number based on the forcing scale

Re =
urms

νkf
· (18)

See Fig. 1 for a snapshot from a typical run with Re ≈ 60.
Errors are estimated by dividing the time series into three

equally long parts and computing mean values for each part in-
dividually. The largest departure from the mean value computed
for the whole time series is taken to represent the error.

2.4. The Λ-effect from the minimal tau-approximation

To have some understanding of the numerical results, we com-
pare with the simplistic tau-approximation (hereafter MTA) in
real space (e.g. Blackman & Field 2002; Brandenburg et al.
2004). Unlike the usual first-order smoothing approximation
where nonlinearities in the fluctuations are neglected, they are
retained in an approximate manner in MTA.

In order to develop a theory for the Reynolds stress, Qi j =
uiu j, we derive an equation for its time derivative,

Q̇i j = u̇iu j + uiu̇ j. (19)

In the absence of large-scale flows, i.e. U = 0, the equation for
the fluctuating part can be written as

u̇i = Ni − 2 εimnΩmun + fi, (20)

where Ni = −uk∂kui − c2
s∂i ln ρ is a nonlinear term. Multiplying

Eq. (20) by u j gives

u ju̇i = u jNi − 2 u jεimnΩmun + u j fi. (21)

Fig. 1. Ux at the periphery of the simulation domain from a slowly
rotating run with Co ≈ 0.3, kf/k1 = 5, and θ = 0◦, resolution 2563.

Inserting this into Eq. (19) yields

Q̇i j = −2 ε jklΩkQil − 2 εiklΩkQ jl + ui f j + u j fi + Ti j, (22)

where Ti j = uiNj + u jNi are the triple correlations. Under the
assumption of periodic boundary conditions, this term can be
written in the form

Ti j = −c2
s (ui∂ j ln ρ + u j∂i ln ρ) + uiu j∇ · u. (23)

In MTA the higher than second-order terms, i.e. Ti j, in the equa-
tions of turbulent correlations are retained in a collective manner
by parametrizing them with a term that is equal to the original
correlation divided by a relaxation time, i.e.

Ti j = −τ−1Qi j. (24)

Now the equations can be solved for the stresses in terms of the
forcing. A simple ansatz for parameterizing the forcing is given
in terms of the non-rotating equilibrium solution,

ui f j + u j fi = τ
−1Q(0)

i j . (25)

Inserting the parameterizations (24) and (25) into Eq. (22) yields

Q̇i j = −2 ε jklΩkQil − 2 εiklΩkQ jl − 1
τ

(Qi j − Q(0)
i j ); (26)

see Appendix A for more details on the equations used in the
MTA-model. The model equations are very similar to those of
Ogilvie (2003; see also Garaud & Ogilvie 2005) who studied
hydrodynamic and magnetohydrodynamic turbulence and angu-
lar momentum transport due to shear flows and the magnetoro-
tational instability. Among other things, they also introduced an
isotropization term that causes decaying turbulence to become
isotropic. Some of our models give explicit evidence of such
a term.

The rotational influence in the MTA-model is measured by
the Coriolis number

CoMTA =
2Ω0 St
urmskf

≡ Co St, (27)

where

St = τurmskf (28)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079098&pdf_id=1
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is the Strouhal number, which is the main free parameter in
the model.

On account of previous results on similar systems of forced
turbulence (e.g. Brandenburg & Subramanian 2005) St = 1 is
used as our reference model. To reproduce the numerical re-
sults, we introduce an empirical isotropization term in the MTA-
model; see Sect. 3.1 and in particular Eqs. (29) and (30). The use
of this term is regulated by another free parameter ξ, which can
obtain the values zero or unity.

The MTA-model results were obtained by advancing the
time-dependent Eqs. (22) with the parameterizations (24)
and (25) until a stationary solution was reached.

3. Results

3.1. Diagonal components of the stress

Consider turbulence where the intensity in the vertical direction
is stronger than the intensities in the horizontal directions. This
situation is encountered if the turbulence is caused by the con-
vective instability. First we consider the case with the maximum
anisotropy that was achieved with the present model. Table B.1
summarizes the results for seven values of the Coriolis numbers
ranging from 0.06 to roughly 5.4. Calculations at seven latitudes
from the pole (θ = 0◦) to the equator (θ = 90◦) with equidistant
intervals of Δθ = 15◦ were made with each Coriolis number,
Re ≈ 12 . . .14 in all runs. In this set of runs, f0 = 10−6 and
f1 = 0.2 were used in Eq. (13).

Figure 2 shows the diagonal components of the Reynolds
tensor as functions of latitude and Coriolis number from the
numerical turbulence simulations. As rotation is increased, the
magnitudes of the horizontal components Qxx and Qyy in-
crease monotonically while Qzz decreases, which illustrates an
isotropizing effect of rotation on the turbulence. In the fol-
lowing, we refer to this effect as the rotational isotropization
of turbulence. This effect is a purely empirical and refers to
the observation that increased rotation leads to stronger mixing
which washes out anisotropies that are caused by other effects.
Of course, rotation itself can cause the turbulence to become
anisotropic, but this seems to play a role only at much higher ro-
tation rates. This is indeed seen in the most rapidly rotating case
where the behavior is more complex. The MTA-model, Fig. 3,
on the other hand, fails to reproduce isotropization of turbu-
lence when rotation is included. The behavior is most obvious
at the pole where rotation contributes no net effect to linear or-
der, see Appendix A, Eqs. (A.1) to (A.6). The same is true for
the Qxx component at the equator.

Some persistent trends arise as a function of latitude in the
numerical simulations; for instance, Qxx peaks at the pole and
decreases toward the equator except again for the fastest rota-
tion. An approximately opposite trend is seen for Qyy for slow
and rapid rotation, whereas in the intermediate range a minimum
appears at mid-latitudes. For slow rotation, Qzz behaves approx-
imately in the opposite way to Qyy, having a maximum at the
pole and a minimum at the equator, whereas for rapid rotation
the trend is reversed. There is also a persistent maximum at mid-
latitudes. The MTA-model, however, fails to reproduce most of
the characteristics of the latitude distribution of the diagonal
stresses. This indicates that nonlinear terms, which are mani-
festly not described adequately well by the MTA-assumption,
are the deciding factor in determining the behavior of the diago-
nal stresses.

Fig. 2. Volume-averaged Reynolds stress components Qxx (top), Qyy
(middle), and Qzz (bottom), normalized by the square of the rms-
velocity, as functions of latitude and rotation from the turbulence sim-
ulations listed in Table B.1. Coriolis number, as defined in Eq. (17),
varies as indicated in the legend in the middle panel.

To capture the rotational isotropization with the MTA-model
at least qualitatively, we experimented by adding a term

Q̇i j = . . . − ξ
τ

Frot(Qi j − 1
3δi jQ), (29)

on the rhs of Eq. (26). Here Q is the trace of Qi j and

Frot =
3 Co2

MTA

1 + Co2
MTA

· (30)

The functional form of Frot is chosen purely empirically so that
the magnitudes of the off-diagonal stresses in comparison to

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079098&pdf_id=2
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Fig. 3. Diagonal Reynolds stress components from the MTA-model.
Here the Coriolis number is defined via Eq. (27) with St = 1 and ξ = 0.

the simulations are fairly accurately reproduced with the MTA-
model (see Fig. 7).

Figure 4 shows the results for the diagonal components with
St = ξ = 1. Now the magnitudes of the turbulence intensities
are more in line with the full numerical simulations, although
the latitude distribution is still manifestly wrong. Although the
off-diagonal components are much better represented by the lin-
ear terms appearing in the equation of the Reynolds stress (see
Sect. 3.3), the rotational isotropization term helps for reducing
their magnitudes closer to the levels seen in the direct simula-
tions also in that case.

The functional form of Frot in Eq. (29) indicates that Frot →
3 for rapid rotation. This behaviour cannot be justified based on
the present numerical data (see Fig. 2).

Fig. 4. Same as Fig. 3 but with St = ξ = 1. Compare with Figs. 2 and 3.

3.2. Anisotropy of the turbulence

Turbulence anisotropies can be characterized by the quantities

AH =
Qyy − Qxx

u2
rms

, (31)

AV =
Qxx + Qyy − 2 Qzz

u2
rms

· (32)

The importance of these quantities is that, for slow rotation, they
can be considered as proxies of the Λ-effect according to ΛH ≈
2 τcAH and ΛV ≈ 2 τcAV (e.g. Rüdiger 1980, 1989), where τc is
the correlation time of the turbulence.

Table B.1 shows that for slow rotation AH increases mono-
tonically from the pole to the equator. For Co > 0.3, AH
exhibits a negative minimum at mid-latitudes and reaches a

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079098&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079098&pdf_id=4
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positive maximum at the equator. The maximum at the equator
can be explained as resulting from the surviving (y-)component
of the Coriolis force at low latitudes. The relation between the
horizontal Λ-effect and the anisotropy parameter AH is at best
poorly confirmed by the numerical results. It must also be noted
that AH is smaller by at least an order of magnitude in compar-
ison to AV, which also enters the equation for Qxy but with a
higher order in Co (see Eq. (A.7)).

The vertical anisotropy, AV, on the other hand, retains its
sign in all models. For slow rotation the absolute value of AV
decreases monotonically from the pole toward the equator. The
latitude distribution for rapid rotation is approximately opposite,
although an additional minimum (Co ≈ 0.6 . . .1.5) or a maxi-
mum (Co ≈ 5.4) can occur at mid-latitudes. Here the correspon-
dence between AV and ΛV holds at least for the sign for all cal-
culations, bar the few cases in the intermediate rotation regime
where Qyz is positive (see below).

3.3. Off-diagonal components of the stress

In stellar convection zones, the off-diagonal Reynolds stresses
contribute to the angular momentum transport and work to gen-
erate (Λ-effect) or to smooth out (turbulent viscosity) differential
rotation. In the present case only the former effect is in operation.
Figure 5 summarizes the results for the runs listed in Table B.1.

The Qxy component of the stress corresponds to Qθφ in spher-
ical coordinates and is responsible for latitudinal angular mo-
mentum transport. In the simulations this component is always
positive and the latitude distribution peaks at latitude 30◦ (see
the uppermost panel of Fig. 5). The sign is in accordance with
solar observations (Ward 1965; Pulkkinen & Tuominen 1998)
and analytical turbulence models (Kitchatinov & Rüdiger 1993,
2005). The latitude distribution in the rapid rotation regime is
significantly different from convection simulations where Qxy
is sharply concentrated near the equator (Chan 2001; Käpylä
et al. 2004; Hupfer et al. 2005; Rüdiger et al. 2005a). The reason
for this difference is still unclear but is evidently related to the
physics that have been omitted in the present study. The MTA-
model captures the latitude dependence rather well, but the mag-
nitude of the stress is clearly too great (see Fig. 6). If the rota-
tional isotropization term, Eq. (29), is taken into account (see
the uppermost panel of Fig. 7), the agreement is also better for
the magnitude. Keeping the forcing and rotation rate Ω0 fixed,
the best agreement with the 3D models is found if St = 2 is
used, see Fig. 8.

While the analogue of the Qxz component does not play a
direct role in the angular momentum balance in stars, it can
still contribute via generating meridional flows (e.g. Rüdiger
1989). In the numerical simulations we find that, for all cases
except the most rapidly rotating one, Qxz is negative and peaks at
θ = 45◦ (middle panel of Fig. 5). For Co ≈ 5.4, however, the sign
changes near the equator, with positive values toward the equator
and negative ones toward the pole. This is at odds with the an-
alytical result of Rüdiger et al. (2005b), but does agree with the
results of convection simulations (Pulkkinen et al. 1993; Käpylä
et al. 2004).

The MTA-model gives qualitatively similar results, although
the sign change occurs at significantly slower rotation; see the
middle panel of Fig. 6. Rotational isotropization helps to correct
the magnitude, but not the earlier occurrence of the sign change
(Figs. 7 and 8).

Since the turbulent intensity of the vertical (z-)motions is
greater than the horizontal ones, the expectation is that the stress
component Qyz is negative, i.e. that ΛV ∝ AV (Biermann 1951).

Fig. 5. Same as Fig. 2 but for the off-diagonal stress components Qxy

(top), Qxz (middle), and Qyz (bottom). Linestyles as in Fig. 2.

This is indeed seen in the simulations quite consistently (low-
ermost panel of Fig. 5), although at intermediate rotation low
positive values can occur at high latitudes. The highest values
of Qyz occur for Co ≈ 0.3 as opposed to Co ≈ 0.6 for Qxy.
Rotational quenching of Qyz seems to be stronger and occur
for lower Co than for Qxy (see also Fig. 10). A similar trend
was seen in convection simulations by Käpylä et al. (2004).
The consistently positive values of Qyz for rapid rotation seen in
convection simulations (Käpylä et al. 2004; Chan 2007, private
communication) do not occur in the present calculations.

The value of Qyz always reaches a maximum at the equa-
tor. This contradicts with analytical results derived under first-
order smoothing (Kitchatinov & Rüdiger 1993, 2005) and the
MTA-model that predicts a maximum around θ = 45◦ for inter-
mediate and rapid rotation. The rotational isotropization term is

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079098&pdf_id=5
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Fig. 6. Same as Fig. 3 but for the off-diagonal stress components Qxy

(top), Qxz (middle), and Qyz (bottom). St = 1, ξ = 0. Linestyles as in
Fig. 3.

again needed to reduce the magnitude of the stress. It seems that
to reproduce Qyz correctly, one would need to apply somewhat
stronger isotropization than what is presently used (see Figs. 7
and 8).

One conclusion that can be drawn from the MTA-model re-
sults is that, although the diagonal Reynolds stresses are quite
poorly reproduced in comparison to the 3D simulations, the
off-diagonals have most of the qualitative features correct. This
seems to imply that, to model the off-diagonals, the exact param-
eterization of the nonlinearities in the equation of the Reynolds
stress is not crucial. The empirical rotational isotropization term
helps to capture some of the missing features for the diagonal
components and reduces the magnitudes of the off-diagonals to
the level that is also seen in the simulations.

Fig. 7. Same as Fig. 6 but with St = ξ = 1. Linestyles as in Fig. 3.

3.3.1. Comparison with inhomogeneous simulations

The homogeneous setup used so far prevents any mean flows
from being generated. This is good for the purpose of testing the
sole effect of turbulent velocity field on the Reynolds stresses,
but can be argued to be unphysical because astronomical objects
where turbulence is important; e.g., the solar convection zone,
have boundaries and cannot be considered homogeneous.

To test how much the assumption of homogeneity affects the
results, we made a set of simulations with a setup where the
z-boundaries are impenetrable. For the horizontal velocity com-
ponents, stress-free boundary conditions are used, i.e.

Ux,z = Uy,z = Uz = 0. (33)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079098&pdf_id=6
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Fig. 8. Same as Fig. 6 but with St = 2, ξ = 1. Linestyles as in Fig. 3.

To compare with the homogeneous simulations and at the same
time minimize the effects of the boundaries, we average the re-
sults over − 3

4π < z < 3
4π and the full (x, y)-extents.

Mean flows are generated in the runs that, however, are small
in comparison to the rms-velocity of the turbulence. The excep-
tion to this trend is the equator, i.e. θ = 90◦, where a large mean
shear flow develops, for which

ΔUy
Δz
≈ −Ω0. (34)

Similar flows have been seen in convection simulations (Chan
2001; Käpylä et al. 2004; Brandenburg 2007). The volume av-
erage of this flow is zero. For the present simulations the mean
velocities near the z-boundaries can approach the speed of sound

or even exceed it. This prevents us from computing models with
Ω0 = 0.5 . . .2 until a statistically saturated state.

The results for the off-diagonal stresses are compared in
Fig. 9. For slow rotation, Co < 0.62, the differences are minute
at all other latitudes except at the equator. The tendency for Qyz
to have a minimum at the equator is reminiscent of results from
convection simulations (e.g. Chan 2001; Käpylä et al. 2004;
Rüdiger et al. 2005b). For more rapid rotation, the trends for
different components seem to diverge: Qxy is somewhat reduced
whereas Qxz seems to increase somewhat and there is hardly any
change for Qyz apart from the equatorial case. For Co > 0.62 the
stresses at the equator are not saturated because the large scale
flow is not fully developed.

3.3.2. Comparison to SOCA results

To connect to earlier studies, the 3D simulation data and MTA-
model results are compared to the analytical SOCA results
of Kitchatinov & Rüdiger (2005, hereafter KR05; see also
Kitchatinov & Rüdiger 1993). Since analytical results are only
available for the components relevant to the Λ-effect, only the
Qxy and Qyz components are thus considered. Furthermore, we
restrict the comparison to a subset of the models with Co =
(0.15, 1.5, 5.4).

The conventional way of writing theΛ-effect is (e.g. Rüdiger
1989)

Qxy = νtΩ0H cos θ, (35)

Qyz = νtΩ0V sin θ, (36)

where νt = 1
3 urms/kf is the turbulent viscosity, and the dimen-

sionless quantities H and V are given by

H = H(1) sin2 θ, (37)

V = V (0) + V (1) cos2 θ, (38)

where H(1), V (0), and V (1) = −H(1) depend on the Coriolis
number.

The normalized stresses Qi j/(νtΩ0) are known from the sim-
ulations and the MTA-model, whereas H and V can be computed
analytically for the turbulence model of KR05 (see Appendix B).
The results are shown in Fig. 10 for three Coriolis numbers. Our
Coriolis number is smaller than that of KR05 by a factor of 2π.

For the horizontal stress, the SOCA results and the rotation-
ally quenched MTA-model seem to fare similarly well. The for-
mer underestimates the magnitude for small Co and overesti-
mates it for large Co, whereas for the latter the trend is exactly
the opposite. If rotational isotropization is not taken into ac-
count, the agreement is poor for all Coriolis numbers considered
here.

For Qyz the standard MTA-model is almost spot on for
Co = 0.15, but overestimates the magnitudes by at least a fac-
tor of two for the other cases. As discussed in the previous sec-
tion, the latitude distribution shows a mid-latitude maximum
that is not present in the numerical simulations. When rotational
isotropization is taken into account, at least the magnitude can
be reconciled with the numerical results. The SOCA result does
not fare very well in this case, predicting, in general, values that
are too low and an incompatible latitude distribution with zero
stress at the equator.
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Fig. 9. Same as Fig. 5 but for homogeneous (left panel) and inhomogeneous (right) simulations.

3.4. Dependence on the amount of anisotropy

Table B.2 and Fig. 11 show the results for four sets of cal-
culations in which the Coriolis number is kept approximately
constant at 0.3 whereas the turbulence anisotropy AV is varied
between −0.07 and −0.47. This is done by choosing suitable
values for f0 and f1 so that the rms-velocity stays approximately
constant.

From the figure it is seen that the ratio of the stress to the
amount of anisotropy decreases monotonically as a function of
AV. Although part of the difference can be explained by the
somewhat smaller Co (0.31 as opposed to 0.34 in the other cases)
in the calculation with the largest AV, the trend still persists.

This trend can be understood as follows: from the approxi-
mate relation ΛV ≈ 2 τcAV we obtain τc ∝ ΛV/AV. The decreas-
ing trend of Qyz/AV ∝ ΛV/AV ∝ τc seen in the results suggests

that the correlation time changes when the turbulence anisotropy
is varied, i.e. τc decreases when AV is increased. This is plausible
since to change AV different values of the forcing amplitudes, f0
and f1 (see Eq. (13)), need to be used resulting in differences in
the turbulence.

3.5. Dependence on Reynolds number

Figure 12 shows the off-diagonal stresses as functions of lati-
tude and Reynolds number for a constant Co ≈ 0.25 (see also
Table B.3). There is no a priori reason to expect that the stresses
should depend on the Reynolds number if Re � 1 and if the tur-
bulence anisotropy is kept constant. This is essentially what is
borne out of the simulations, although there seems to be a weak
decreasing trend as a function of Re for Re > 15 for Qxy and
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Fig. 10. Comparison of the numerical simulations (solid lines), two MTA-models with St = 1, ξ = 0 (dotted), and St = 2, ξ = 1 (dashed), with
the SOCA results of KR05 (dash-dotted). Left (right) hand panels show Qxy/(νtΩ0) (Qyz/(νtΩ0)) for Coriolis numbers 0.15 (uppermost panels),
1.5 (middle), and 5.4 (lower panels).

Qxz, although the results are within error bars. For Qyz, however,
the largest Reynolds number case shows a distinct drop in com-
parison to the less turbulent cases.

The decrease in the stresses as a function of the Reynolds
number is likely to have the same origin as the decrease seen
when the turbulence anisotropy is increased (see the previous
section). In order to obtain the same AV in the simulations dif-
ferent values, f0 and f1 are needed for different values of ν, the
kinematic viscosity. More precisely, the less the viscosity, the
more difficult it is to obtain large anisotropy. Thus, for smaller
ν, higher ratio f1/ f0 is required to achieve a given AV. Thus, if
the interpretation that the higher the ratio f1/ f0, the smaller τc

becomes is correct, the decreasing trend seen as a function of Re
might be an artefact due to the small differences in the forcing
between the different runs.

3.6. Strouhal number from simulations

The MTA-model reproduces the simulation results for the off-
diagonal stresses reasonably well when St = 1 . . .2 is used.
Now we turn to the numerical simulations to determine St in-
dependently. Although we have not been able to provide any di-
rect support of the basic MTA-assumption, Ti j = −τ−1Qi j, the
MTA-model is still able to reproduce many of the features of the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079098&pdf_id=10
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Fig. 11. Volume-averaged Reynolds stress components Qxy (top), Qxz

(middle), and Qyz (bottom) as functions of latitude and vertical turbu-
lence anisotropy AV, see Eq. (32). Line styles as indicated by the legend
in the lower-most panel. Coriolis number in each case is roughly 0.3.

numerical simulations adequately. This implies that a value for
St could be extracted from the MTA-relations.

We consider two methods to determine the Strouhal number
from the simulations: (i) MTA-relations derived for the Reynolds
stresses; and (ii) similar relations for passive scalar transport un-
der the influence of rotation.

3.6.1. Off-diagonal Reynolds stresses versus MTA-relations

Using the minimal tau-approximation and assuming a stationary
state where U̇ = f force + f visc = 0, the off-diagonal Reynolds

Fig. 12. Off-diagonal Reynolds stresses Qxy (top), Qxz (middle), and Qyz
(bottom) as functions of latitude and Reynolds number, see the legend
in the lower-most panel.

stresses can be derived from Eq. (8), yielding

Qxy = 2Ωzτxy(Qyy − Qxx) + 2ΩxτxyQxz, (39)

Qxz = 2ΩzτxzQyz − 2ΩxτxzQxy, (40)

Qyz = 2Ωxτyz(Qzz − Qyy) − 2ΩzτyzQxz, (41)

where τi j are a set of relaxation times that allow for the possi-
bility that there can be different values of τ for different compo-
nents of the Reynolds stress. Here Qi j are the components of the
Reynolds stress tensor in the simulations. These equations can
be solved for the τi j via

τxy =
Qxy

2Ωz(Qyy − Qxx) + 2ΩxQxz
, (42)

τxz =
Qxz

2ΩzQyz − 2ΩxQxy
, (43)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079098&pdf_id=11
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079098&pdf_id=12
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Fig. 13. Strouhal numbers computed from Eq. (47) at colatitude θ = 60◦
as functions of the Coriolis number for the runs listed in Table B.1. A
power law proportional to Co−1.5 shown for reference.

τyz =
Qxy

2Ωx(Qzz − Qyy) + 2ΩzQxz
· (44)

The first and the last of these equations, i.e. τxy and τyz, yield rea-
sonable values for most cases, whereas τxz is less well-behaved,
producing sign changes and showing no clear trend in magni-
tude as a function of latitude or rotation. This is because the two
terms in the denominator of Eq. (43) tend to nearly cancel each
other; see the upper panels of Fig. 5. If, however, the values of
τ in Eqs. (39) to (41) are considered the same, which is a basic
MTA-assumption, it is possible to solve for Qxz in terms of the
diagonal stresses

Qxz =
4ΩxΩzτ

2
xz

1 + 4Ω2
0τ

2
xz

(Qxx + Qzz − 2 Qyy), (45)

from which it follows that

τxz =

[
Qxz

4ΩxΩz(Qxx + Qzz − 2 Qyy) − 4Ω2
0Qxz

]1/2

· (46)

Although the assumption that all τi j are equal in Eqs. (39) to (41)
is not exactly realized in the numerical simulations, relation (46)
gives results that are compatible with those from Eqs. (42)
and (44). The Strouhal number can now be computed from

Sti j = τi jurmskf , (47)

where τi j are given by Eqs. (42), (46), and (44), respectively.
Representative results are given in Fig. 13.

3.6.2. Passive scalar transport with rotation

As an independent check of the dependence of the Strouhal num-
ber on rotation, we expand the passive scalar transport case,
which was studied by Brandenburg et al. (2004) to cases where
rotation is included. The numerical model is the same as in the
runs presented so far, except that isotropic forcing is used with
f0 = 0.01−0.03 and f1 = 0 in Eq. (13).

The turbulent passive scalar flux is denoted by F i = uic,
where c is the fluctuation of passive scalar density, i.e. the pas-
sive scalar concentration per unit volume. Following the MTA-
approach, we solve first for the time derivative

Ḟ i = u̇ic + uiċ, (48)

where the fluctuation of the passive scalar field, neglecting
diffusive terms, is given by

ċ = −∇ · (uC + Uc + uc). (49)

Here C and U are the mean passive scalar concentration and the
mean velocity, respectively. Following Brandenburg et al. (2004)
we impose a large-scale gradient of passive scalar concentration
according to ∇C = (0, 0,G)T. In what follows G = 0.1 is used.
Now, assuming incompressibility and using the fact that U = 0,
we arrive at

Ḟ i = −Qi j∂ jC − 2 εi jkΩ jF k − T (1)
i − T (2)

i − T (3)
i , (50)

where the last three terms denote the triple correlations. For the
z-component of Eq. (50) the triple correlations are given by

T (1)
z = uz∇ · (uc), T (2)

z = (uc) · ∇uz, T (3)
z = c∇zh, (51)

where h = c2
s ln ρ is the reduced pressure (or enthalpy). In the

non-rotating case, T (1)
z +T (2)

z = 0, and the contributions from the
momentum equation also cancel on average, i.e. T (2)

z + T (3)
z = 0.

The former relation follows from the periodic boundary condi-
tions used and remains valid when rotation is added. The latter
relation, however, is no longer true and T (3)

z is now balanced by
the Coriolis term. Thus, the MTA-assumption should be applied
to T (3)

z

c∇zh = τ
−1F z. (52)

Assuming a stationary state in Eq. (50), the passive scalar fluxes
can now be written as

F x = −τxQxzG + 2ΩzτxF y, (53)

F y = −τyQyzG − 2ΩzτyF x + 2ΩxτyF z, (54)

F z = −τzQzzG − 2ΩxτzF y, (55)

where we have retained the possibility that the values of τ from
different equations are unequal.

In the passive scalar cases we consider isotropically forced
turbulence for which Qxz ≈ Qyz ≈ 0 even when rotation is
included. Equations (53)−(55) yield

τx =
F x

2ΩzF y
, (56)

τy =
F y

2ΩxF z − 2ΩzF x

, (57)

τz =
−F z

QzzG + 2ΩxF y
, (58)

which can be used to compute the Strouhal numbers

Sti = τiurmskf , (59)

where τi are given by Eqs. (56) to (58).
In the passive scalar case, the second and third order terms

are indeed correlated (Brandenburg et al. 2004) according to the
basic MTA-assumption, and a Strouhal number can be thus com-
puted using

St3 = τ3urmskf , (60)

where

τ3 = F z

/
c∇zh . (61)

See Fig. 14 for representative results.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079098&pdf_id=13
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Fig. 14. Uppermost panel: St from triple correlation T (3)
z , middle panel:

Stz, corresponding to the tau in Eq. (58), lowermost panel: Strouhal
numbers from Eq. (59) as functions of the Coriolis number for a con-
stant Reynolds number of roughly nine.

3.6.3. Discussion

For slow rotation, the Strouhal number is consistently be-
tween one and three when computed from the Reynolds stresses
(Fig. 13). Similar values are obtained from the passive scalar
transport (Fig. 14) when the Reynolds number is ten or larger.
The Strouhal number computed from the triple correlations,
St3, is more strongly dependent on the Reynolds number, but
it seems to converge slowly towards a constant value near unity.
These results are in line with the values required in the MTA-
model and earlier studies in different contexts employing similar

turbulence calculations (Brandenburg et al. 2004; Brandenburg
& Subramanian 2005, 2007).

However, when the Coriolis number approaches or exceeds
unity, the Strouhal numbers computed from the equations of the
Reynolds stresses, Eqs. (42)−(44), decrease rapidly so that for
Co ≈ 5 it has dropped at least by an order of magnitude (see
Fig. 13). Similar results are obtained for the passive scalar trans-
port under the influence of rotation, see Eqs. (56)−(58) and the
lower panels of Fig. 14. The trend is clearer for Stx and Sty,
whereas for Stz the decreasing trend is seen only for rapid ro-
tation, i.e. when Co > 2 . . .3. For slow rotation, however, Stz
is almost constant and increases somewhat when the Coriolis
number approaches unity. These results seem to confirm the
trend seen earlier in convection simulations (Käpylä et al. 2005,
2006a).

The Strouhal number from the triple correlations follows a
trend similar to Stz, with increasing values up to Co ≈ 2 . . .3
after which there is a rapid decrease, see the uppermost panel of
Fig. 14. For low Reynolds number St can become negative in the
range Co = 1 . . .5, hence the gaps in the corresponding data in
Fig. 14.

4. Conclusions

Turbulent momentum fluxes, which are described by the
Reynolds stresses, were determined from numerical simulations
of homogeneous rotating anisotropic turbulence. Since no large-
scale shear is present, the generated Reynolds stresses corre-
spond to contributions that are already present for uniform ro-
tation. The resulting term is known as the Λ-effect (Krause &
Rüdiger 1974). The component responsible for the horizontal
transport, Qxy, is positive and peaks around latitude 30◦ regard-
less of the Coriolis number. The vertical component is predomi-
nantly negative and it always peaks at the equator.

Although the numerical results for theΛ-effect broadly agree
with analytical SOCA calculations (Kitchatinov & Rüdiger
1993, 2005), the MTA-model seems to reproduce certain fea-
tures of the numerical results somewhat more closely. The
present numerical results do not show the enigmatic results, such
as the extreme latitude distribution of Qxy or a positive Qyz for
rapid rotation, which have been reported from convection simu-
lations (e.g. Chan 2001; Käpylä et al. 2004). The difference lies
most likely in our neglecting stratification and heat fluxes. The
exact manner in which they affect the Reynolds stresses is not
within the scope of the present paper, but should be investigated
more closely in the future.

By applying the minimal tau approximation closure rela-
tion to the Reynolds stress equation, qualitatively similar re-
sults are obtained, but the magnitude of the stresses is in general
too large. The vertical flux in the MTA-model, however, has a
maximum at mid-latitudes for intermediate and rapid rotation.
Adding an empirical rotational isotropization term (motivated in
Sect. 3.1) also brings the magnitude in line with the 3D simu-
lations. Although adding this term with this particular form has
no rigorous theoretical basis, we can see that phenomenological
effects of isotropization of turbulence due to rotation are indeed
seen in the simulations and that the term is thus justified.

Another drawback of the MTA-model is that the diagonal
components of the Reynolds tensor are rather badly reproduced
since the nonlinear effects of rotation manifest in the numerical
simulations are not explicitly taken into account. The empiri-
cally added rotational isotropization term augments the magni-
tudes, but not the latitude distribution. Furthermore, no direct
evidence of the validity of the MTA-assumption Qi j = −Ti j/τ

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079098&pdf_id=14
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was found in the numerical simulations. Contrasting the be-
havior of the diagonal components to the fairly good corre-
spondence between the numerical simulations and the MTA-
model for the off-diagonal components leads us to conclude that,
whereas the behavior of the diagonal components is dominated
by the inadequately modeled nonlinear effects, the off-diagonals
are fairly well presented by the linear terms.

A Strouhal number of order unity in the MTA-model gives
best fits to the numerical results. Fitting the numerical results
to expressions derived under the MTA, similar values of St are
found for slow rotation. For Coriolis numbers of order unity
or larger, however, the Strouhal number obtained in this man-
ner decreases rapidly. In the passive scalar case, the situation is
somewhat more complex, although a similar decreasing trend of
the Strouhal number is recovered for rapid rotation, see Fig. 14.
These results are in accordance with earlier results from con-
vection simulations (Käpylä et al. 2005, 2006a) using Reynolds
stresses or correlation analysis of the velocity field.

A related aspect in turbulent transport that requires closer
study is the turbulent viscosity (see preliminary results in Käpylä
& Brandenburg 2007) and the possibility of a Λ-effect due to
the anisotropy induced by a large-scale shear flow (Leprovost &
Kim 2007). These matters will be considered in more detail in a
future publication.

Acknowledgements. The computations were performed on the facilities hosted
by the Center of Scientific Computing in Espoo, Finland, who are financed by the
Finnish ministry of education. P.J.K. acknowledges the financial support from
Helsingin Sanomat foundation and the Academy of Finland grant No. 121431.
P.J.K. acknowledges the hospitality of Nordita during the program “Turbulence
and Dynamos” during which this work was finalized. The anonymous referee is
acknowledged for the critical reading and helpful comments on the manuscript.

Appendix A: Stationary solutions for the stresses
from MTA

Setting Q̇i j = 0 and using the MTA-closure Ti j = −Qi j/τ, and
parameterizing the contributions of the forcing as ui f j + u j fi =
Q(0)

i j /τ in Eq. (22) gives six equations for the six unknowns of
the symmetric tensor Qi j, i.e.

Qxx = 4ΩzτQxy + Q(0)
xx , (A.1)

Qxy = 2Ωzτ(Qyy − Qxx) + 2ΩxτQxz, (A.2)

Qxz = 2ΩzτQyz − 2ΩxτQxy, (A.3)

Qyy = 4ΩxτQyz − 4ΩzτQxy + Q(0)
yy , (A.4)

Qyz = 2Ωxτ(Qzz − Qyy) − 2ΩzτQxz, (A.5)

Qzz = −4ΩxτQyz + Q(0)
zz . (A.6)

It is possible to solve for Qi j in terms of τ,Ωx,Ωz, and Q(0)
i j . From

Eqs. (A.1) to (A.6) it is clear that only three components of Qi j

are independent. Thus it is sufficient to solve for the off-diagonal
components. After some algebra we arrive at

Qxy = 2Ωzτ

(
K0

K1

)
(Q(0)
yy − Q(0)

xx )

+24Ω2
xΩzτ

3K0(Q(0)
zz − Q(0)

yy ), (A.7)

Qxz = 2ΩzτQyz − 2ΩxτQxy, (A.8)

Qyz = 2ΩxτK1(1 + 144Ω2
xΩ

2
zτ

4K0)(Q(0)
zz − Q(0)

yy )

+24ΩxΩ
2
zτ

3K0(Q(0)
yy − Q(0)

xx ), (A.9)

where

K0 =
1

1 + 20Ω2
0τ

2 + 64Ω4
0τ

4

≡ 1

1 + 5Co2
MTA + 8Co4

MTA

, (A.10)

K1 =
1

1 + 4Ω2
zτ

2 + 16Ω2
xτ

2

≡ 1

1 + Co2
MTA(1 + 3 sin2 θ)

, (A.11)

and CoMTA is given by Eq. (27).
In the present study the forcing is such that Q(0)

yy − Q(0)
xx = 0,

so the equations reduce to

Qxy = 24Ω2
xΩzτ

3K0(Q(0)
zz − Q(0)

yy ), (A.12)

Qxz = 2ΩzτQyz − 2ΩxτQxy, (A.13)

Qyz = 2ΩxτK1(1 + 144Ω2
xΩ

2
zτ

4K0)(Q(0)
zz − Q(0)

yy ). (A.14)

Appendix B: Coefficients of the Λ-effect from SOCA

The fluxes of angular momentum have commonly been param-
eterized by Eqs. (35) and (36), and the normalized fluxes by
Eqs. (37) and (38). Kitchatinov & Rüdiger (2005) computed
these coefficients using SOCA

H = H(1)(Ω�) sin2 θ, (B.1)

V = V (0)(Ω�) − H(1)(Ω�) cos2 θ, (B.2)

where Ω� = 2Ω0τto is their definition of the Coriolis number,
and τto the turnover time. Note that there is a difference of 2π in
comparison to our definition, Eq. (17). For simplicity, we retain
Ω� in the expressions that follow. The coefficients H(1) and V (0)

are given by

H(1) =

(
lcorr

Hρ

)2

[J1(Ω�) + aI1(Ω�)], (B.3)

V (0) =

(
lcorr

Hρ

)2

[J0(Ω�) + aI0(Ω�)], (B.4)

where lcorr is the correlation length, Hρ the density scale height,
and a = 2 an “anisotropy parameter” that reduces the amount of
anisotropy for slow rotation.

The functions Ii and Ji are given by

I0 =
1

4Ω2
�

(
− 19 − 5

1 + Ω2
�

+
3Ω2

� + 24
Ω�

arctanΩ�

)
, (B.5)

I1 =
3

4Ω2
�

(
− 15 − 2Ω2

�

1 + Ω2
�

+
3Ω2

� + 15

Ω�
arctanΩ�

)
, (B.6)

J0 =
1

2Ω4
�

(
9 − 2Ω2

�

1 + Ω2
�

− Ω
2
� + 9

Ω�
arctanΩ�

)
, (B.7)

J1 =
1

2Ω4
�

(
45 + Ω2

� −
4Ω2

�

1 + Ω2
�

+
Ω4
� − 12Ω2

� − 45

Ω�
arctanΩ�

)
. (B.8)

In our model there is no density stratification, so lcorr/Hρ is taken
to be a free parameter that we choose to be equal to unity.
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M. Núñez (London, New York: Taylor & Francis), The Fluid Mechanics of
Astrophysics and Geophysics, 9, 269

Brandenburg, A. 2007, in Convection in Astrophysics, ed. F. Kupka, I. W.
Roxburgh, & K. L. Chan, Proc. IAUS., 239, 457

Brandenburg, A., & Dobler, W. 2002, Comp. Phys. Comm., 147, 471
Brandenburg, A., & Subramanian, K. 2005, A&A, 439, 835
Brandenburg, A., & Subramanian, K. 2007, AN, 328, 507
Brandenburg, A., Moss, D., & Tuominen, I. 1992, A&A, 265, 328
Brandenburg, A., Käpylä, P. J., & Mohammed, A. 2004, Phys. of Fluids, 16,

1020
Brummell, N. H., Hurlburt, N. E., & Toomre, J. 1998, ApJ, 493, 955
Chan, K. L. 2001, ApJ, 548, 1102
Durney, B. R. 1989, ApJ, 338, 509
Garaud, P., & Ogilvie, G. I. 2005, JFM, 530, 145
Giesecke, A. 2007, Geophys. J. Int., 171, 1017
Hathaway, D. H., & Somerville, R. C. J. 1983, JFM, 126, 75
Hupfer, C., Käpylä, P. J., & Stix, M. 2005, AN, 326, 223
Hupfer, C., Käpylä, P. J., & Stix, M. 2006, A&A, 459, 935
Käpylä, P. J., & Brandenburg, A. 2007, AN, 328, 1006
Käpylä, P. J., Korpi, M. J., & Tuominen, I. 2004, A&A, 422, 793
Käpylä, P. J., Korpi, M. J., Ossendrijver, M., & Tuominen, I. 2005, AN, 326, 186
Käpylä, P. J., Korpi, M. J., Ossendrijver, M., & Tuominen, I. 2006a, A&A, 448,

433
Käpylä, P. J., Korpi, M. J., Stix, M., & Tuominen, I. 2006b, in Convection in

Astrophysics, ed. F. Kupka, I. W. Roxburgh, & K. L. Chan, Proc. IAUS., 239,
35

Kitchatinov, L. L., & Rüdiger, G. 1993, A&A, 276, 96
Kitchatinov, L. L., & Rüdiger, G. 1995, A&A, 299, 446
Kitchatinov, L. L., & Rüdiger, G. 2005, A&A, 326, 379
Kleeorin, N., & Rogachevskii, I. 2006, PhRvE, 73, 046303
Krause, F., & Rüdiger, G. 1974, AN, 295, 93
Krause, F., & Rädler, K.-H. 1980, Mean-Field Magnetohydrodynamics and

Dynamo Theory (Oxford: Pergamon Press)
Leprovost, N., & Kim, E.-J. 2007, A&A, 463, 9L
Moffatt H. K. 1978, Magnetic field generation in electrically conducting fluids

(Cambridge: Cambridge University Press)
Ogilvie, G. I. 2003, MNRAS, 340, 969
Pulkkinen, P., & Tuominen, I. 1998, A&A, 332, 755
Pulkkinen, P., Tuominen, I., Brandenburg, A., Nordlund, Å., & Stein, R. F. 1993,

A&A, 267, 265
Rempel, M. 2004, ApJ, 607, 1046
Rempel, M. 2005, ApJ, 622, 1320
Rieutord, M., Brandenburg, A., Mangeney, A., & Drossart, P. 1994, A&A, 286,

471
Rüdiger, G. 1980, GAFD, 16, 239
Rüdiger, G. 1982, AN, 303, 293
Rüdiger, G. 1989, Differential Rotation and Stellar Convection: Sun and Solar-

type Stars (Berlin: Akademie Verlag)
Rüdiger, G., Egorov, P., Kitchatinov, L. L., & Küker, M. 2005a, A&A, 431, 345
Rüdiger, G., Egorov, P., & Ziegler, U. 2005b, AN, 326, 315
Stix, M. 2002, The Sun: an Introduction, Second Edition (Berlin, Heidelberg,

New York: Springer-Verlag)
Thompson, M. J., Christensen-Dalsgaard, J., Miesch, M., & Toomre, J. 2003,

ARA&A, 41, 599
Ward, F. 1965, ApJ, 141, 534
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Table B.1. Summary of the turbulence anisotropies and normalized Reynolds stresses, Q̃i j = Qi j/u2
rms, for the Re ≈ 12 . . . 14 calculations. kf/k1 = 5,

ν = 2 × 10−3, and grid resolution 643 was used in all runs.

Run Ω0 θ Co urms Q̃xx Q̃yy Q̃zz AH AV Q̃xy Q̃xz Q̃yz
64a1 0.02 0◦ 0.06 0.127 0.236 0.240 0.525 0.002 –0.571 –0.001 –0.000 0.003
64a2 0.02 15◦ 0.06 0.127 0.239 0.242 0.523 0.003 –0.567 –0.001 –0.002 –0.004
64a3 0.02 30◦ 0.06 0.127 0.237 0.243 0.523 0.004 –0.564 –0.001 –0.003 –0.001
64a4 0.02 45◦ 0.06 0.127 0.238 0.244 0.522 0.005 –0.561 –0.000 –0.004 –0.014
64a5 0.02 60◦ 0.06 0.127 0.237 0.246 0.521 0.008 –0.559 –0.000 –0.003 –0.018
64a6 0.02 75◦ 0.06 0.127 0.237 0.246 0.521 0.010 –0.559 –0.001 –0.002 –0.021
64a7 0.02 90◦ 0.06 0.127 0.236 0.247 0.521 0.010 –0.558 –0.001 –0.001 –0.021
64a8 0.05 0◦ 0.15 0.127 0.244 0.246 0.514 0.003 –0.537 0.000 0.001 0.002
64a9 0.05 15◦ 0.15 0.127 0.244 0.248 0.512 0.003 –0.532 –0.000 –0.005 –0.007
64a10 0.05 30◦ 0.15 0.127 0.243 0.250 0.511 0.006 –0.529 0.002 –0.010 –0.018
64a11 0.05 45◦ 0.15 0.127 0.242 0.253 0.509 0.011 –0.522 0.004 –0.012 –0.027
64a12 0.05 60◦ 0.15 0.127 0.239 0.258 0.507 0.019 –0.516 0.005 –0.009 –0.035
64a13 0.05 75◦ 0.15 0.127 0.236 0.263 0.505 0.027 –0.512 0.004 –0.005 –0.040
64a14 0.05 90◦ 0.15 0.127 0.234 0.265 0.505 0.032 –0.510 –0.000 0.000 –0.042
64a15 0.1 0◦ 0.31 0.126 0.255 0.258 0.490 0.003 –0.468 –0.000 0.002 0.002
64a16 0.1 15◦ 0.31 0.127 0.256 0.257 0.490 0.001 –0.468 0.001 –0.009 –0.004
64a17 0.1 30◦ 0.31 0.127 0.257 0.257 0.490 –0.000 –0.466 0.005 –0.019 –0.014
64a18 0.1 45◦ 0.31 0.127 0.254 0.261 0.489 0.007 –0.462 0.011 –0.022 –0.028
64a19 0.1 60◦ 0.31 0.127 0.247 0.272 0.484 0.025 –0.448 0.014 –0.017 –0.039
64a20 0.1 75◦ 0.31 0.127 0.239 0.284 0.480 0.045 –0.437 0.010 –0.008 –0.045
64a21 0.1 90◦ 0.31 0.127 0.235 0.289 0.479 0.054 –0.434 –0.000 0.000 –0.047
64a22 0.2 0◦ 0.62 0.127 0.278 0.280 0.446 0.002 –0.333 –0.001 0.001 –0.000
64a23 0.2 15◦ 0.62 0.127 0.277 0.276 0.451 –0.001 –0.350 0.001 –0.008 0.005
64a24 0.2 30◦ 0.62 0.127 0.276 0.268 0.460 –0.008 –0.376 0.005 –0.021 –0.002
64a25 0.2 45◦ 0.62 0.127 0.273 0.268 0.462 –0.005 –0.382 0.013 –0.026 –0.015
64a26 0.2 60◦ 0.61 0.128 0.267 0.280 0.457 0.012 –0.367 0.019 –0.021 –0.027
64a27 0.2 75◦ 0.61 0.128 0.255 0.298 0.451 0.043 –0.350 0.013 –0.010 –0.035
64a28 0.2 90◦ 0.61 0.128 0.251 0.303 0.450 0.053 –0.345 –0.001 –0.000 –0.036
64a29 0.5 0◦ 1.47 0.133 0.303 0.301 0.400 –0.003 –0.197 –0.001 0.003 0.000
64a30 0.5 15◦ 1.48 0.132 0.299 0.295 0.410 –0.004 –0.225 0.000 –0.009 0.005
64a31 0.5 30◦ 1.49 0.131 0.296 0.286 0.422 –0.010 –0.262 0.003 –0.019 0.005
64a32 0.5 45◦ 1.50 0.131 0.290 0.283 0.431 –0.007 –0.288 0.008 –0.027 –0.004
64a33 0.5 60◦ 1.51 0.130 0.286 0.289 0.430 0.003 –0.285 0.012 –0.022 –0.013
64a34 0.5 75◦ 1.50 0.130 0.279 0.303 0.422 0.024 –0.262 0.007 –0.011 –0.018
64a35 0.5 90◦ 1.50 0.131 0.274 0.305 0.422 0.035 –0.261 –0.001 –0.000 –0.018
64a36 1.0 0◦ 2.78 0.141 0.310 0.310 0.384 –0.000 –0.148 0.001 0.003 0.001
64a37 1.0 15◦ 2.80 0.140 0.306 0.308 0.390 0.002 –0.166 0.000 –0.008 0.003
64a38 1.0 30◦ 2.84 0.138 0.303 0.296 0.405 –0.007 –0.212 0.001 –0.004 0.002
64a39 1.0 45◦ 2.88 0.136 0.292 0.299 0.412 0.007 –0.233 0.004 –0.019 –0.003
64a40 1.0 60◦ 2.90 0.135 0.288 0.302 0.414 0.014 –0.238 0.007 –0.012 –0.006
64a41 1.0 75◦ 2.89 0.136 0.274 0.316 0.414 0.042 –0.239 0.006 –0.004 –0.009
64a42 1.0 90◦ 2.87 0.137 0.256 0.320 0.428 0.065 –0.279 0.000 0.002 –0.009
64a43 2.0 0◦ 5.26 0.149 0.293 0.294 0.417 0.001 –0.247 –0.001 0.001 0.001
64a44 2.0 15◦ 5.27 0.149 0.298 0.300 0.406 0.002 –0.214 0.001 –0.028 –0.001
64a45 2.0 30◦ 5.41 0.145 0.311 0.310 0.384 –0.001 –0.147 0.002 –0.030 –0.003
64a46 2.0 45◦ 5.41 0.144 0.293 0.318 0.393 0.024 –0.174 0.003 –0.014 –0.004
64a47 2.0 60◦ 5.46 0.144 0.264 0.337 0.404 0.073 –0.206 0.005 0.010 –0.006
64a48 2.0 75◦ 5.46 0.144 0.228 0.350 0.427 0.122 –0.277 0.006 0.012 –0.005
64a48.5 2.0 82.5◦ 5.44 0.144 0.220 0.348 0.437 0.128 –0.306 0.002 0.007 –0.007
64a49 2.0 90◦ 5.43 0.145 0.200 0.361 0.444 0.161 –0.329 0.000 –0.000 –0.005
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Table B.2. Summary of the turbulence anisotropies and normalized Reynolds stresses, Q̃i j = Qi j/u2
rms, for a set of runs with varying turbulence

anisotropy. Ω0 = 0.1, kf/k1 = 5, ν = 2 × 10−3, and grid resolution 643 was used in all runs.

Run Ω0 θ Co urms Q̃xx Q̃yy Q̃zz AH AV Q̃xy Q̃xz Q̃yz
64a15 0.1 0◦ 0.31 0.126 0.255 0.258 0.490 0.003 –0.468 –0.000 0.002 0.002
64a16 0.1 15◦ 0.31 0.127 0.256 0.257 0.490 0.001 –0.468 0.001 –0.009 –0.004
64a17 0.1 30◦ 0.31 0.127 0.257 0.257 0.490 –0.000 –0.466 0.005 –0.019 –0.014
64a18 0.1 45◦ 0.31 0.127 0.254 0.261 0.489 0.007 –0.462 0.011 –0.022 –0.028
64a19 0.1 60◦ 0.31 0.127 0.247 0.272 0.484 0.025 –0.448 0.014 –0.017 –0.039
64a20 0.1 75◦ 0.31 0.127 0.239 0.284 0.480 0.045 –0.437 0.010 –0.008 –0.045
64a21 0.1 90◦ 0.31 0.127 0.235 0.289 0.479 0.054 –0.434 –0.000 0.000 –0.047
64c15 0.1 0◦ 0.34 0.115 0.275 0.275 0.453 0.000 –0.357 0.001 0.003 0.000
64c16 0.1 15◦ 0.34 0.116 0.275 0.276 0.454 0.001 –0.357 0.003 –0.009 –0.007
64c17 0.1 30◦ 0.34 0.116 0.277 0.275 0.452 –0.002 –0.353 0.006 –0.017 –0.018
64c18 0.1 45◦ 0.34 0.116 0.275 0.280 0.449 0.006 –0.343 0.011 –0.019 –0.030
64c19 0.1 60◦ 0.34 0.115 0.271 0.290 0.443 0.019 –0.324 0.014 –0.015 –0.038
64c20 0.1 75◦ 0.34 0.116 0.265 0.300 0.439 0.035 –0.314 0.010 –0.007 –0.043
64c21 0.1 90◦ 0.34 0.116 0.262 0.304 0.439 0.042 –0.311 0.002 0.001 –0.044
64b15 0.1 0◦ 0.33 0.119 0.299 0.299 0.406 0.000 –0.215 0.001 0.001 0.002
64b16 0.1 15◦ 0.33 0.119 0.300 0.299 0.405 –0.000 –0.211 0.002 –0.005 –0.005
64b17 0.1 30◦ 0.33 0.119 0.302 0.299 0.404 –0.003 –0.207 0.004 –0.011 –0.012
64b18 0.1 45◦ 0.33 0.119 0.301 0.303 0.400 0.002 –0.195 0.007 –0.012 –0.019
64b19 0.1 60◦ 0.33 0.119 0.300 0.308 0.396 0.008 –0.185 0.010 –0.011 –0.024
64b20 0.1 75◦ 0.33 0.119 0.297 0.313 0.395 0.016 –0.179 0.006 –0.004 –0.026
64b21 0.1 90◦ 0.33 0.119 0.295 0.317 0.393 0.022 –0.175 0.003 –0.001 –0.027
64d15 0.1 0◦ 0.34 0.115 0.321 0.318 0.365 –0.002 –0.091 0.001 0.000 0.001
64d16 0.1 15◦ 0.34 0.115 0.320 0.320 0.364 0.000 –0.087 0.001 –0.004 –0.002
64d17 0.1 30◦ 0.34 0.115 0.321 0.320 0.363 –0.001 –0.086 0.001 –0.006 –0.005
64d18 0.1 45◦ 0.34 0.115 0.321 0.323 0.360 0.002 –0.076 0.003 –0.006 –0.009
64d19 0.1 60◦ 0.34 0.115 0.324 0.323 0.357 –0.001 –0.066 0.004 –0.006 –0.012
64d20 0.1 75◦ 0.34 0.115 0.323 0.325 0.356 0.002 –0.065 0.003 –0.004 –0.013
64d21 0.1 90◦ 0.34 0.115 0.319 0.327 0.357 0.009 –0.069 0.000 –0.000 –0.013

Table B.3. Turbulence anisotropies and Reynolds stresses for varying Reynolds numbers. kf/k1 = 5 and Ω0 = 0.1 were used in all runs. Q̃i j =
Qi j/u2

rms.

Run Grid θ Co ν[10−3] Re urms Q̃xx Q̃yy Q̃zz AH AV Q̃xy Q̃xz Q̃yz
32c15 323 0◦ 0.255 5 6.0 0.154 0.274 0.273 0.454 –0.000 –0.361 0.001 –0.001 –0.001
32c16 323 15◦ 0.255 5 6.0 0.154 0.274 0.273 0.454 –0.001 –0.361 0.002 –0.007 –0.009
32c17 323 30◦ 0.255 5 6.0 0.154 0.273 0.275 0.453 0.001 –0.359 0.004 –0.011 –0.018
32c18 323 45◦ 0.255 5 6.0 0.154 0.272 0.278 0.451 0.006 –0.352 0.006 –0.012 –0.027
32c19 323 60◦ 0.255 5 6.0 0.154 0.270 0.283 0.448 0.014 –0.344 0.007 –0.010 –0.034
32c20 323 75◦ 0.255 5 6.0 0.154 0.267 0.288 0.446 0.021 –0.338 0.006 –0.006 –0.039
32c21 323 90◦ 0.255 5 6.0 0.154 0.266 0.290 0.445 0.025 –0.335 0.002 –0.001 –0.041

64e15 643 0◦ 0.254 2 15 0.155 0.273 0.274 0.454 0.001 –0.361 0.000 0.000 0.001
64e16 643 15◦ 0.254 2 15 0.155 0.273 0.274 0.454 0.001 –0.361 0.000 –0.009 –0.008
64e17 643 30◦ 0.254 2 15 0.155 0.273 0.276 0.451 0.003 –0.353 0.004 –0.016 –0.019
64e18 643 45◦ 0.254 2 15 0.155 0.271 0.283 0.446 0.011 –0.339 0.009 –0.017 –0.030
64e19 643 60◦ 0.254 2 15 0.155 0.269 0.290 0.442 0.021 –0.324 0.010 –0.013 –0.036
64e20 643 75◦ 0.253 2 15 0.155 0.265 0.297 0.439 0.032 –0.316 0.006 –0.007 –0.041
64e21 643 90◦ 0.253 2 15 0.155 0.263 0.300 0.437 0.037 –0.311 –0.001 0.000 –0.041

128b15 1283 0◦ 0.252 1 31 0.156 0.274 0.275 0.452 0.000 –0.355 0.001 –0.001 0.002
128b16 1283 15◦ 0.251 1 31 0.156 0.276 0.275 0.450 –0.001 –0.349 0.001 –0.011 –0.007
128b17 1283 30◦ 0.251 1 31 0.156 0.278 0.277 0.447 –0.001 –0.339 0.004 –0.016 –0.017
128b18 1283 45◦ 0.251 1 31 0.156 0.278 0.283 0.440 0.006 –0.320 0.009 –0.019 –0.026
128b19 1283 60◦ 0.250 1 31 0.157 0.275 0.291 0.435 0.016 –0.304 0.011 –0.015 –0.035
128b20 1283 75◦ 0.250 1 31 0.157 0.270 0.299 0.432 0.029 –0.295 0.007 –0.007 –0.037
128b21 1283 90◦ 0.250 1 31 0.157 0.268 0.303 0.430 0.035 –0.289 –0.000 –0.001 –0.038

256a15 2563 0◦ 0.251 0.5 61 0.156 0.275 0.276 0.449 0.001 –0.347 –0.000 –0.000 0.003
256a16 2563 15◦ 0.252 0.5 61 0.156 0.277 0.276 0.447 –0.002 –0.341 0.001 –0.008 –0.005
256a17 2563 30◦ 0.252 0.5 61 0.156 0.276 0.277 0.448 0.001 –0.342 0.004 –0.015 –0.011
256a18 2563 45◦ 0.250 0.5 61 0.157 0.275 0.282 0.443 0.006 –0.330 0.009 –0.015 –0.020
256a19 2563 60◦ 0.251 0.5 61 0.156 0.273 0.289 0.438 0.016 –0.314 0.009 –0.013 –0.027
256a20 2563 75◦ 0.250 0.5 61 0.157 0.269 0.296 0.435 0.027 –0.306 0.006 –0.007 –0.030
256a21 2563 90◦ 0.250 0.5 61 0.157 0.264 0.301 0.435 0.037 –0.305 0.000 –0.002 –0.032
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