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Abstract Recent analytical and computational advances in the theory of large-scale dy-
namos are reviewed. The importance of the magnetic helicity constraint is apparent even
without invoking mean-field theory. The tau approximation yields expressions that show
how the magnetic helicity gets incorporated into mean-field theory. The test-field method
allows an accurate numerical determination of turbulent transport coefficients in linear and
nonlinear regimes. Finally, some critical views on the solar dynamo are being offered and
targets for future research are highlighted.
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1 Introduction

Over the past 50 years significant progress has been made in understanding the origin of
the solar magnetic field. In an important paper, Parker (1955) introduced the idea of mean
magnetic fields and identified the α effect as the crucial ingredient of large-scale dynamos.
He also proposed and solved an explicit one-dimensional mean-field model and found the
migratory Parker dynamo wave. This provided an important tool for understanding the ef-
fects of α and shear, and it led to useful estimates for the excitation conditions, the cycle
period, and the direction of field migration in solar and stellar dynamo models. However,
Parker’s work appeared at a time when it was still unclear whether homogeneous fluid dy-
namos really exist. These are dynamos of uniformly conducting matter, without insulating
wires that are thus susceptible to “short circuits”. In the years following Cowling’s (1933)
theorem, it remained doubtful whether the Sun’s magnetic field can be explained in terms of
dynamo theory, as originally anticipated by Larmor (1919).

In the paper on his famous theorem, Cowling (1933) concluded “The theory proposed
by Sir Joseph Larmor, that the magnetic field of a sunspot is maintained by the currents it
induces in moving matter, is examined and shown to be faulty; the same result also applies
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for the similar theory of the maintenance of the general field of Earth and Sun.” Larmor
(1934) responded that “the self-exciting dynamo analogy is still, so far as I know, the only
foundation on which a gaseous body such as the Sun could possess a magnetic field: so that
if it is demolished there could be no explanation of the Sun’s magnetic field even remotely
in sight.”

Although the first qualitative ideas on homogeneous dynamos were proposed nearly a
hundred years ago, the resistance was immense; for historical accounts see the reviews
by Krause (1993) and Weiss (2005). An important existence proof for homogeneous self-
excited dynamos was that of Herzenberg (1958), who showed, using asymptotic theory, that
dynamos work in a conducting medium where two rotors spin about axes that lie in planes
perpendicular to their direction of separation, and inclined relative to each other by an an-
gle between 90◦ and 180◦. Such systems were later realized experimentally by Lowes and
Wilkinson (1963, 1968). In their experiments oscillations commonly occurred. Those where
thought to be some kind of nonlinear relaxation oscillations. However, they used angles of
less than 90◦. Indeed, when the relative angle between the rotors is between 0◦ and 90◦,
oscillatory solutions are expected even from linear theory (Brandenburg et al. 1998). Those
solutions were not captured by the original analysis of Herzenberg (1958), because he only
looked for steady solutions.

The next important steps came with the development of mean-field electrodynamics by
Steenbeck et al. (1966), who used the first order smoothing approximation (or second order
correlation approximation) as a rigorous tool to compute α effect and turbulent diffusivity
in limiting cases. Steenbeck and Krause (1969) later produced global mean-field models
in spherical geometry and computed synthetic butterfly diagrams. For an introduction to
mean-field theory we refer to the article by N.O. Weiss in this issue.

The technical tools made available by mean-field theory have stimulated much of the
research in the field during the 1970s. However, during the 1980s a number of problems
were discussed. For example, doubts were raised whether turbulent magnetic diffusion still
works at large magnetic Reynolds numbers, Rm; see work by Knobloch (1978), Layzer et
al. (1979) and Piddington (1981). This problem applies equally to kinematic and nonlinear
cases. Regarding the kinematic α effect, Childress (1979) found that in steady convection
α decreases with increasing Rm like R

−1/2
m . This result is now understood to be a common

feature of steady flows (Rädler et al. 2002; Rädler and Brandenburg 2009), and is generally
not shared by unsteady (e.g. turbulent) flows (Sur et al. 2008).

The nonlinear problem was a focus of much of the work on dynamos during the 1990s,
and started with the work of Cattaneo and Vainshtein (1991, hereafter referred to as CV91)
who showed, using two-dimensional turbulence simulations, that for B

2 ≈ B2
eq, ηt decreases

like R−1
m . It was expected that a similar relation applies also to α (Vainshtein and Cattaneo

1992, hereafter VC99), but this required three-dimensional considerations. Indeed, using
uniform imposed fields, Cattaneo and Hughes (1996, hereafter CH96) showed that α decays
with increasing Rm like R−1

m . These results were later understood to be due to the presence
of conservation laws for the mean squared vector potential, 〈A2〉, in two dimensions and
the magnetic helicity, 〈A · B〉, in three dimensions Gruzinov and Diamond (1994, hereafter
GD94, 1995). Here, A is the magnetic vector potential with B = ∇ × A. However, these
conservation laws only tell us how much small-scale magnetic field is being produced as
the mean-field dynamo produces large-scale field, such that 〈A2〉 (in two dimensions) or
〈A · B〉 (in three dimensions) remain unchanged. One still needs a theory that relates the
corresponding small-scale mean squared vector potential to the turbulent magnetic diffusion
in two dimensions or the small-scale magnetic helicity to the turbulent diffusivity or the α
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Table 1 Summary of results obtained over the years. The key to the references is given at the end of Sect. 1

Result Details Reference

ηt ∼ R−1
m 2-D periodic, B ∼ sin kx CV91

α ∼ R−1
m phenomenology, 〈A · B〉 conservation, simulations with B = const VC92, GD94, CH96

B
2
/B2

eq ∼ R−1
m helical turbulence, normal field b.c. GD94, BD01

B
2
/B2

eq ∼ kf/k1 helical turbulence, periodic domain B01

B
2
/B2

eq � kf/k1 helical turb. with shear, periodic BBS01, BB02

B
2
/B2

eq ∼ 0.5 helical turb. with horizontal shear, normal field b.c. B05

B
2
/B2

eq � 0.5 convection with vertical shear, normal field b.c. TCB08

B
2
/B2

eq ∼ 0.5 convection with horizontal shear, normal field b.c. KKB08

effect in three dimensions. This can be done using a corresponding mean-field equation for
these quantities.

The effect of such nonlinear dependencies of turbulent transport coefficients on the dy-
namo can be quite dramatic. In three dimensions, Gruzinov and Diamond (1995) showed
that in the case of pseudo-vacuum boundary conditions the saturation field strength of a
dynamo with just helicity is of the order of R

−1/2
m Beq. This was also confirmed by sim-

ulations (Brandenburg and Dobler 2001, hereafter BD01; Brandenburg and Subramanian
2005a). In the special case of periodic boundary conditions, however, the field strength does
not decline, but remains of the order of (kf/k1)

1/2Beq (Brandenburg 2001, hereafter B01).
This is now well understood as being a consequence of magnetic helicity evolution, which
was soon applied to cases with shear (Brandenburg et al. 2001, hereafter BBS01; Blackman
and Brandenburg 2002, hereafter BB02) in domains with periodic as well as open boundary
conditions (Brandenburg 2005, hereafter B05). Magnetic helicity evolution has also been
invoked to understand recent simulations of convection by Tobias et al. (2008, hereafter;
TCB08) and Käpylä et al. (2008a, hereafter KKB08).

Table 1 summarizes a number of results that have been obtained over the years. These
results may appear conflicting at first sight, but they are in fact all explained by modern
dynamo theory that takes magnetic helicity evolution into account, and that allows for mag-
netic helicity changes in the presence of losses through boundaries. In the following we
restrict ourselves to cases in Cartesian geometry, but we note that important progress is now
also being made in spherical shell geometry where large-scale fields have been seen when
rotation is sufficiently rapid (Brown et al. 2007).

2 Saturation Phenomenology in a Periodic Box

During the early phase of a strongly helical dynamo there can be a phase during which
the magnetic energy of the large-scale field is still subdominant. However, at later times
the magnetic energy can redistribute itself from small to large scales. The fields that suffer
minimal back-reaction from the Lorentz force tend to be force-free at large scales. Force-free
fields are generally referred to as Beltrami fields. Qualitatively speaking, the helical driving
produces a helical field at the driving scale, but because magnetic helicity cannot change,
helical field of opposite helicity must emerge at some other scale. Simple arguments show
that this can only happen at a larger scale (Frisch et al. 1975; see also Brandenburg and
Subramanian 2005b). To explain the evolution of the resulting large-scale magnetic field, let
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us begin with the evolution equation of magnetic helicity,

d

dt
〈A · B〉 = −2ημ0〈J · B〉, (1)

where angular brackets denote volume averages, η is the microscopic magnetic diffusivity,
μ0 is the vacuum permeability, and J = ∇ × B/μ0 is the current density. Next, we in-
troduce horizontal averages denoted by overbars. The direction over which we take these
averages depends of course on the direction in which the mean magnetic field chooses to
align itself. There are three equivalent possibilities, so let us assume that the field shows
a large-scale modulation in the z direction. In a periodic box the Beltrami field with the
smallest wavenumber is then of the form

B = B(z, t) = B̂(t) (cos k1z, sink1z,0) , (2)

where we have ignored the possibility of an arbitrary phase shift in the z direction. Note
that J (z, t) = −k1B/μ0 and A(z, t) = −k−1

1 B , so the current and magnetic helicities have
negative sign at large scales. This is the situation when the small-scale driving has positive
helicity.

Note that the definition of averaging automatically defines small-scale (or fluctuating)
magnetic fields as b = B − B , and likewise for a = A − A and j = J − J . We can then
split (1) into contributions from large scales and small scales, reorganize the equations in

terms of 〈B2〉 and 〈b2〉, assume that, after the end of the kinematic phase (t = ts), 〈b2〉 is
approximately constant in time (approximately equal to μ0〈ρu2〉). This yields (B01)

k−1
1

d〈B2〉
dt

= 2ηkf〈b2〉 − 2ηk1〈B2〉, (3)

which has the solution

〈B2〉 = 〈b2〉 kf

k1

[
1 − e−2ηk2

1 (t−ts)
]
. (4)

Thus, 〈B2〉 saturates on a time scale (2ηk2
1)

−1, i.e. the microscopic diffusion time based
on the scale of the box. This equation reproduces extremely well the saturation behavior
in a periodic box. This equation also shows what happens if either the fluctuating field or
the mean field are not fully helical (Brandenburg et al. 2002). For example, if the large-

scale field is no longer fully helical, then the ratio μ0|〈J · B〉|/〈B2〉 will be less then k1,
so we say that the effective value of k1 will be smaller. (Later on we refer to this value as
km.) Thus, if the large-scale field is not fully helical, but the small-scale field is still fully

helical, then the effective value of k1 in the denominator of (4) decreases and 〈B2〉 can be
even somewhat higher than for periodic boundary conditions. This is indeed the case for
perfectly conducting boundary conditions, which do not permit (2) as a solution. This is the

reason why the effective value of k1 is smaller, and hence 〈B2〉 is larger (Brandenburg and
Dobler 2002), Conversely, if the small-scale field is not fully helical, the effective value of

kf is smaller, and so 〈B2〉 is smaller (Maron and Blackman 2002; Brandenburg et al. 2002).
We emphasize that in the considerations in this section we did not invoke mean-field the-

ory at all. The slow-down during the final saturation stage is rather general and it should be
possible to describe this by a sufficiently detailed mean-field theory. This will be discussed
briefly in the following section.
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3 Mean-Field Theory and Transport Coefficients

In mean-field theory one considers the averaged induction equation. The cross-product of
the correlation of the fluctuations u = U − U and b = B − B , i.e. the mean electromotive
force, E = u × b, provides an important term in the averaged induction equation,

∂B

∂t
= ∇ × (

U × B + E − ημ0J
)
. (5)

A central goal of mean-field theory is to find expressions for E in terms of mean-field quan-
tities. Quadratic correlations such as E are obtained using evolution equations for the fluctu-
ations, u ≡ U − U and b = B − b. A range of different approaches can be used to calculate
the functional form of the mean electromotive force, E = u × b, including the second or-
der correlation approximation (SOCA), the τ approximation, and the renormalization group
procedure. Common to both the SOCA and the τ approximation is the fact that the linear
terms in the evolution equations for the fluctuations are solved exactly. However, there is an
important difference in that the τ approximation starts by computing the time evolution of
E , so one begins with

∂E/∂t = u̇ × b + u × ḃ, (6)

whereas under SOCA one uses primarily the induction equation by computing E = u × b,
where u is assumed given and b is being solved using the Green’s function for the induction

equation. In simple terms, this reduces to solving for E = u × ∫
ḃ dt . This distinction is

important because under the τ approximation the term u̇ × b leads immediately to a term

of the form (j × B) × b owing to the Lorentz force. This expression leads to an important
feedback by attenuating the α effect by a term αM , where, under the assumption of isotropy,
αM = 1

3τj · b is the magnetic α effect. Another important difference is that there is a natural
occurrence of a time derivative of E . Thus, compared with SOCA, which leads to

E i = αijBj + ηijkBj,k , (7)

one now has

τ∂E i/∂t + E i = αijBj + ηijkBj,k , (8)

where τ is a relaxation time, and a comma between indices denotes a spatial derivative.
In (8) the origin of the τ∂E/∂t term is clear in view of (6), and it is instead the E term that is
due to retaining nonlinear terms in the evolution equations for u and b. In both cases these
terms lead to the triple correlations that are then approximated by −E/τ on the right hand
side. After multiplying by τ , this leads to the E term in (8).

In the expressions above we have used the more general tensorial forms of α effect and
turbulent diffusion. Scalar transport coefficients used before denote the isotropic contribu-
tions of the αij and ηijk tensors, i.e. α = 1

3 δijαij and ηt = 1
6εijkηijk .

Both SOCA and the τ approximation are rather primitive and their merits has been dis-
cussed in some detail in the recent literature (Rädler and Rheinhardt 2007; Sur et al. 2007).
The emergence of the j · b term is qualitatively a new feature that leads to a quantitative de-
scription of the saturation of large-scale dynamos in periodic domains (Field and Blackman
2002, BB02). Furthermore, the emergence of an additional time derivative in (8) has been
confirmed qualitatively using simulations (Brandenburg et al. 2004). However, there is now
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also evidence for the occurrence of even higher time derivatives in some cases (Hubbard and
Brandenburg 2008).

The time derivative in (8) suppresses changes of mean-field properties on timescales
shorter than the turnover time τ of the turbulence. This is analogous to the occurrence of
the Faraday displacement current in the Maxwell equations, except that there the limiting
velocity is the speed of light, whereas here it is the rms velocity of the turbulence. This
changes the parabolic nature of the diffusion and dynamo equations into hyperbolic wave
equations (Blackman and Field 2003; Brandenburg et al. 2004). This property is physically
appealing, because it retains causality, which means here that no mean-field pattern can
propagate faster than the rms velocity of the turbulence.

Similar to the suppression of fast temporal variations discussed above, there is also a
suppression of spatial variations on short length scales. Indeed, (8) takes the more accurate
form

τ∂E i/∂t + E i = α̂ij ◦ Bj + η̂ijk ◦ Bj,k, (9)

where α̂ij and η̂ijk are the components of integral kernels and the circles denote a convo-
lution. Recent numerical work has now established that for driven turbulence the integral
kernels have an exponential form with a width given by the inverse wavenumber of the
energy-carrying eddies (Brandenburg et al. 2008b).

This implies that mean-field theory should never produce rapid spatial or temporal vari-
ations. Conversely, the more complicated kernel formulation in (9) can be avoided if the
solutions are sufficiently smooth in space and time. However, this is not always guaranteed,
especially near boundaries.

Let us at this point also highlight the occurrence of another time derivative in the mean-

field equations. Under the τ approximation, the (j × B) × b term leads to the emergence
of a magnetic contribution to the α effect. The full α effect is then written as α = αK + αM,
where αK is related to the kinetic helicity and αM is related to the current helicity. The latter
obeys an evolution equation where the omission of the time-derivative is often problematic,
especially when Rm is large and the mean divergence of current helicity fluxes vanishes.
Therefore, the more complete quenching formula with extra effects included takes the form
(see, e.g., Brandenburg 2008),

α =
α0 + Rm

(
ηt

μ0J ·B
B2

eq
− ∇· F C

2k2
f B2

eq
− ∂α/∂t

2ηtk
2
f

)

1 + RmB
2
/B2

eq

. (10)

Although this equation can be written as an evolution equation, in practice there is a com-
putational advantage in solving the time-derivative term implicitly; see Brandenburg and
Käpylä (2007). The properties of such a “dynamical” α quenching formula have been stud-
ied in a number of recent papers including Kleeorin et al. (2000), Field and Blackman
(2002), BB02, and Brandenburg and Subramanian (2005a).

4 The Test-Field Method

In the last few years a new and reliable method for calculating the αij and ηijk tensor co-
efficients has become available. This method is known as the test-field method and was
developed by Schrinner et al. (2005, 2007) to calculate all tensor components from snap-
shots of simulations of the geodynamo in a spherical shell. This method was later applied
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to time-dependent turbulence in triply-periodic Cartesian domains, both with shear and no
helicity (Brandenburg 2005; Brandenburg et al. 2008a) as well as without shear, but with
helicity (Sur et al. 2008; Brandenburg et al. 2008b), and also with both (Mitra et al. 2008a).

4.1 The Essence of the Test-Field Method

In the test-field method one solves an additional set of three-dimensional partial differential
equations for vector fields bpq , where the labels p = 1,2 and q = 1,2 correspond to different
pre-determined one-dimensional test fields B

pq
. The evolution equations for bpq are derived

by subtracting the mean-field evolution equation from the evolution equation for B . These
equations are distinct from the original induction equation in that the curl of the resulting
mean electromotive force is subtracted.

The test-field method has recently been criticized by Cattaneo and Hughes (2008) on
the grounds that the test fields are arbitrary pre-determined mean fields. They argue that
the resulting turbulent transport coefficients will only be approximations to the true val-
ues unless the test fields are close to the actual mean fields. Mitra et al. (2008a) have re-
viewed arguments supporting the validity of the test-field method: (i) the test-field method
correctly reproduces a vanishing growth rate in saturated nonlinear cases (Brandenburg et
al. 2008c); (ii) in the time-dependent case, the test-field method correctly reproduces also a
non-vanishing growth rate. In that case one must write (7) as a convolution in time (Hubbard
and Brandenburg 2008); (iii) for the Roberts flow with a mean field of Beltrami type, the
αij tensor is anisotropic and has an additional component proportional to BiBj that tends
to quench the components of the isotropic part of αij . The same αij tensor also governs the
evolution of a mean passive vector field. It turns out that the fastest growing passive vector
field is then phase-shifted by 90 degrees relative to the one that caused the quenching and
thus the quenched form of αij . This result has been confirmed both numerically and using
weakly nonlinear theory (Tilgner and Brandenburg 2008). We discuss this case further in
Sect. 4.4.

4.2 Rm-Dependence of the Kinematic Values of α and ηt

Using the test-field method it has, for the first time, become possible to obtain reliable esti-
mates not only for the α effect, but in particular also for the turbulent magnetic diffusivity.
Restricting ourselves to the case of horizontal (xy) averages, the mean fields depend only on
z and t . All components of Bj,k can therefore be expressed in terms of those of J (z, t), and
the relevant components of ηijk reduce to a rank-2 tensor, ηij . In that case, ηt = 1

2 (η11 +η22).
We present the Rm dependences of α and ηt in normalized forms using the SOCA results
for homogeneous isotropic turbulence as reference values,

α0 = −1

3
τω · u, ηt0 = 1

3
τu2 (SOCA, linear). (11)

It turns out that, in the kinematic regime, α0 and ηt0 are remarkably close to the numerically
determined values of α and ηt in the range 1 < Rm < 200 considered in the study of Sur
et al. (2008); see Fig. 1. For Rm < 1, both α and ηt increase linearly with Rm. In the cases
considered here we have assumed that the turbulence is fully helical, so ω · u ≈ kfu2, and
that the Strouhal number, St ≡ τurmskf is approximately equal to unity (Brandenburg and
Subramanian 2005c, 2007). Of course, for Rm < 1 this is not the case and then τ ≈ (ηk2

f )
−1

is a better estimate. This explains the linear increase of α and ηt for Rm < 1.
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Fig. 1 Dependence of the normalized values of α and ηt on Rm for Re = 2.2. The vertical bars denote twice
the error estimated by averaging over subsections of the full time series. The run with Rm = 220 (Re = 2.2)
was done at a resolution of 5123 meshpoints. Adapted from Sur et al. (2008)

4.3 Scale-Dependence of α and ηt

Using the test-field method, it has now also been possible to determine what happens if
there is poor scale separation, for example if the scale of the mean field is only 2–5 times
bigger than the scale of the energy-carrying eddies. In that case one can not longer write the
electromotive force in terms of products of α and the mean field or ηt and the mean current
density, but one has to write them as convolutions with corresponding integral kernels (e.g.
Brandenburg and Sokoloff 2002). In Fourier space, a convolution corresponds to a multipli-
cation. In the test-field method we use only harmonic test fields with a single wavenumber,
so we can use this method to calculate α and ηt separately for each wavenumber and obtain
the integral kernels via Fourier transformation.

Not surprisingly, it turns out that α and ηt decrease with decreasing scale, i.e. with in-
creasing values of k/kf, where k is the wavenumber of a particular Fourier mode of the field.
In fact, by calculating α and ηt for test-fields of different wavenumber k, one finds that for
isotropic turbulence, α and ηt have Lorentzian profiles of the form

α(k) = α0

1 + (aαk/kf)2
, ηt(k) = ηt0

1 + (aηk/kf)2
, (12)

where aα and aη are factors of order unity; Brandenburg et al. (2008b) find aα ≈ 1 and
aη ≈ 0.5. However, for shear-flow turbulence Mitra et al. (2008a) find aα ≈ aη ≈ 0.7.

In periodic domains the Fourier transforms of α(k) and ηt(k) correspond to the integral
kernels introduced in (9). They are of exponential form, i.e.,

α̂(z − z′) = 1

2
aαα0kf ∼ exp(−kf|z − z′|/aα) (13)

and

η̂t(z − z′) = 1

2
aηηt0kf ∼ exp(−kf|z − z′|/aη). (14)

It is important to realize that the test-field method is a tool to analyze the velocity field
that is giving rise to α and ηt effects. By applying the test-field method to the case where
the induction equation is solved together with the momentum and continuity equations, one
can analyze the nonlinear case for one specific value of B . We emphasize that the test field
does not enter the momentum equation in any way. This will be discussed next.
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4.4 Quenching for Equipartition-Strength Fields

Once the magnetic field has become sufficiently strong, α and ηt will become anisotropic,
even though the turbulence was originally isotropic. If the anisotropy is only due to B , the
tensors αij and ηijk are of the form

αij (B) = α1(B)δij + α2(B)B̂i B̂j , (15)

ηij (B) = η1(B)δij + η2(B)B̂i B̂j , (16)

where B̂ = B/|B| is the unit vector of the mean field.
For equipartition-strength fields, |B| = O(Beq), the Rm dependence of α1, α2, η1, and η2

has been determined by Brandenburg et al. (2008c). It turns out that α1 and α2 have opposite
signs (Fig. 2), so when αij is applied to the actual mean field we have

αijBj = (α1 + α2)Bi. (17)

This shows that the α effect is magnetically quenched by the suppressing effect of α2 on
α1 due to its opposite sign. However, even though the value of α1 + α2 decreases with
increasing values of Rm, it is only quenched down to values comparable to the value of η1k1

if |B| = O(Beq); see Fig. 2. This becomes obvious by looking at the expression for the linear
growth rate,

λ = (α1 + α2)km − (η + η1 + η2)k
2
m, (18)

where km = μ0〈J ·B〉/〈B2〉 is the effective wavenumber of the mean field. We note however

that the use of λ is only permissible because B
2

and J · B are spatially uniform for α2

dynamos in a periodic domain. For a forcing function with positive helicity we have kf > 0,
and so km < 0. Moreover, for fully helical mean fields we have km = −k1. In the saturated
state, the growth rate must be zero, which means then that α1 +α2 must become comparable
to (η + η1 + η2)km.

The occurrence of the B̂i B̂j term in (15) and the negative sign of α2/α1 have been con-
firmed independently by observing that the velocity field of a saturated dynamo can itself
lead to dynamo action for a passive vector field obeying a kinematic induction equation.

Fig. 2 Rm dependence of α1 and −α2 (left) and of α and ηtk1 (right) for equipartition-strength fields,
|B| = O(Beq). The mutual approach of α1 and −α2 illustrates how α quenching is accomplished, and the
mutual approach of α and ηtk1 illustrates by how much the quenching has to proceed
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Such an observation was first made by Cattaneo and Tobias (2008) in a convection-driven
small-scale dynamo and later by Tilgner and Brandenburg (2008) for the Roberts (1972)
flow dynamo, where u = kfψ ẑ + ∇ × ψ ẑ with ψ = (u0/k1) cos k1x cos k1y and kf = √

2k1.
As in the case of helical isotropic turbulence in a triply-periodic domain the solutions for B
are also here Beltrami fields of the form B = (cos k1z, sink1z,0), where k0 is the horizontal
wavenumber of the helices of the Roberts flow.

The resulting matrix B̂i B̂j has eigenvalues 1 and 0. In the saturated state, the eigen-

function corresponding to eigenvalue 0 is B̃ = (sink1z,− cos k1z,0) and has the growth
rate λ = α1(B)k1 − [η1(B) + η]k2

1 , which is positive, even after B has reached saturation.

This corresponds to continued exponential growth of B̃ , which confirms the original finding
based on the test-field method.

The results obtained using the test-field methods should of course be of predictive value
to be useful. The application to a passive vector field discussed above is one example where
the result for the full nonlinear α tensor was used to predict the evolution of the passive
vector field. Another example is the case of rigidly rotating convection. Using the test-field
method, Käpylä et al. (2008b) noticed that with increasing rotation rate α increases and ηt

decreases. This led to the prediction that there should be α2 dynamo action (i.e. without
any shear!) for sufficiently rapid rotation. This was later confirmed using direct simulations
(Käpylä et al. 2008c).

5 Three Paradigm Shifts Revisited

Let us now turn attention to the Sun. Solar dynamo theory has experienced arguably three
major paradigm shifts since its broad initial acceptance during the 1970s. Inevitably, these
paradigm shifts have brought the modelling further away from the original ideas that were
based on dynamo theory. At the same time solar dynamo theory has lost much of its initial
rigor that dynamo theory used to be based on, i.e. the profiles of α and ηt are no longer
calculated, but are considered freely adjustable. The same is true of the magnetic quenching
properties of these profiles. It its therefore important that the motivation for such departures
from the original theory are well justified. In the following we discuss and comment on each
of the three paradigm shifts.

5.1 Magnetic Buoyancy: from Distributed Dynamos to the Overshoot Layer

In an influential paper by Spiegel and Weiss (1980), a number of different aspects led to the
suggestion that the solar dynamo operates at the base of the convection zone. One of the
arguments concerned the rapid rise of magnetic flux tubes from the bulk of the convection
zone. Subsequent simulations, however, have demonstrated a strongly opposing effect due
to turbulent magnetic pumping (Brandenburg and Tuominen 1991; Nordlund et al. 1992;
Brandenburg et al. 1996; Tobias et al. 1998). It appears, therefore, that magnetic buoyancy
might not constitute a problem for the dynamo, even though its effects are clearly visible
in regions where the field is strong. An example is Fig. 10 of Brandenburg et al. (1996),
where the strongest tube is just “hovering” at the same height in a balance between magnetic
buoyancy and downward pumping.

5.2 Helioseismology: Overshoot Layer and Flux-Transport Dynamos

The idea of dynamos operating in the overshoot layer was soon reinforced when it became
evident that in the bulk of the convection zone the radial differential rotation, which is
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important for the mean-field dynamo, is small. At the time, the strongest shear was believed
to occur at the bottom of the convection zone. The positive value of the radial differential
rotation in this layer, which is now called the tachocline, together with an α effect of opposite
sign relative to what it is in the bulk of the convection zone, could explain the equatorward
migration of the sunspot belts (DeLuca and Gilman 1986, 1988; Rüdiger and Brandenburg
1995). However, as with all models that have a positive radial angular velocity gradient, also
these models have the wrong phase relation, i.e. the radial and toroidal mean fields are in
phase and not in antiphase, as observed (Yoshimura 1976; Stix 1976). However, the phase
relation may not pose a serious problem (Schüssler 2005).

Another possibility is that the dynamo could operate with spatially disjoint induction
layers: an α effect with the usual sign near the surface, and positive radial shear at the bottom
of the convection zone, coupled by meridional circulation. This led to the now popular idea
of flux-transport dynamos where the meridional circulation is chiefly responsible for the
equatorward migration of the toroidal flux belts (see Dikpati and Gilman 2009). However,
in recent years it became clear that in the outer 5% of the Sun by radius there is strong
negative radial shear (Benevolenskaya et al. 1999), which could in principle also explain
the equatorward migration in the framework of conventional solar dynamo theory (B05).
On the other hand, such a theory also faces problems of its own, for example the latitudinal
width of the flux belts is expected to be only a few times bigger than the depths of the
supergranulation layer (Brandenburg and Käpylä 2007), which would be too small.

5.3 Catastrophic Quenching: Interface and Flux-Transport Dynamos

The possibility of catastrophic quenching led Parker (1993) to propose the so-called inter-
face dynamo where the magnetic field would be weak in the bulk of the convection zone, so
as to avoid catastrophic quenching. However, as discussed in the present paper, catastrophic
quenching is always a serious possibility, even for interface dynamo, which means that mag-
netic helicity fluxes are needed to alleviate it. One might well imagine that it is easier to shed
magnetic helicity when the dynamo operates closer to the surface. Such models have not yet
been investigated in sufficient detail.

In conclusion, there are now reasons to believe that all three paradigm shifts are prob-
lematic and may need to be reconsidered. An alternative proposal would be that the solar
dynamo operates in the bulk of the convection zone, just as anticipated originally in the
1970s, and that the near-surface shear layer may play an important role in shaping the solar
dynamo wave (B05).

6 Implications and Open Problems

In future work it will be important to improve our understanding of the solar dynamo, in
particular its location within the Sun, its 22 year period, and the origin of the equatorward
migration of the sunspot belts. As discussed in the previous section, current thinking places
the solar dynamo in the tachocline, i.e. the bottom of the convection zone where the internal
angular velocity turns from nearly uniform in the interior to non-uniform in the convection
zone. The idea is that the field strength there exceeds the equipartition value by a factor of
100 (D‘Silva and Choudhuri 1993), but such a strong field has not yet been reported based
on turbulent three-dimensional dynamo simulations. Observationally not much can be said
yet, because such fields would be below current helioseismological detection limits. On the
theoretical side, a serious problem is that one assumes a turbulent magnetic Prandtl number
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of 100, instead of 1, which is predicted by theory and simulations (Yousef et al. 2003).
Such considerations neglect however the turbulent viscosity associated with the Maxwell
stress of small-scale magnetic fields. Clearly, any ad hoc modifications of the theory are the
result of trying to make the models reproduce the observations. However, at the same time
such models ignore some important findings regarding the nonlinear behavior of the mean-
field dynamo effect at large magnetic Reynolds numbers. Recent research has provided new
detailed insights that should be followed up using more realistic settings such as spherical
shell geometry.

There are several mechanisms proposed for explaining the cause of the equatorward mi-
gration of magnetic activity belts at low solar latitudes. Is it the rather feeble meridional
circulation, as assumed in the now popular flux transport models (Dikpati and Charbonneau
1999), even though one has to assume unrealistic values of the turbulent magnetic Prandtl
number, or is it perhaps the near-surface shear layer, which would have indeed the right
sign, as emphasized in B05. To clarify things, future research may proceed along two paral-
lel strands; one is connected with the development and exploitation of models in spherical
geometry, and the other one is connected with unresolved problems that can be addressed in
Cartesian configurations. In the following we list detailed steps of future research.

Catastrophic quenching in spherical shells. Catastrophic quenching behavior has still
not yet been demonstrated convincingly in closed spheres or spherical shell sectors using,
e.g., perfectly conducting boundary conditions and forced turbulence. Some work in this
direction has already been done (Brandenburg et al. 2007; Mitra et al. 2008b), but the reso-
lution is limited and the results not yet entirely conclusive.

Testfield method in spherical geometry. The test-field method needs to be re-examined in
spherical coordinates. Originally the test-field method was developed in connection with full
spheres, and then the test fields consisted of field components of constant value or constant
slope. However, only afterwards it became clear that the scale (or wavenumber) of the field
components must be the same for one set of all tensor components, and so it is necessary to
work with spherical harmonic functions as test fields. In other words, constant and linearly
varying field components are problematic.

Dynamo in open shells with and without shear. To verify our understanding of the sat-
uration process of large-scale dynamos it is important to calculate, at different magnetic
Reynolds numbers, the late stages of magnetic field evolution with open boundary condi-
tions in spherical shells or shell sectors with and without shear. One expects low saturation
amplitudes with energies of the mean magnetic field being inversely proportional to the
magnetic Reynolds number in the absence of shear, but of order unity in the presence of
shear. The shear is here critical, because shear is responsible for the local driving of small-
scale magnetic helicity fluxes (Vishniac and Cho 2001; Subramanian and Brandenburg 2004,
2006).

Alpha effect from convection. The calculation of the α effect in convective turbulence
is at the moment unclear. For unstratified convection with an imposed field Cattaneo and
Hughes (2006) find that α diminishes for large magnetic Reynolds numbers, even for kine-
matically weak magnetic fields. With stratification, on the other hand, Käpylä et al. (2008b)
find values of α that are compatible with those from simple estimates. They used the test-
field method while Cattaneo and Hughes (2006) used an imposed field and estimate α as the
ratio between the resulting field-aligned electromotive force and the imposed field. However,
at large magnetic Reynolds number there is dynamo action producing also a mean field that
might exceed the imposed field and thereby modify the estimate for α. Another possible
reason for the discrepancy could be related to the presence or absence of stratification, be-
cause α is expected to be proportional to the local gradient of density and turbulent velocity
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(Steenbeck et al. 1966). In unstratified Boussinesq convection the density is constant and
the turbulent velocity only changes near boundaries. However, boundary effects could con-
tribute to driving an α effect (Giesecke et al. 2005). Another problem could be poor scale
separation, in which case the electromotive force is not just proportional to α and it becomes
mandatory to use the integral kernel formulation instead (Brandenburg et al. 2008b).

Convective dynamos in spherical shells are now widely studied (Brun et al. 2004;
Browning et al. 2006; Brown et al. 2007). It would be useful to compare the resulting mag-
netic fields with corresponding forced turbulence simulations in spherical shells and see
whether contact can be made with improved mean-field models. This may require careful
considerations of the scale-dependence of the turbulent transport coefficients.

Dynamos driven by magnetic instabilities. There is now quite a number of studies look-
ing at possibilities where the flows driving the dynamo are due to the resulting magnetic
field itself, and are driven by magnetic instabilities. Examples include magnetic buoyancy
instabilities and the magneto-rotational instability. For example, the turbulence in accre-
tion discs is believed to be driven by the magnetorotational instability. This was one of the
first examples showing cyclic dynamo action somewhat reminiscent of the solar dynamo
(Brandenburg et al. 1995), and it was believed to be a prototype of magnetically driven
dynamos (Brandenburg and Schmitt 1998; Rüdiger and Pipin 2000; Rüdiger et al. 2001;
Blackman and Field 2004). In the mean time, another example of a magnetically driven
dynamo has emerged, where magnetic buoyancy works in the presence of shear and strati-
fication alone (Brummell et al. 2002; Cline et al. 2003a, 2003b; Cattaneo et al. 2006). This
phenomenon may be superficially similar to a magnetically dominated version of the shear–
current effect (Rogachevskii and Kleeorin 2003, 2004). With the test-field method one is
now in a good position to identify the governing mechanism by determining all components
of the α and ηt tensors.

Magnetic flux concentrations near the surface. In the conventional picture, active regions
and sunspots are thought to emerge as a result of magnetic flux tubes breaking through
the surface. Given that it is difficult to imagine such tubes rising unharmed all the way
from the bottom of the convection zone over so many pressure scale heights, one must test
alternative scenarios in which the emergence of active regions and sunspots can be explained
as the result of flux concentrations from local dynamo action via negative turbulent magnetic
pressure effects (Kleeorin and Rogachevskii 1994) or turbulent flux collapse (Kitchatinov
and Mazur 2000). Clearly, the underlying effects need to be established numerically and
corresponding mean-field models need to be solved to make direct contact with simulations.

CME-like features above the surface. Given that virtually all successful large-scale dy-
namos at large magnetic Reynolds numbers are now believed to shed small-scale magnetic
helicity, it is important to analyze the nature of the expelled magnetic field in simulations
that couple to a simplified version of the lower solar wind. It is possible that the magnetic
field above the surface and in the lower part of the solar wind might resemble coronal mass
ejections (CMEs), in which case more detailed comparisons with actual coronal mass ejec-
tions would be beneficial.

Solar cycle forecast. Among the popular applications of solar dynamo theory and so-
lar magnetohydrodynamics are solar cycle predictions, solar subsurface weather, and space
weather. Also of interest are predictions of solar activity during its first 500 thousand years.
This has great relevance for predicting the loss of volatile elements from the Earth’s at-
mosphere, for example, and for understanding the conditions on Earth during the time when
life began colonizing the planet. In this connection it is important to calculate the deflection
of cosmic ray particles by the Sun’s magnetic field and on the scale of the galaxy which is
relevant for galactic cosmic rays (Svensmark 2007a, 2007b). However, such studies would
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not be very meaningful unless some of the earlier projects in this list have resulted in a solar
dynamo model that is trustworthy from a theoretical and a practical viewpoint.

Applications to laboratory liquid sodium dynamos. Unexpected beneficial insights have
come from recent laboratory dynamo experiments. Unlike numerical dynamos, experimen-
tal liquid metal dynamos are able to address the regime of rather low values of the mag-
netic Prandtl number of the order of 10−5, which is interesting in connection with so-
lar and stellar conditions. At the same time the magnetic Reynolds number can be large
enough (above 100) to allow for dynamo action. The Cadarache experiment is particu-
larly interesting. Simulations of such a flow have been attempted by various groups us-
ing the Taylor-Green flow as a model (Ponty et al. 2004, 2005; Mininni et al. 2005;
Brandenburg and Käpylä 2007). Again, the nature of the resulting dynamo effect has
not yet been elucidated. It would be useful to analyze the resulting flows using the test-
field method. One may hope that such work can teach us important lessons about large-
scale and small-scale dynamos at low magnetic Prandtl number (Schekochihin et al. 2005;
Iskakov et al. 2007), which is relevant to the Sun, but hard to address numerically with
the currently available computing capabilities. Another relevant application is precession-
driven dynamos (Tilgner 1999), where it might be useful to consider this process for a range
of different geometries.

7 Conclusions

Looking back at some of the problems that dynamo theory was facing during the early years,
we can say that a good deal of them have now been solved. For example the issue of turbu-
lent magnetic diffusivity at large magnetic Reynolds numbers has now been addressed rather
convincingly for values of Rm up to 200. Such a result has only recently become possible
with the development of the test-field method. At this point we have no evidence that this
result may change for larger values of Rm. Similar statements can be made about α, where
it is now reasonably clear that in the kinematic regime α approaches a constant value for
1 ≤ Rm ≤ 200. It should be emphasized that these results hold for forced turbulence and
one must expect them to be different in cases of naturally forced turbulence such as con-
vection or flows driven by magnetic instabilities such as the magneto-rotational instability
(Brandenburg 2008) or the magnetic buoyancy instability (Brandenburg and Schmitt 1998;
Thelen 2000).

Much larger values of Rm of 2 × 105 have been obtained for the special case of the
Galloway-Proctor flow for which α shows irregular sign changes with Rm (Courvoisier et
al. 2006). This flow is a time-dependent version of the Roberts flow where the pattern wob-
bles in the plane with given amplitude and frequency. Expressions of the form (11) do not
apply in this case where the correlation time is infinite (Rädler and Brandenburg 2009). In
that sense the Galloway-Proctor flow is quite different from a turbulent flow. Asymptotic
behavior for large Rm is only possible for sufficiently large amplitude and/or frequency of
the wobbling motion.

In the nonlinear case equally dramatic progress has been made in just the past few years.
While it has long been clear that in closed domains α will be quenched down to values that
depend on the quenched value of ηt and on the effective wavenumber of the mean field, it
remained unclear what the quenched value of ηt is. Recent evidence points to a suppression
by a factor of 5 when Rm is increased from 2 to 600 (Brandenburg et al. 2008c). However,
this value may depend on circumstances and could be slightly less strong in the presence of
shear (Käpylä and Brandenburg 2008).
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In open domains there is the possibility that the resulting magnetic field strength can
still decrease to catastrophically quenched values unless there is a finite divergence of the
magnetic helicity flux (Brandenburg and Subramanian 2005a). Such a flux can be driven
efficiently in the presence of shear. In order for this mechanism to operate, the contours
of constant shear velocity must cross the boundaries (KKB08, Hughes and Proctor 2009),
which explains the lack of large-scale fields in simulations with horizontal shear and periodic
boundary conditions in that direction (Tobias et al. 2008).

There is clearly a long way to go before the solar dynamo problem can be addressed
in full. There is hardly any doubt that the inclusion of magnetic helicity fluxes will be im-
portant, but the precise functional form of the magnetic helicity flux needs to be confirmed
numerically. In particular, the possible dependencies of the fluxes on B and Rm are not well
understood at present.
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