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Abstract
The role of magnetic helicity in astrophysical large-scale dynamos is reviewed
and compared with cases where there is no energy supply and an initial magnetic
field can only decay. In both cases magnetic energy tends to get redistributed to
larger scales. Depending on the efficiency of magnetic helicity fluxes the decay
of a helical field can speed up. Likewise, the saturation of a helical dynamo can
speed up through magnetic helicity fluxes. The astrophysical importance of
these processes is reviewed in the context of the solar dynamo and an estimated
upper limit for the magnetic helicity flux of 1046 Mx2/cycle is given.

1. Introduction

Self-excited dynamo action refers to the instability of a plasma in a non-magnetic equilibrium
state to amplify magnetic fields within the framework of resistive magnetohydrodynamics
(MHD). Charge separation effects are assumed absent, i.e. no battery-type effects are explicitly
involved, although they do play a role in producing a weak initial seed magnetic field that is
needed to provide a perturbation to the otherwise field-free initial state. A dynamo instability
may occur when the magnetic Reynolds number is large enough, i.e. the fluid motions and
the scale of the domain are large enough. This instability is normally a linear one, but some
dynamos are subcritical and then require a finite-amplitude initial field. In the linear case one
speaks about slow and fast dynamos depending on whether or not the growth rate of the dynamo
scales with resistivity. For fast dynamos the growth rate scales with the rms velocity of the
flow, which is turbulent in most cases. Dynamos saturate when the magnetic energy becomes
comparable to the kinetic energy. Some of the kinetic energy is then channeled through the
magnetic energy reservoir and is eventually dissipated via Joule heating.

There are several applications where one considers non-self-excited dynamo action.
Examples can be found in magnetospheric physics and in plasma physics where one is interested
in the electromotive force induced by a flow passing through a given magnetic field. Later in
this paper we will discuss the reversed field pinch (RFP) because of its connection with the
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α effect that plays an important role in astrophysical dynamos. The physics of the RFP has
been reviewed by Ortolani and Schnack (1993) and, in a broader context with reference to
astrophysical large-scale dynamos, by Ji and Prager (2002) and Blackman and Ji (2006).

The α effect is one of a few known mechanisms able to generate large-scale magnetic
fields, i.e. fields whose typical length scale is larger than the scale of the energy-carrying
motions. It was also one of the first discussed mechanisms able to produce self-excited
dynamo action at all. Indeed, Parker (1955) showed that the swirl of a convecting flow under
the influence of the Coriolis force can be responsible for producing a systematically oriented
poloidal magnetic field from a toroidal field. The toroidal field in turn is produced by the shear
from the differential rotation acting on the poloidal field. Parker’s paper was before Herzenberg
(1958) produced the first existence proof of dynamos. Until that time there was a serious worry
that Cowling’s (1933) anti-dynamo theorem might carry over from two-dimensional fields to
three-dimensional fields, as is evident from sentimental remarks made by Larmor (1934).

Larmor (1919) proposed the idea of dynamo action in the astrophysical context nearly
100 years ago. Nowadays, with the help of computers, it is quite easy to solve the induction
equation in three dimensions in simple geometries and obtain self-excited dynamo solutions
with as little as 163 mesh points using, for example, the sample ‘kin-dynamo’ that comes with
the PENCIL CODE (http://pencil-code.googlecode.com).

In addition to dynamos in helical flows, which can generate large-scale fields, there are also
dynamos in non-helical flows that produce only small-scale fields. This possibility was first
addressed by Batchelor (1950) based on the analogy between the induction equation and the
vorticity equation. Again, this was not yet very convincing at the time. The now accepted theory
for small-scale dynamos was first proposed by Kazantsev (1968) and the first simulations were
produced by Meneguzzi et al (1981). Such simulations are computationally somewhat more
demanding and require at least 643 mesh points (or collocation points in spectral schemes).
In the past few years this work has intensified (Cho et al 2002, Schekochihin et al 2002,
Haugen et al 2003). We will not discuss these dynamos in the rest of this paper. Instead,
we will focus on large-scale dynamos. More specifically, we focus here on a special class of
large-scale dynamos, namely those where kinetic helicity plays a decisive role (the so-called
α effect dynamos). Nevertheless, we mention at this point two other mechanisms that could
produce large-scale magnetic field without net helicity. One is the incoherent α–shear effect
that was originally proposed by Vishniac and Brandenburg (1997) to explain the occurrence of
large-scale magnetic fields in accretion discs, and later also for other astrophysical applications
(e.g., Proctor (2007)). It requires the presence of shear, because otherwise only small-scale
magnetic fields would be generated (Kraichnan 1976, Moffatt 1978). The other mechanism
is the shear–current effect of Rogachevskii and Kleeorin (2003), which can operate if the
turbulent magnetic diffusion tensor is anisotropic, so the mean electromotive force from the
turbulence is given by −ηijJ j such that the sign of ηijUi,j is positive, and that this quantity
is big enough to overcome resistive effects. Here, a comma denotes partial differentiation,
U is the mean flow, J is the mean current density, and summation over repeated indices is
assumed. This effect too requires shear, because otherwise ηijUi,j would be zero. Simulations
show large-scale dynamo action in the presence of just turbulence and shear, and without net
helicity, but there are indications that this process may also be just the result of incoherent
α–shear dynamo action (Brandenburg et al 2008a).

Throughout this paper, overbars denote suitable spatial averages over one or two coordinate
directions. Furthermore, we always assume that the scale of the energy-carrying eddies is
at least three times smaller than the scale of the domain. We refer to this property as ‘scale
separation’. In this sense, scale separation is a natural requirement, because we want to explain
the occurrence of fields on larger scales compared with the scale of the energy-carrying motions.
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Scale separation has therefore nothing to do with a gap in the kinetic energy spectrum, as is
sometimes suggested.

Much of the work on α effect dynamos has been done within the framework of analytic
approximations. However, this is only a technical aspect that is unimportant for the actual
occurrence of large-scale fields under suitable conditions. This has been demonstrated by
numerical simulations, as will be discussed below.

2. Helical large-scale dynamos

A possible way of motivating the physics behind helical dynamo action is the relation to the
concept of an inverse turbulent cascade. This particular idea was first proposed by Frisch et al
(1975) and is based on the conservation of magnetic helicity,

HM =
∫

V

A · B dV, (1)

where A is the magnetic vector potential and B = ∇×A is the magnetic field in a volume V .
It is convenient to define spectra of magnetic energy and magnetic helicity, EM(k) and

HM(k), respectively. As usual, these spectra are obtained by calculating the three-dimensional
Fourier transforms of magnetic vector potential and magnetic field, Âk and B̂k, respectively,
and integrating |B̂k|2 and the real part of Âk · B̂∗

k over shells of constant k = |k| to obtain
EM(k) and HM(k), respectively. (Here, an asterisk denotes complex conjugation.) These
spectra are normalized such that

∫
EM(k) dk = 〈B2〉/2µ0 and

∫
HM(k) dk = 〈A · B〉 for k

from 0 to ∞, where angular brackets denote volume averages over a periodic domain and µ0

is the vacuum permeability. Using the Schwartz inequality one can then derive the so-called
realizability condition,

k|HM(k)|/2µ0 � EM(k). (2)

For fully helical magnetic fields with (say) positive helicity, i.e. HM = 2µ0EM(k)/k, one can
show that energy and magnetic helicity cannot cascade directly, i.e. the interaction of modes
with wavenumbers p and q can only produce fields whose wavevector k = p + q has a length
that is equal or smaller than the maximum of either |p| or |q| (Frisch et al 1975), i.e.

|k| � max(|p|, |q|). (3)

This means that magnetic helicity and magnetic energy are transformed to progressively larger
length scales. A clear illustration of this can be seen in decaying helical turbulence. Figure 1
shows magnetic energy spectra from a simulation of Christensson et al (2001) at different times
for a case where the initial magnetic field was fully helical and had a spectrum proportional
to k4 with a resolution cutoff near the largest possible wavenumber. Note that the entire
spectrum appears to shift to the left, i.e. toward larger length scales, in an approximately self-
similar fashion. The details of the argument that led to equation (3) are due to Frisch et al
(1975), and can also be found in the reviews by Brandenburg et al (2002) and Brandenburg
and Subramanian (2005a).

In the non-decaying case, when the flow is driven by energy input at some forcing
wavenumber kf , the inverse cascade is clearly seen if there is sufficient scale separation, i.e. if kf

is large compared with the smallest wavenumber k1 that fits into a domain of size L = 2π/k1.
An example is shown in figure 2, where kinetic energy is injected at the wavenumber kf = 30k1.
It is evident that there are two local maxima of spectral magnetic energy, one at the forcing
wavenumber kf , and another one at a smaller wavenumber that we call km, which is near 7k1

in figure 2. During the kinematic stage the entire spectrum moves upward, with the spectral
energy increasing at the same rate at all wavenumbers. Eventually, when the field has reached
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Figure 1. Magnetic energy spectra at different times (increasing roughly by a factor of 2). The
curve with the right-most location of the peak corresponds to the initial time, while the other lines
refer to later times (increasing from right to left). Note the propagation of spectral energy to
successively smaller wavenumbers k, i.e. to successively larger scales. Adapted from Christensson
et al (2001).

(This figure is in colour only in the electronic version)

a certain level, the spectrum begins to change its shape and the second local maximum at
km moves toward smaller values, suggestive of an inverse cascade. However, a more detailed
analysis (Brandenburg 2001) shows that the energy transfer is non-local, i.e. most of the energy
is transferred directly from the forcing wavenumber to the wavenumber where most of the mean
field resides. This suggests that we have merely a non-local inverse transfer rather than a proper
inverse cascade, where the energy transfer would be local in spectral space.

The position of the local maximum can readily be explained by mean-field dynamo theory
with an α effect. The evolution equation of such a dynamo is

∂B

∂t
= ∇ × αB + ηT∇2B, (4)

where α is a pseudo-scalar, ηT = η + ηt is the sum of microscopic Spitzer resistivity and
turbulent resistivity1, and an overbar denotes a suitably defined spatial average (e.g. planar
average). Assuming B = B̂k exp(λt + ik ·x) with eigenfunction B̂k, one finds the dispersion
relation to be (Moffatt 1978)

λ(k) = |α|k − ηTk2, (5)

where k = |k|. The maximum growth rate is attained for a value of k where dλ/dk = 0, i.e. for
k = km = α/2ηT. The migration of the spectral maximum to smaller k can then be explained
as the result of a suppression of α. In other words, as the dynamo saturates, α decreases, and
so does km, which corresponds to the spectral maximum moving to the left.

It should be noted that there is also the possibility of a suppression of ηt , which would
work the other way, so that this interpretation might not work. Indeed, there are arguments
for a suppression of ηt that would be as strong as that of α, but this applies only to the two-
dimensional case and has to do with the conservation of the mean-squared vector potential
in that case (Gruzinov and Diamond 1994). Simulations also find evidence that in three
dimensions the suppression of α is stronger than that of ηt (Brandenburg et al 2008b).

1 Note that resistivity and magnetic diffusivity differ by a µ0 factor. Here, we always mean the magnetic diffusivity,
although we use the two names sometimes interchangeably.
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Figure 2. Magnetic energy spectra for a run with forcing at k = 30. The times, in units of (csk1)
−1,

range from 0 (dotted line) to 10, 30, . . . , 290 (solid lines). The thick solid line gives the final state
at csk1t = 1000, corresponding to urmskf t ≈ 2000 turnover times. Here, cs is the sound speed and
urms is the turbulent rms velocity. Note that at early times the spectra peak at kmax ≈ 7k1. The k−1

and k+3/2 slopes are given for orientation as dash-dotted lines. Adapted from Brandenburg (2001).

In the following we discuss in detail the role played by magnetic helicity. This has been
reviewed extensively in the last few years (Ji and Prager 2002, Brandenburg and Subramanian
2005a, Blackman and Ji 2006).

3. Slow saturation

In a closed or periodic domain, the saturation of a helical large-scale dynamo is found to
be resistively slow and the final field strength is reached with a time behavior of the form
(Brandenburg 2001)

〈B2〉(t) = B2
eq

km

kf
[1 − e−2ηk2

m(t−ts)] for t > ts, (6)

where Beq is the equipartition field strength and ts is the time when the slow saturation phase
begins. We emphasize that it is the microscopic η that enters equation (6), and that the relevant
length scale, 2π/km, is that of the large-scale field, so the saturation behavior is truly very
slow.

The reason for this slow saturation behavior is related to the conservation of magnetic
helicity, which obeys the evolution equation (e.g., Ji et al (1995) and Ji (1999))

d

dt
〈A · B〉 = −2ηµ0〈J · B〉 − 〈∇ · FH〉, (7)

where FH is the magnetic helicity flux, but for the periodic domain under consideration we
have ∇·FH = 0. Clearly, in the final state we have then 〈 J ·B〉 = 0. This can only be satisfied
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for non-trivial helical fields if small-scale and large-scale fields have values of opposite signs,
but equal magnitude, i.e. 〈j · b〉 = −〈J · B〉, where B = B + b and J = J + j are the
decompositions of magnetic field and current density into mean and fluctuating parts. Here
we choose to define mean fields as one- or two-dimensional coordinate averages. Examples
include planar averages such as xy, yz or xz averages in a periodic Cartesian domain, as well as
one-dimensional averages such as y or φ averages in Cartesian or spherical domains, (r, θ, φ),
where the other two directions are non-periodic.

Equation (6) can be derived under the assumption that large-scale and small-scale fields

are fully helical with µ0J · B = k2
mA · B = ∓kmB

2
and µ0〈 j · b〉 = ±kf〈b2〉 ≈ ±kfB

2
eq,

where upper and lower signs refer to positive and negative helicity of the small-scale
turbulence and we have assumed that the small-scale field has already reached saturation,
i.e. 〈b2〉 ≈ B2

eq ≡ µ0〈ρu2〉, where ρ is the density and u = U − U is the fluctuating
velocity.

A mean-field theory that obeys magnetic helicity conservation was originally developed
by Kleeorin and Ruzmaikin (1982) and has recently been applied to explaining slow saturation
(Blackman and Brandenburg 2002, Field and Blackman 2002, Subramanian 2002). The main
idea is that the α effect has two contributions (Pouquet et al 1976),

α = αK + αM, (8)

where αK = − 1
3τω · u is the usual kinetic α effect related to the kinetic helicity, with

ω = ∇ × u being the vorticity, and αM = 1
3τj · b/ρ0 is a magnetic α effect that can, for

example, be produced by the growing magnetic field in an attempt to conserve magnetic
helicity. (Here, ρ0 is an average density, but we note that there is at present no adequate theory
for compressible systems with non-uniform density.)

Note that αM is related to the small-scale current helicity and hence to the small-scale
magnetic helicity which, in turn, obeys an evolution equation similar to equation (7), but with an
additional production term, 2E ·B, which arises from mean-field theory via E = αB−ηtµ0J ,
and thus from the α effect itself. The equation for αM has then the form

∂αM

∂t
= −2ηtk

2
f

(
E · B

B2
eq

+
αM

Rm

)
− ∇ · F α, (9)

where Rm = ηt/η is a measure of the ratio of turbulent to microscopic magnetic diffusivity.
With ηt = urms/3kf (Sur et al 2008) we can relate this to the more usual definition for the
magnetic Reynolds number, R̃m = urms/ηkf , via R̃m = 3Rm. Furthermore, we have allowed
for the possibility of fluxes of magnetic and current helicities that also lead to a flux of αM .
Such fluxes are primarily important in inhomogeneous domains and especially in open domains
where one can have an outward helicity flux (Ji 1999).

The use of equation (8) is sometimes criticized because it is based on a closure assumption.
Indeed, there are questions regarding the meaning of the term j · b and whether it really applies
to the actual field or the field in the unquenched case. This has been discussed in detail in a
critical paper by Rädler and Rheinhardt (2007). Part of this ambiguity can already be clarified
in the low conductivity limit. Sur et al (2007) have shown that one can express α either
completely in terms of the helical properties of the velocity field or, alternatively, as the sum
of two terms, a so-called kinetic α effect and an oppositely signed term proportional to the
helical part of the small-scale magnetic field. However, it is fair to say that the problem is
not yet completely understood. The strongest argument in favor of equations (8) and (9) is
that they reproduce catastrophic (i.e. Rm-independent) quenching of α and that this approach
has led to the prediction that such quenching can be alleviated by magnetic helicity fluxes.
This prediction has subsequently been tested successfully on various occasions (Brandenburg
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2005, Käpylä et al 2008). Finally, it should be noted that equation (8) has also been confirmed
directly using turbulence simulations (Brandenburg and Subramanian 2005c, 2007).

The idea to model dynamo saturation and suppression of α by solving a dynamical equation
for αM is called dynamical quenching. In addition to the resistively slow saturation behavior
described by equation (6), this approach has also been applied to decaying turbulence with
helicity (Yousef et al 2003, Blackman and Field 2004), where the conservation of magnetic
helicity results in a slowdown of the decay. This can be modeled by an α effect that offsets
the turbulent decay proportional to ηtk

2 such that the decay rate becomes nearly equal to the
resistive value, ηk2. This is explained in detail in the following section.

4. Decay in a Cartesian domain

In the context of driven turbulence, the properties of solutions of a decaying helical magnetic

field were studied earlier by Yousef et al (2003), who found that for fields with B
2
/B2

eq � R−1
m

the decay of B is slowed down and can quantitatively be described by the dynamical quenching
model. This model applies even to the case where the turbulence is non-helical and where
there is initially no α effect in the usual sense. However, the magnetic contribution to α is still
non-vanishing, because the αM term is driven by the helicity of the large-scale field.

To demonstrate this quantitatively, Yousef et al (2003) have adopted a one-mode
approximation with B = B̂(t) exp(ik1z), and used the mean-field induction equation together
with the dynamical α-quenching formula (9),

dB̂

dt
= ik1 × Ê − ηk2

1B̂, (10)

dα

dt
= −2ηtk

2
f

(
Re(Ê∗ · B̂)

B2
eq

+
α

Rm

)
, (11)

where the flux term is neglected, Ê = αB̂ − ηt ik1 × B̂ is the electromotive force and
k1 = (0, 0, k1).

Figure 3 compares the evolution of B/Beq for helical and non-helical initial conditions,
B̂ ∝ (1, i, 0) and B̂ ∝ (1, 0, 0), respectively. In the case of a non-helical field, the decay

rate is not quenched at all, but in the helical case quenching sets in for B
2
/B2

eq � R−1
m . The

onset of quenching at B
2
/B2

eq ≈ R−1
m is well reproduced by the simulation. In the non-helical

case, however, some weaker form of quenching sets in when B
2
/B2

eq ≈ 1. We refer to this as
standard quenching (e.g. Kitchatinov et al (1994)) which is known to be always present; see
equation (6). Blackman and Brandenburg (2002) found that, for a range of different values of
Rm, g̃ = 3 results in a good description of the simulations of cyclic α
-type dynamos that
were reported by Brandenburg et al (2002).

5. Relevance to the RFP

The dynamical quenching approach has been applied to modeling the dynamics of the RFP,
where one has an initially helical magnetic field of the form

B = B̂




0

J1(kr)

J0(kr)


 , (12)

7
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Figure 3. Dynamical quenching model with helical and non-helical initial fields, and an additional
ηt quenching function, ηt = ηt0/(1 + g̃|B|/Beq). The quenching parameters are g̃ = 0 (solid line)
and 3 (dotted line). The graph for the non-helical cases has been shifted in t so that one sees that the
decay rates are asymptotically equal at late times. The value of ηT used to normalize the abscissa
is based on the unquenched value. Adapted from Yousef et al (2003).

Figure 4. Time evolution of toroidal flux in the RFP experiment of Caramana and Baker (1984)
compared with a calculation with no dynamo effect. The decay around t = 18 ms is due to
termination of the applied electric field. Courtesy of E J Caramana and D A Baker.

where we have adopted cylindrical coordinates (r, θ, z). In a cylinder of radius R such an initial
field becomes kink unstable when kR � π . Both laboratory measurements (e.g. Caramana
and Baker (1984)) and numerical simulations (Ho et al 1989) confirm the idea that the field-
aligned current leads to kink instability, and hence to small-scale turbulence and thereby to the
emergence of ηt and α.

Just as in the case discussed in section 4, the emergence of α slows down the decay in such
a way that the toroidal field remains nearly constant and is maintained against resistive decay;
see figure 4. The details of this mechanism have been discussed by Ji and Prager (2002). In
particular, they show that the parallel electric field cannot be balanced by the resistive term
alone, and that there must be an additional component resulting from small-scale correlations
of velocity and magnetic field, u × b, that explain the observed profiles of mean electric field
and mean current density. Furthermore, the parallel electric field reverses sign near the edge
of the device, while the parallel current density does not. Again, this can only be explained by
additional contributions from small-scale correlations of velocity and magnetic field. The RFP
experiment also shows that magnetic helicity evolves on time scales faster than the resistive
scale, which is compatible only in the presence of a finite magnetic helicity flux divergence
(Ji et al 1995, Ji 1999).

8
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6. Magnetic helicity in realistic dynamos

Astrophysical dynamos saturate and evolve on dynamical time scales and are thus not resistively
slow. Current research shows that this can be achieved by expelling magnetic helicity from the
domain through helicity fluxes. This is why we have allowed for the ∇·F α term in equation (9).
Since the magnetic α effect is proportional to the current helicity of the fluctuating field, the
F α flux should be proportional to the current helicity flux of the fluctuating field.

The presence of the flux term generally lowers the value of |αM |, and since the αM term
quenches the total value of α (=αK + αM ), the effect of this helicity flux is to alleviate an
otherwise catastrophic quenching. Indeed, in an open domain and without a flux divergence,
the αM/Rm term in equation (9) can result in ‘catastrophically low’ saturation field strengths
that are smaller by a factor R

1/2
m than the equipartition field strength (Gruzinov and Diamond

1994, Brandenburg and Subramanian 2005b).
Magnetic helicity obeys a conservation law and is therefore conceptually easier to tackle

than current helicity. However, there is the difficulty of gauge dependence of magnetic helicity
density and its flux. It is, therefore, safer to work with the current helicity, which is also the
quantity that enters in Equations (8) and (9). However, more work needs to be done to establish
the connection between the two approaches.

Over the past 10 years there has been mounting evidence that the Sun sheds magnetic
helicity (and hence current helicity) through coronal mass ejections and other events.
Understanding the functional form of such fluxes is very much a matter of ongoing research
(Subramanian and Brandenburg 2004, 2006, Brandenburg et al 2009). In the following section
we present a simple calculation that allows us to estimate the amount of magnetic helicity losses
required for the solar dynamo to work.

7. Estimating the required magnetic helicity losses

In order to estimate the magnetic helicity losses required to alleviate catastrophic quenching
we make use of the relation between the α effect and the divergence of the current helicity flux
(Brandenburg and Subramanian 2005a):

α = αK + Rm[ηtµ0J · B/B2
eq − ∇ · F C/(2k2

f B
2
eq) − α̇/(2ηtk

2
f )]

1 + RmB
2
/B2

eq

, (13)

where α̇ = ∂α/∂t and F C is the mean flux of current helicity from the small-scale field,
(∇ × e) × (∇ × b), where e is the fluctuating component of the electric field; see also
Subramanian and Brandenburg (2004). In the steady-state limit and at large Rm we have

α ≈ ηt
µ0J · B

B
2 − ∇ · F C

2k2
f B

2 . (14)

We neglect the J ·B term, because the catastrophic quenching in dynamos with boundaries has
never been seen to be alleviated by this term (Brandenburg and Subramanian 2005b). Thus,
we use equation (14) to estimate ∇ · F C as

∇ · F C = 2αk2
f B

2
. (15)

Next, we take the volume integral over one hemisphere, i.e.

LC ≡
∮

2π

F C · dS =
∫

∇ · F C dV = 2π

3
R3〈2αk2

f B
2〉, (16)

9
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where LC is the ‘luminosity’ or ‘power’ of current helicity. We estimate 〈α〉 using α
 dynamo
theory which predicts that (e.g., Robinson and Durney (1982), see also Brandenburg and
Subramanian (2005a))

αk1�
 ≈ ω2
cyc, (17)

where ωcyc = 2π/Tcyc is the cycle frequency of the dynamo, Tcyc is the 22 year cycle period
of the Sun, α is assumed constant over each hemisphere and �
 is the total latitudinal shear,
i.e. about 0.3
 for the Sun. There is obviously an uncertainty in relating local values of α to
volume averages. However, if we do set the two equal, we obtain at least an upper limit for
LC. We may then relate this to the luminosity of magnetic helicity, LH, that we assume to be
proportional to LC via

LC = k2
f LH. (18)

With this we find the total magnetic helicity loss over half a cycle (one 11 year cycle):

1

2
LHTcyc � 4π

3
R3

ω2
cyc

k1�

Tcyc〈B2〉 = 4π

3
LR3 ωcyc

�

〈B2〉, (19)

where we have estimated k1 = 2π/L for the relevant wavenumber of the dynamo in terms of the
thickness of the convection zone L. Inserting now values relevant for the Sun, L = 200 Mm,
R = 700 Mm, ωcyc/�
 = 10−2 and B ∼ 300 G, we obtain

1
2LHTcyc � 1046 Mx2/cycle. (20)

This is comparable to earlier estimates based partly on observations (Berger and Ruzmaikin
2000, DeVore 2000) and partly on turbulence simulations (Brandenburg and Sandin 2004),
but we recall that equation (20) is only an upper limit. Furthermore, the connection between
current helicity and magnetic helicity assumed in relation (18) is quite rough and has only
been seriously confirmed under isotropic conditions. In addition, it is not clear that the
gauge-invariant magnetic helicity flux defined by Berger and Field (1984) and Finn and
Antonsen (1985) is actually the quantity of interest. Following earlier work of Subramanian
and Brandenburg (2006), the gauge-invariant magnetic helicity is not in any obvious way
related to the current helicity which, in turn, is related to the density of the flux linking number
and is at least approximately equal to the magnetic helicity in the Coulomb gauge.

In summary, although magnetic helicity is conceptually advantageous in that it obeys a
conservation equation, the difficulty in dealing with a gauge-dependent quantity can be quite
serious. Moreover, as emphasized before, it is really the current helicity that is primarily of
interest, so it would be useful to shift attention from magnetic helicity fluxes to current helicity
fluxes.

8. Conclusions

In this paper we have attempted to highlight the importance of magnetic helicity in modern
non-linear dynamo theory. Much of the early work on the RFP since the mid-1980s now
proves to be extremely relevant in view of the possibility of resistively slow saturation by
a self-inflicted build-up of small-scale current helicity, j · b, as the dynamo produces large-
scale current helicity, J · B. Since this concept is not yet universally accepted, the additional
evidence from the RFP experiment can be quite useful.

The interpretation of resistively slow saturation has led to the proposed solution that
magnetic helicity fluxes (or current helicity fluxes) are responsible for removing excess small-
scale magnetic helicity from the system. This allows the dynamo to reach saturation levels
that can otherwise be R

1/2
m times smaller than the equipartition value given by the kinetic
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energy density of the turbulent motions. The consequences of this prediction have been tested
in direct simulations (figure 3 of Brandenburg (2005) and figure 17 of Käpylä et al (2008)),
confirming thereby ultimately basic aspects of incorporating the magnetic helicity equation
into mean-field models. However, more progress is needed in addressing questions regarding
the relative importance of magnetic and current helicity fluxes through the surface compared
with diffusive fluxes across the equator (Brandenburg et al 2009).

We reiterate that the RFP experiment is not directly relevant to the self-excited dynamo, but
rather its non-linear saturation mechanism. So far, successful self-excited dynamo experiments
have only been performed with liquid sodium (Gailitis et al 2001, Stieglitz and Müller 2001,
Monchaux et al 2007). This may change in future given that one can usually achieve much
higher magnetic Reynolds numbers in plasmas than in liquid metals (Spence et al 2009). It
might then, for the first time, be possible to address experimentally questions regarding the
relative importance of magnetic and current helicity fluxes for dynamos.
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