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ABSTRACT

In the mean-field theory of magnetic fields, turbulent transport, i.e., the turbulent electromotive force is described
by a combination of the α effect and turbulent magnetic diffusion, which are usually assumed to be proportional,
respectively, to the mean field and its spatial derivatives. For a passive scalar, there is just turbulent diffusion, where
the mean flux of concentration depends on the gradient of the mean concentration. However, these proportionalities
are approximations that are valid only if the mean field or the mean concentration vary slowly in time. Examples
are presented where turbulent transport possesses memory, i.e., where it depends crucially on the past history of
the mean field. Such effects are captured by replacing turbulent transport coefficients with time integral kernels,
resulting in transport coefficients that depend effectively on the frequency or the growth rate of the mean field
itself. In this paper, we perform numerical experiments to find the characteristic timescale (or memory length) of
this effect as well as simple analytical models of the integral kernels in the case of passive scalar concentrations
and kinematic dynamos. The integral kernels can then be used to find self-consistent growth or decay rates of the
mean fields. In mean-field dynamos, the growth rates and cycle periods based on steady state values of α effect,
and turbulent diffusivity can be quite different from the actual values.
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1. INTRODUCTION

A simple form of turbulent transport is the mixing of a
passive scalar associated with the mutual exchange of fluid
parcels. This process is similar to non-turbulent mixing that
occurs just because of thermal fluctuation or Brownian motion,
often referred to as molecular diffusion. The latter process is
described by a diffusion equation with a diffusion term of the
form κ∇2C, where κ is the molecular diffusion coefficient and
C is the concentration. Turbulent diffusion, on the other hand,
applies to a suitably averaged mean concentration, C, and is
normally described by a diffusion term of the form κt∇2C,
where κt is a turbulent diffusivity. The ratio κt/κ scales like the
Reynolds number (or, more precisely, the Péclet number) and
can become very large under many astrophysical conditions
(stars, accretion disks, galaxies).

Problems connected with this simple prescription occur when
the mean concentration shows variations on timescales shorter
than or comparable to the correlation time of the turbulence.
In practice, this means that a sinusoidal profile of C with
wavenumber k would decay at a rate κtk

2, where κt is no longer
constant, but it depends itself on the actual decay rate.

The fact that problems occur when the mean concentration
changes on short timescales should not be surprising. Indeed, in
the text books of Moffatt (1978) and Krause & Rädler (1980) it
is shown that a proper description of turbulent transport involves
a convolution of an integral kernel with the mean concentration
over past times. This is why one talks about memory effects
the turbulent diffusion is not just an instantaneous property of
the turbulence, but depends on its full time history (Hori &
Yoshida 2008). Dealing with a convolution over past times is
an unpleasant complication, so its effects are often neglected.
However, there can be circumstances of astrophysical relevance
where this is no longer permissible.

Such a circumstance is the damping of solar p-mode oscil-
lations through turbulent motions in the surface layers (Stix

et al. 1993). Here the timescales of p-modes and convection are
comparable, so memory effects must be important. Stix et al.
(1993) find that the turbulent diffusion is reduced by a factor
exp(−ωoscτ ), where ωosc is the oscillation frequency, and τ is
the correlation time of the turbulence. Memory effects have also
been invoked in connection with propagating front solutions in
the galactic dynamo (Fedotov et al. 2002, 2003), and variations
of the solar cycle (Otmianowska-Mazur et al. 1997), although
there the timescales are more disparate.

A practical way of dealing with memory effects has been
proposed by Blackman & Field (2002, 2003), who derived an
evolution equation for the turbulent flux of concentration based
on a simple closure prescription known as the τ approximation.
One of the main beauties of this approach is that the usual
diffusion equation, which is of parabolic nature, is now replaced
by a damped wave equation, which is of hyperbolic nature. This
implies that signal propagation is no longer infinitely fast, but
its speed is limited to the rms velocity of the turbulence. The
principal validity of this approach has been demonstrated using
turbulence simulations of passive scalar diffusion (Brandenburg
et al. 2004). One of the goals of the present paper is to provide a
more direct means of determining memory effects of turbulent
transport that can also be applied to more complicated cases of
vector fields such as the magnetic field.

A promising method for calculating turbulent transport co-
efficients for the magnetic field is the test-field method. In this
approach, one calculates evolution equations for the small-scale
field that results from a given set of different test fields. In this
way, one can calculate the full tensorial nature of the turbulent
diffusion tensor, as well as the α tensor that can be relevant for
amplifying the magnetic field if the turbulence lacks mirror sym-
metry, for example, in the presence of helicity. These test fields
have a given length scale characterized by some wavenumber.
By varying this wavenumber, it has been possible to determine
the scale dependence of the mean fields that are being diffused
and/or amplified (Brandenburg et al. 2008a). Using a Fourier

712

http://dx.doi.org/10.1088/0004-637X/706/1/712
mailto:alex.i.hubbard@gmail.com


No. 1, 2009 MEMORY EFFECTS IN TURBULENT TRANSPORT 713

transformation over all wavenumbers, it is possible to determine
the spatial properties of the integral kernels that are used in the
convolution with the mean field over all other points in space. It
is customary to approximate the kernels by δ functions, in which
case the convolutions become multiplications. In the test-field
method, the corresponding coefficients are obtained as the limit
of vanishing wavenumber. However, in order to make statements
for finite domains of length L, the wavenumber k = k1 ≡ 2π/L
is most relevant. Unless stated otherwise, we focus therefore on
results for k = k1.

In an analogous fashion, we can make the test fields time
dependent and compute in this way the temporal properties of
the integral kernels. By imposing sinusoidal variations of the
test fields over a range of different frequencies, we calculate
the integral kernels first in Fourier space, because there the
convolution corresponds just to a multiplication. The integral
kernel in real space is then obtained by Fourier transformation.
Another possibility is to apply an exponentially growing or
decaying time variation. In a sense this comes closest to the
application of calculating modifications of growth rates due
to finite memory effects. The integral kernel can then be
calculated by inverse Laplace transformation, but this approach
involves integration along the imaginary axis and is therefore
only feasible if the data can be fitted reliably to an analytic
function. We note that it is in principle also possible to determine
integral kernels directly by applying a δ function-like variation
to the mean concentration gradient or the mean field, but the
disadvantage here is that it is then not so easy to improve the
statistics by time averaging. Nevertheless, such a δ function-like
perturbation provides an additional verification and is certainly
a useful thought experiment.

The temporal properties of integral kernels in turbulent trans-
port may be particularly important in dynamo theory where sim-
ulations and theory are now sufficiently accurate to show finite
memory effects under controlled conditions. As a side effect,
growth rates based on a dispersion relation with constant α ef-
fect and turbulent magnetic diffusivity may become inaccurate.
It is quite plausible that under more complicated circumstances
finite memory effects will be even more important. However,
without proper knowledge of what to expect, this would only
remain speculation. A goal of this paper is therefore to clarify
finite memory effects in simulations of forced helical turbulence
in a periodic domain. We consider here only the kinematic case,
i.e., the velocity is unaffected by the magnetic field.

In Section 2, we will motivate our work by considering two
approaches to calculating the growth rate of the Roberts flow
dynamo. In Section 3, we define our formalism, most im-
portantly the time response kernels that describe “memory”
effects. We will treat both the turbulent transport of mag-
netic fields and the conceptually simpler transport of passive
scalars. In Section 4, we give a brief theoretical overview
before discussing our numerical simulations and results in
Sections 5 and 6. We discuss those results in Section 7 and
conclude in Section 8.

2. BACKGROUND: MISMATCH IN GROWTH RATES

A direct approach to determining the growth rate of a dynamo
is to solve the induction equation for the magnetic field B
numerically:

∂ B
∂t

= ∇ × (U × B) + η∇2 B. (1)

Here U is the velocity and η is the microscopic magnetic
diffusivity. We are interested in dynamos that produce mean
fields, B, denoted here by an overbar. In the following, we take
this to be an xy average. We calculate then the growth rate of
the mean field as

λgrowth = d ln Brms/dt. (2)

This can now be compared with the corresponding result from
mean-field theory, where one considers the averaged induction
equation

∂ B
∂t

= ∇ × (U × B + E) + η∇2 B, (3)

with
E ≡ u × b (4)

being the turbulent electromotive force and u = U − U and
b = B − B are the fluctuations. Symmetry considerations
constrain the form of E , and in the case of homogeneous
isotropic turbulence with helicity, the expression for E is found
to be

E = αB − ηtμ0 J, (5)

where α describes the α effect, ηt is the turbulent magnetic
diffusivity, J = ∇ × B/μ0 is the mean current density, μ0
is the vacuum permeability, and higher order terms have been
omitted. Such a model is generally referred to as an α2 dynamo.
For references see Moffatt (1978) and Krause & Rädler (1980).

A new and accurate method for determining α and ηt is the
test-field method of Schrinner et al. (2005, 2007) that will be
described below. The details of this method are not essential at
this point, except that we do emphasize that for our values of
the magnetic Reynolds number ReM the wavenumber of the test
field is chosen to be that of the box, which is also the smallest
wavenumber that fits into the domain.

For isotropic turbulence in a periodic domain, the magnetic
field can develop long wavelength variations in any of the
three coordinate directions (Brandenburg 2001). We assume
this to be the z direction and use averages over the x and
y directions. Solutions of a homogeneous α2 dynamo obey
∇ × B = kz B = μ0 J and are proportional to exp(ikzz + λt)
with the dispersion relation

λ = αkz − (η + ηt)k
2
z , (6)

where kz is the wavenumber in the z direction. Both α and ηt
are taken as constant in space owing to the assumed statistical
homogeneity of the turbulence. For flows with positive kinetic
helicity, α is expected to be negative, so growing solutions
correspond to negative values of kz.

We refer to the value of λ obtained from the dispersion
relation (6) as λdisp. This is the second approach to determining
the growth rate of the dynamo. It has the disadvantage of
being indirect, but the advantage of aiding comprehension of
the dynamo mechanism itself. If the theory behind this second
approach is correct, then the results should match, so comparing
the growth rates allows one to test the validity of Equation (5).

In order to motivate the purpose of this paper, let us now
compare in Figure 1 λgrowth with λdisp for the simpler case of
a steady periodic helical flow instead of turbulence. We use
here the Roberts flow, whose details will be discussed later.
The two estimates for λ do indeed agree when λ = 0, at the
critical magnetic Reynolds number for the onset of dynamo
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Figure 1. ReM dependence of the growth rate for the Roberts flow as obtained
from a direct calculation (λgrowth) compared with the result of the dispersion
relation, λdisp = αkz − (η + ηt)k2

z , using a cubic domain of size L3, where
k1 = 2π/L and kf = √

2k1. For this range of ReM , the most unstable mode
is the largest one that fits in the box (kz = k1). The two horizontal lines in
gray mark the values of λgrowth and λdisp at ReM = 30, denoted by (i) and (ii),
respectively.

action ReM,crit � 5.52. For larger values of ReM , there is a
discrepancy that can become rather dramatic for ReM > 20.

One of the motivations for our work then is the fact that
the growth rate estimated from Equation (6), where α and ηt
are obtained from the test-field method, becomes increasingly
inaccurate for large growth rates, implying that Equation (5)
is inadequate to describe growing dynamos. We emphasize
that this discrepancy vanishes not only in the marginal case,
but also for the nonlinearly saturated dynamo. This is why in
Brandenburg et al. (2008b) the quenched values of α(B) and
ηt(B) were found to obey Equation (6) with λ = 0.

Even though the Roberts flow has been studied extensively
over the years (see, e.g., Roberts 1972; Soward 1987; Plunian
et al. 1999; Plunian & Rädler 2002a, 2002b; Courvoisier 2008),
and especially so in connection with the Karlsruhe dynamo
experiment (cf. Stieglitz & Müller 2001; Rädler et al. 2002), a
discrepancy between theoretically expected growth rates based
on mean-field theory and the actual ones has never been
reported. For example, in Plunian & Rädler (2002a), the actual
growth rates have been determined directly without invoking
mean-field theory, and in Rädler et al. (2002) only the marginal
case has been compared with observations. However, in the
marginal case the discrepancy disappears. In Plunian & Rädler
(2002b), on the other hand, the values of α and ηt have again
been determined self-consistently for cases different from the
marginal one. Thus, the mean field is then of course no longer
steady, and so their values of α and ηt apply only to this particular
time dependence, but not to a fictitious steady case, for example.
We say here “fictitious,” because for given values of ReM and
kz, there is normally only one relevant solution, namely the one
with the largest value of λ. However, for a predictive theory,
one should know α and ηt before having solved the problem,
i.e., before knowing λ. In the following, we explain how the
fictitious steady case can actually be realized in a simulation.

In order to clarify the point that, for given values of ReM , α and
ηt depend also on the resulting growth rate, let us now consider
a modified induction equation with an artificial “friction” term

∂ B
∂t

= ∇ × (U × B) + η∇2 B − ΛB, (7)

where Λ is a new control parameter and B is the xy-averaged
field. Note that the evolution of the departure from this xy-

Figure 2. Dependence of λ̃ on Λ for ReM = 30. The values of Λ = λdisp and
λgrowth of Figure 1 are indicated by a vertical dashed and dotted lines, denoted by
(ii) and (i), respectively. Note that λ̃ = 0 (dash-dotted line) for Λ = λdisp, where
λdisp = αkz − (η + ηt)k2

z , with α and ηt obtained using the test-field method for
steady fields. The linear interpolation between the points (Λ, λ̃) = (0, λgrowth)
and (λgrowth, 0) is indicated by a triple-dot-dash line.

averaged field, b = B − B, is unaffected by this manipulation,
so E = u × b is exactly the same as before. The solutions
of B have still an exponential time dependence, and standard
mean-field theory gives for the growth rate λ̃of the mean field

λ̃ = αkz − (η + ηt)k
2
z − Λ. (8)

So, as the value of Λ is increased (for given values of ReM and
kz), the growth rate λ̃ decreases. (The tilde has been added to
distinguish λ from that used in Equation (6).) There is a critical
value Λ∗ for which λ̃ = 0. This value is determined by

Λ∗ = αkz − (η + ηt)k
2
z . (9)

Given that in this case the mean field is steady, we now expect
Equation (9) to be accurate. To verify this, we solve Equation (7)
numerically and determine the growth rate λ̃. The result is shown
in Figure 2 where we plot λ̃ versus Λ for ReM = 30. For
Λ = 0, we find λ̃ = λgrowth. More importantly, it turns out that
λ̃ = 0 at a value Λ = Λ∗ = λdisp, indicated by (ii), that is
given by Equation (9) with the same values of α and ηt that
led earlier to the discrepancy in Figure 1. Most crucially, the
numerically determined growth rate λ̃ in Figure 2 deviates from
a linear interpolation between the points (Λ, λ̃) = (0, λgrowth)
and (λgrowth, 0). This suggests again that the assumption of the
α and ηtin Equation (8) being independent of λ is invalid.

We note that for larger values of ReM (e.g., for ReM = 50),
Equation (7) permits additional solutions with insignificant B
that cannot be damped by the ΛB term. However, as a proof of
concept, it was only essential that ReM was big enough so that
there is a clear difference between λgrowth and λdisp.

The results presented above show that a naive application of
the dispersion relation to cases where λ �= 0 is not possible
and gives results that disagree with the direct simulation. This
is because the values of α and ηt apply only to the steady case,
as demonstrated by considering the associated steady problem
of Equation (7), where Λ = Λ∗ is predicted from Equation (9)
using the α and ηt values obtained from the test-field method.

Recently, Hori & Yoshida (2008) noted that, in the Roberts
flow, memory effects can be responsible for an enhancement of
the growth rate. The reason why Plunian & Rädler (2002b) found
the correct growth rates from Equation (6) even when λ �= 0 is
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that their values of α and ηt were automatically “tuned” to the
resulting growth rate. Their values do therefore not apply to the
steady case, which can be verified by considering the mean-field
problem associated with Equation (7).

To understand the reason for the discrepancy between ac-
tual growth rates and those obtained from the standard (time-
independent) test-field method, it is important to recall that a
multiplicative relation in Equation (5) is only an approxima-
tion and that it should instead be a convolution in space and
time (Moffatt 1978; Krause & Rädler 1980). Alternatively, a
Taylor series expansion of E in space and time can be
employed. Already in the simple case of the Roberts flow
Equation (5) cannot be justified when the mean field changes
sufficiently rapidly in time. In this paper, we show that in such
cases “memory” effects of the turbulent transport coefficients
cannot be ignored. This implies that the electromotive force
at a given time depends not only on the mean fields at that
specific time, but also on the mean fields at all prior times. In
practice, this means that the turbulent transport coefficients de-
pend themselves on the resulting growth rate and/or frequency
of the mean fields.

3. FORMALISM

Quite generally, we are interested in expressing quadratic
correlations of fluctuating quantities in terms of mean fields.
Examples include the mean turbulent concentration flux and the
mean turbulent electromotive force,

F = uc, and E = u × b, (10)

respectively. Here, c = C − C is the fluctuation of the concen-
tration density. The number of preferred directions available to
mean quantities such as F and E are limited, and so the aim
is to relate them respectively to the gradient of the mean con-
centration, G = ∇C, and to a linear combination of the mean
magnetic field B and its curl, ∇ × B = μ0 J . However, instead
of multiplicative (instantaneous) relations of the form

F = −κtG, E = αB − ηtμ0 J, (11)

we now adopt such relations in their more general forms
involving a convolution in time, i.e.,

F(t) = −
∫ t

−∞
κ̂t(t − t ′)G(t ′) dt ′, (12)

and

E(t) =
∫ t

−∞
α̂(t−t ′)B(t ′) dt ′−

∫ t

−∞
η̂t(t−t ′)μ0 J(t ′) dt ′, (13)

where quantities with a hat denote integral kernels, so κ̂t(t) is
an integral kernel describing turbulent passive scalar diffusion,
α̂(t) describes the α effect, and η̂t(t) the turbulent magnetic
diffusion. This approach is the most general search for memory
effects, and we adopt it to find out how to modify Equation (5)
to model more accurately growing dynamos.

We recall that in general our averages (being two dimensional
over the xy plane) are also functions of z, but the z dependence
has here been suppressed in favor of a more compact notation.
In general, Equations (12) and (13) should also include a
convolution over z. This property has recently been studied
in Brandenburg et al. (2008a), but the spatial aspects of the

convolution will here be ignored by considering magnetic fields
that have only a single wavenumber kz, which corresponds to
the smallest wavenumber k1 = 2π/L that fits into the domain
of size L3.

3.1. Standard Test-field Methods

In this section, we reiterate the essence of the standard test-
field methods for calculating α, ηt, and κt, where memory effects
are ignored. As noted above, mean-field theory treats turbulent
transport through the correlations of fluctuating quantities as in
Equation (11). If the transported quantity does not itself affect
the dynamics of the system, as in the cases of passive scalars
or kinematic dynamos (where the magnetic field is too weak to
affect the momentum equation), then the transport coefficients
are functions of the velocity fields alone.

This lack of dependence of the transport coefficients on the
mean field implies that the transport coefficients will be found
also in systems where a mean field is externally imposed and
does not obey any evolution equation. Such a field is called a
test field. A set of different test fields is needed to determine
simultaneously the prefactors α and ηt of B and J , respectively.
In the test-field method of Schrinner et al. (2005, 2007), one
subtracts the mean-field Equation (3) from the full induction
Equation (1) to obtain an evolution equation for the fluctuating
field b,

∂b
∂t

= ∇ × (U × b + u × B + u × b − u × b) + η∇2b. (14)

This equation is then applied separately to each of the fields
Bpq , where p = 1 or 2 and q = c or s label different test fields.
Brandenburg et al. (2008a, 2008b) use the four test fields

B1ck = B0(cos kz, 0, 0), B1sk = B0(sin kz, 0, 0), (15)

B2ck = B0(0, cos kz, 0), B2sk = B0(0, sin kz, 0), (16)

where the third superscript k has been added to denote the
wavenumber, and B0 is a normalization factor. The response
to each test field, bpqk , is found by solving Equation (14). In
this way, one finds Epqk = u × bpqk and obtains 4×2 equations,

Epqk

i = αijB
pqk

j − ηijμ0J
pqk

j , (17)

for the 4 + 4 unknowns, αij and ηij , for i = 1, 2 and j = 1, 2.
These eight unknowns are obtained as

(
αij

ηij3k

)
= B−1

0

(
cos kz sin kz

− sin kz cos kz

) (
Ejck

i

Ejsk

i

)
, (18)

where the rank-3 tensor ηij3 is related to the rank-2 tensor
in Equation (17) via ηij = ηik3εjk3. Note that the result
is independent of the value of B0. For stationary isotropic
homogeneous turbulence, we have constant values of α11 =
α22 ≡ α and η11 = η22 ≡ ηt, except for statistical fluctuations
resulting from finite computational volumes.

The test-field method for a passive scalar works analogously
(Brandenburg et al. 2009). The concentration per unit volume C
obeys the equation

∂C

∂t
= −∇ · (UC) + κ∇2C, (19)
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and the evolution of the mean concentration C is obtained by
averaging Equation (19), which yields

∂C

∂t
= −∇ · (U C + F) + κ∇2C. (20)

The test-scalar equation is obtained by subtracting Equation (20)
from Equation (19), which yields

∂c

∂t
= −∇ · (Uc + uC + uc − uc) + κ∇2c. (21)

In order to obtain κt, one uses the test scalars

C
ck = C0 cos kz, C

sk = C0 sin kz, (22)

where q = c or s denotes the spatial dependence of the test scalar
and, again, an additional superscript k denotes the wavenumber,
while C0 is a normalization factor. For each test scalar, we obtain
a separate evolution equation for cqk. In this way, we calculate
the fluxes, Fqk = ucqk , and compute the three components of
κi3:

κi3 = −〈−sin kzF ck

i + cos kzF sk

i

〉
z

/
kC0, (23)

for i = 1, . . . , 3, where 〈 〉z denotes a z average. Again, the
values of κi3 are independent of the normalization constant
C0. For stationary isotropic homogeneous turbulence, we have,
except for statistical fluctuations, constant κij = κtδij .

By applying the test-field and test-scalar methods to a range
of different wavenumbers k, it was possible to assemble two full
integral kernels in space (Brandenburg et al. 2008b, 2009) and
hence to take the effects of finite scale separation into account.
In the following, we proceed analogously by applying the test-
field and test-scalar methods to a range of different frequencies
to assemble two full integral kernels in time and hence to take
memory effects into account.

3.2. Determination of the Kernels

As is common in linear response theory, all integral kernels
vanish for t < 0. Therefore, the integrations in Equations (12)
and (13) extend effectively only to t ′ = t . In order to determine
these kernels numerically, we can either calculate them directly
by imposing δ function-like variations of the test fields, or we can
use the fact that a convolution corresponds to a multiplication
in spectral space, i.e.,

F̃(ω) = −κ̃t(ω)G̃(ω), (24)

where

κ̃t(ω) =
∫

dt eiωt κ̂t(t) (25)

is the Fourier transform of κ̂t(t).
A multiplicative relation between F and G applies also to the

Laplace transform of these functions with

F̃(s) = −κ̃t(s)G̃(s), (26)

where

κ̃t(s) =
∫ ∞

0
dt e−st κ̂t(t) (27)

is now the Laplace transformation of κ̂t(t).
We introduce an additional superscript ω for the cases where

the test fields or concentrations have cos ωt time dependence and

superscript s for the cases where the test fields or concentrations
have exp st time dependence. The superscripts or the explicit
time dependence are sometimes suppressed. In most of the
cases, we use test fields with a sinusoidal spatial dependence
with wavenumber k = k1. However, it is sometimes useful
to vary also the value of k. In these cases, we also add the
superscript k.

The multiplicative relations above imply that for an oscil-
latory perturbation with a single frequency there is a multi-
plicative relation between Gqkω(t) and Fqkω(t), where the first
superscript denotes the frequency; see Appendix A. In general,
κt is a tensor, but in the following, we restrict ourselves to de-
termining only one of its components, namely the one relating
the z components of F(t) and G(t) to each other. We therefore
assume G(z, t) = (0, 0,G), where G = ∂C/∂z. The different
test scalars Cqkω are denoted by superscripts c and s for spatial
dependences proportional to cos kz and sin kz, so we have

C
ckω = C0 cos kz cos ωt, C

skω = C0 sin kz cos ωt, (28)

for oscillatory test fields, and

C
cks = C0 cos kz exp st, C

sks = C0 sin kz exp st, (29)

for exponentially growing or decaying test fields. For each value
of ω, we determine the resulting z component of the flux, Fω(t).
As shown in Equation (A4) of Appendix A, we can calculate
the response kernel as

κ̃t(k, ω) = −2G−1
0 〈eiωtFkω

(t)〉t , (30)

where the subscript t behind an angular bracket denotes a
time average. Note that κ̃t(k, ω) is complex such that its real
part is symmetric about ω = 0, while the imaginary part is
antisymmetric. In other words, it obeys the Kramers relation,
κ̃t(k,−ω) = κ̃t

∗(k, ω), where the asterisk denotes the complex
conjugation; see, e.g., Moffatt (1978) and Krause & Rädler
(1980). In our case, in addition, κ̃t is symmetric in k.

Analogous relations apply to F̃(s) and G̃(s). In this case,
Equation (30) is modified to

κ̃t(k, s) = −G−1
0 〈e−stFks

(t)〉t . (31)

As discussed in Section 3.1, our test fields allow us to pick out
each tensor component of αij and ηij separately. We therefore
define time-dependent test fields

Bpqkω = Bpqk cos ωt, and Bpqks = Bpqk exp st, (32)

where the time-independent test fields Bpqk were defined in
Equation (17). Owing to variations of the form sin kz and cos kz
one multiplies with the inverse of a rotation matrix(

α̃ij (k, s)
η̃ij3(k, s)k

)
=

〈
e−st

(
cos kz sin kz

− sin kz cos kz

) (
E1jks

i

E2jks

i

)〉
t

, (33)

where the matrix above results from the choice of the sinusoidal
test fields; see Sur et al. (2008) for details. An analogous
equation applies also to the case of oscillatory test fields where
s is replaced by −iω, so we write(

α̃ij (k, ω)
η̃ij3(k, ω)k

)
=

〈
eiωt

(
cos kz sin kz

− sin kz cos kz

) (
E1jkω

i

E2jkω

i

)〉
t

, (34)

keeping in mind that a tilde has been used to indicate both
Fourier and Laplace transformation.
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4. PRELIMINARY CONSIDERATIONS

Before entering the numerical determination of the integral
kernels let us consider a current approach that captures memory
effects, as well as its simplest extension. This will later serve us
with a useful fit formula for the more complicated cases.

4.1. Expectations from the τ Approximation

We use the term τ approximation here in the form introduced
by Blackman & Field (2002, 2003, 2004). The essence of
the τ approximation is to write down evolution equations
for second-order correlations such as uc and u × b. This
results in triple correlations that are not omitted, as in the
first-order smoothing approximation (FOSA), but are instead
approximated by a closure hypothesis. In the τ approximation,
one replaces the triple correlations by quadratic correlations
divided by a relaxation time τ (Vainshtein & Kitchatinov
1983; Kleeorin et al. 1996). This timescale is expected to be
comparable to the turnover time of the turbulence.

Blackman & Field (2002, 2003, 2004) were the first to
retain the time derivative in the evolution equations for uc and
u × b. This means that the Fickian diffusion approximation
of Equation (11), i.e., F = −κ̃t0G, with κ̃t0 = τu2

z for one-
dimensional diffusion in the z direction, is generalized to

(
1 + τ

∂

∂t

)
F = −κ̃t0G. (35)

This implies that the Fourier-transformed integral kernel is

κ̃t(ω) = κ̃t0

1 − iωτ
= τu2

z

1 − iωτ
. (36)

(Any k dependence is here ignored.) In real space, this expres-
sion for κ̃t(ω) corresponds to the integral kernel

κ̂t(t) =
∫ ∞

−∞

dω

2π
e−iωt

τu2
z

1 − iωτ
= u2

z Θ(t) e−t/τ , (37)

where the integral has been solved as a contour integral around
the pole at ω = −i/τ , and Θ is the Heaviside step function with
Θ(t) = 1 for t > 0 and 0 otherwise. In the limit τ → 0, the
exponential function reduces to τδ(t), so

κ̂t(t) → τu2
z δ(t) = κ̃t0δ(t) (for τ → 0), (38)

and one recovers the usual prediction in which turbulent dif-
fusion can be treated as a multiplicative enhanced diffusion
coefficient.

Similar considerations also apply to the case with magnetic
fields, where E is essentially being replaced by (1 + τ∂t )E . For
exponentially growing solutions, one would therefore expect
that the actual growth rate λ is reduced by a factor (1 + λτ )−1.
However, this expectation may be too naive and will need to be
reconsidered in this work.

A useful diagnostic for the applicability of Equation (36) is
that the value of ω where Re κt = Im κt is also the value of
ω where d Im κt/dω = 0 (i.e., where the phase is π/4, see
Figure 3, final panel). It will turn out that this property is not
always obeyed.

4.2. Effects Beyond FOSA and τ Approximation

While a δ function perturbation is disadvantageous numeri-
cally, it can be illuminating. If we impose a test-field C with a
δ(t) time dependence on a flow with U = 0, then the value of
c(0) depends only on the ∇ · (uC) term in Equation (21). For
t > 0, Equation (21) reduces then to

∂c

∂t
= −∇ · (uc − uc) + κ∇2c (t > 0). (39)

Such a δ perturbation then launches fluctuating fields which
evolve according to an equation similar to Equation (39). In
passive scalar or kinematic dynamo cases, the evolution of the
fluctuating field depends only on u, which is independent of the
fluctuating field. The fluctuating fields will decay exponentially
according to turbulent or micro-physical diffusion or resistivity,
but they will generate F (or E in the magnetic case) for as long
as they survive. It is the finite lifetime of the fluctuating fields
that is at the physical core of this memory effect.

In the passive scalar case, we consider F = uc to which
the term ∇ · (uc) in Equation (39) does not contribute because
u∇ · (uc) = 0. If the spatial dependence of our test scalar
C is sinusoidal and lies only along a direction ẑ, then c(0)
will also have only sinusoidal behavior in that direction. If
we imagine that the initial c(0) is proportional to sin kz,
then, in the absence of other effects, two counter-propagating
vertical streams with uz = ±u (assuming U = 0) will
generate an advective sinusoidal signal from the ∇z(uzc) term of
Equation (39):

uz∇z(uzc)(t, z) = 2u2k cos kz cos ω0t, (40)

where ω0 = ku. In a turbulent system, the above analysis
can only be done for times shorter than or comparable to a
turbulent correlation time τ ∼ 1/ku. For times larger than a
turbulent correlation time, the standard e−t/τ diffusion term will
be important. A “turbulent” diffusion is formally possible even
in steady flows, but it will be just the microscopic diffusion.

We can combine the short timescale advective (oscillatory)
and longer timescale diffusive (exponential) effects by a simple
multiplication: we expect the form for κ̂t(t) to be similar to

κ̂t(t) � u2 Θ(t) e−t/τ cos ω0t. (41)

Note that in a turbulent system we expect ω0 ∼ 1/τ on
dimensional grounds and so the above analysis is not rigorous.
However, as we will see in Section 6 this form fits the results
reasonably well. In the Fourier space this becomes

κ̃t(ω)

κ̃t0
= 1 − iωτ

(1 − iωτ )2 + ω2
0τ

2
, (42)

where κ̃t0 = τu2 has been assumed, although this prefactor
may not be accurate for ω0 �= 0. The corresponding Laplace
transform is

κ̃t(s)

κ̃t0
= 1 + sτ

(1 + sτ )2 + ω2
0τ

2
. (43)

In the limit ω0 → 0, these expressions coincide with those of
Section 4.1. In Figure 3, we plot various representations of the
integral kernel for different values of ω0τ .

In order to assess whether the proposed extension to capturing
memory effects is viable, we shall use Equations (42) and (43)
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Figure 3. Plots of the model integral kernel given by Equation (41) for ω0τ = 0 (solid lines), 1 (dotted lines), and 2 (dashed lines), compared with its Laplace transform
(κ̃t(s)), the real and imaginary parts of κ̃t(ω), its modulus |κ̃t|, and phase φκ . The positions where Re κt = Im κt are marked with filled symbols in three relevant panels.

as fit formulae to determine the value of ω0 and to find out how it
depends on other aspects of the model such as the Péclet number
and wavenumber of the mean concentration.

In the absence of a detailed analogous motivation for α and ηt,
we shall use in this paper Equations (42) and (43) as fit formulae
also in the magnetic case. In this case, we use these formulae
for α and ηt and add corresponding subscripts α and η to τ and
ω0, where it replaces the subscript 0, i.e., we write

α̃(ω)

α̃0
= Aα

1 − iωτα

(1 − iωτα)2 + ω2
ατ 2

α

, (44)

η̃t(ω)

η̃t0
= Aη

1 − iωτη

(1 − iωτη)2 + ω2
ητ

2
η

. (45)

Again, we expect ωατα and ωητηto be of order unity, but in
this paper we allow them to be adjustable parameters. Further,
we use Aα and Aη as further fit parameters, modifying the
amplitude. The relaxation times τ and ω−1

0 and values derived
from them such as α̃t0 are merely characteristic times, and we
do not attempt to laboriously average over the true values.

Note that the above form for the kernel, Equation (41), is
the simplest extension of the τ approximation that qualitatively
fits our simulation results. From that perspective, we replace

Equation (35) by(
1 + ω2

0τ
2 + 2τ

∂

∂t
+ τ 2 ∂2

∂t2

)
F = −κ̃t

(
1 + τ

∂

∂t

)
G. (46)

Note also that, unlike Equation (36), for Equation (42), the value
of ω where the slope of the imaginary component is zero is not
the same as the value of ω where the phase is π/4 (see the end
of Section 4.1).

As shown in Equation (A5) of Appendix A, for monochro-
matic mean fields a phase shift φκ leads to a time lag

Δt = φκ (ω)/ω, (47)

so the flux Fω(t) depends only on the mean concentration
gradient at time t − Δt and is given by −|κ̃| G(t − Δt). For
the response function given by Equation (42), the time lag is

Δt

τ
= φκ (ω)

ωτ
= 1

ωτ
arctan

[
ωτ

1 +
(
ω2 − ω2

0

)
τ 2

1 +
(
ω2 + ω2

0

)
τ 2

]
, (48)

which always vanishes for large values of ω and can have a peak
near ωτ = 1 for ω0 > ω∗

0with ω∗
0τ ≈ 0.3273; see Figure 4.
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Figure 4. Normalized time lag Δt/τ vs. ωτ for different values of ω0τ . Note
the development of a peak near ωτ = 1 as ω0τ is increased.

5. SIMULATIONS

We consider two types of flows. For test purposes and
comparison with earlier work described in Section 2, we use
the Roberts flow. The Roberts flow is given by

U = kfψ ẑ − ẑ × ∇ψ, (49)

with
ψ = (u0/k0) cos k0x cos k0y (50)

and kf ≡ √
2k0 so that k2

f = k2
x + k2

y , where kx = ky = k0 is the
wavenumber of the flow in the x–y plane. This flow is capable
of dynamo action once the magnetic Reynolds number

ReM = urms/ηk0, (51)

exceeds a critical value, ReM � ReM,crit ≡ 5.52. We re-
call that our test fields have spatial dependence given by k1,
i.e., the smallest wavenumber that fits in the box. We note fur-
ther that for ReM � 70 the most unstable wavenumber of the
field that fits into the box is still |kz| = k1, where kz was defined
in Equation (6) and this agrees with the wavenumber of the test
fields. Note, however, that, for ReM = 100, for example, the
most unstable mode would have |kz| = 2k1.

The other alternative is forced turbulence. In this case, we
consider an isothermal equation of state with a constant sound
speed, cs, and solve the momentum and continuity equations

∂U
∂t

= −U · ∇U − c2
s ∇ ln ρ + f + ρ−1∇ · 2ρνS, (52)

∂ρ

∂t
= −∇ · (Uρ), (53)

where f is a random forcing function consisting of circularly
polarized plane waves with positive helicity and random direc-
tion and phase, S is the traceless rate-of-strain tensor. The length
of the wavevector of the forcing function, |kf|, is chosen to be
in a narrow band around an average wavenumber kf . We adjust
the strength of the forcing such that the flow remains clearly
subsonic (mean Mach number is around 0.1). The details of
the forcing function used in the present work can be found in
Appendix A of Brandenburg & Subramanian (2005). For forced
turbulence, we define ReM = urms/ηkf .

We consider a domain of size Lx × Ly × Lz. In all cases,
we take Lx = Ly = Lz = 2π/k1. The ratio kf/k1 is referred
to as the scale separation ratio. Our model is characterized by
the choice of fluid and magnetic Reynolds numbers as well

as the Péclet number, based here on the wavenumber kf . The
magnetic Reynolds number was defined in Equation (51). The
fluid Reynolds and Péclet numbers are defined analogously,

Re = urms/νkf, Pe = urms/κkf, (54)

where the magnetic diffusivity η is replaced by the viscosity ν
and the molecular diffusivity κ , respectively.

We present the results in a non-dimensional form by nor-
malizing κ̃t(ω), analogously to earlier work (Brandenburg et al.
2008a), by

κ̃t0 = τu2
z = 1

2τu2
rms (for the Roberts flow). (55)

For turbulent flows, τ is proportional to the turnover time,
(urmskf)−1. However, in the limit of low Péclet number, mi-
croscopic diffusion becomes important and dominates over the
triple correlation terms. This means that the effective τ is given
by the microscopic diffusion time τ = (κk2

f )−1.
We define the Strouhal number as St = τurmskf and can then

write τ as
τ = St/(urmskf). (56)

The value of St characterizes the flow field. For turbulent flows
of the form discussed in the present paper, its value is of order
unity (Brandenburg et al. 2004). Later in this paper we shall
allow St to be a fit parameter. We present the results for α and
ηtby normalizing, depending on the nature of the flow with

α̃0 = − 1
2urms, η̃t0 = 1

2urmsk
−1
f (Roberts flow) (57)

and

α̃0 = − 1
3urms, η̃t0 = 1

3urmsk
−1
f (3D turbulence). (58)

as was done in Brandenburg et al. (2008a).

6. RESULTS

Our choice of Equation (11) results in transport coefficients
that depend on the wavenumber of the mean fields. Throughout
this section, we will assume that our mean fields vary spatially
according to kz = k1 unless otherwise specified. For simplicity,
therefore, we drop the fixed argument kz in κ̃(kz, ω), α̃(kz, ω),
and η̃t(kz, ω), and similarly for κ̃(kz, s), α̃(kz, s), and η̃t(kz, s).

6.1. Passive Scalar Diffusion

We now consider solutions of Equation (21) in the case of
a turbulent flow, and consider first the case with a uniform
gradient of C. This means that G

c0
is now constant in space,

with G
c0 = G0(t). The resulting data agree well with the

expression Equation (36), where τ is given by Equation (56)
with St = 2.7; see Figure 5. The fact that St > 1 should not be
too surprising, because such a result has been obtained earlier
for this flow, where τ was estimated as the relaxation time in
the τ approximation (Brandenburg et al. 2004).

The case of the Roberts flow where U is obtained from
Equations (49) and (50) is in some ways more interesting. In

the case of the same uniform gradient concentration C
c0

, the
flux can be calculated analytically, as is done in Appendix B. As
the flow U is steady, its correlation timescale is infinite and the
only relevant relaxation timescale is the microscopic diffusion
time τ = (κk2

f )−1. The calculations result in the expression
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Figure 5. Real (solid circles) and imaginary (diamonds) parts of κ̃(ω) for forced
turbulence with kf/k1 = 2.2, Re = 8, and Pe = 40. The solid and dashed lines
are a fit using Equation (36) (with τ determined using Equation (56), St = 2.7
as described in text).

Figure 6. Real and imaginary parts of κ̃(ω) for Pe = 100 for the Roberts
flow. Note the perfect agreement with the fit formula (Equation (36)) using
τ = 1/(κk2

f ) and κ̃t0 = τu2
rms/2 (curves).

κ̃t(ω) = κt0/(1 − iωτ ); see Equation (36). This agrees with
simulations as shown in Figure 6.

We suggested in Section 4.2 that advective effects play a role
only when the mean concentration gradient shows a variation in
some direction (i.e., a finite wavenumber), and we should not be
surprised that Equation (36) is adequate to explain the transport
of a passive scalar with zero wavenumber. The results of
Figure 7, where a turbulent flow is used with Re = 8 and
Pe = 40, and a sinusoidal variation of the mean concentration is
imposed, are slightly better fitted with Equation (42) than with
Equation (36).

The case of the flow U = u0 ẑ cos x with the same sinusoidally
varying concentration is discussed in Appendix C. The value of
ω where Re κ̃t = Im κ̃t is not the same as the value of ω,
where Im κ̃t has zero slope. This is implied by Equation (36),
as is discussed in Section 4.1. In Appendix C, we present a
simple one-dimensional model where the behavior is at odds
with Equation (36), although it can still be fitted reasonably well
with Equation (42). This example also illustrates the difficulty
in developing good and simple fits, as the fit parameters are
expected to depend on the spatial variability (e.g., through
ω0 ∼ ku).

6.2. Magnetic Fields

For small magnetic Reynolds numbers the functional forms
of both α̃(ω) and η̃t(ω) are similar to those in the passive
scalar case. This is demonstrated here for the Roberts flow; see
Figure 8, where ReM = 1, which is too small for dynamo action.

Figure 7. Real and imaginary parts of κ̃(ω) (upper panel) and its phase (lower
panel) for turbulence at Re = 8 and Pe = 40. The solid and dashed lines are
fits.

Figure 8. Real and imaginary parts of α̃(ω) and η̃t(ω) for the Roberts flow
with ReM = 1. The solid and dashed lines correspond to fits of the form
Equation (36) using Equation (56) with St = 0.4.

Figure 9 shows the s dependence for the same case. However, for
ReM = 10, which is large enough for dynamo action, the forms
of α̃(ω) and η̃t(ω) look rather different; see Figure 10, which is
also for the Roberts flow. Qualitatively, the data are now closer
to Equation (42), but a fit would be relatively poor. Therefore,
we cannot rely on a fit to compute the corresponding Laplace-
transformed kernel functions, which are shown in Figure 11 for
ReM = 10 and 50. Note that, unlike the case of Figure 9 for
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Figure 9. Similar to Figure 8, but for the Laplace-transformed kernel functions
α̃(s) and η̃t(s) for the Roberts flow with ReM = 1. The fits are proportional to
τ/(1 + sτ ) and correspond to the fits used in Figure 8.

ReM = 1, for ReM = 10 and 50, the slope of α̂(s) is positive.
This is also a feature found by Hori & Yoshida (2008); see their
Figure 10 for ReM = 4, which corresponds to ReM = 8 in our
definition of the Roberts flow.

Figure 11 allows us now to assess the error done by applying
the dispersion relation Equation (6) with constant values of α
and ηt to cases where λ �= 0. A correct procedure would be to
use α̃(s) and η̃t(s) for s = λ. This means that we must calculate

λ̃(s) ≡ α̃(s)kz − [η + η̃t(s)]k2
z (59)

for s = λ. These points can be obtained from the intersection
of λ(s)with the diagonal, λ(s) = s. For ReM = 10 and 50,
these values are at λ(s = λ) ≈ 0.07urmskf and ≈ 0.11urmskf ,
respectively. By contrast, λ(s = 0) ≈ 0.04urmskf and ≈
0.07urmskf for these two values of ReM , respectively. These
values are now in full agreement with those of λgrowth seen
in Figure 1. This suggests that the reason for the discrepancy
between the two curves in this figure is indeed connected with
memory effects.

Let us now turn to the calculation of α̃(ω) and η̃t(ω) in the case
of turbulence. In this work, we use kf/k1 = 3, which is slightly
larger than the values used earlier in the case of a passive scalar.
This value is just large enough to allow for mean-field dynamo
action at the minimal wavenumber k = k1 (see Brandenburg
et al. 2008c). For kf/k1 = 2.2, the scale separation between the
scale of the forcing and that of the domain would be insufficient
to allow for large-scale dynamo action (Haugen et al. 2004,
Figure 23).

By comparing runs of two different magnetic Reynolds
numbers, Figure 12 for ReM = 22 and Figure 13 for ReM = 90,
we can get some idea whether the features seen here are artifacts
of small values of ReM , or whether they begin to be of more
general significance. The plots for α̃(ω) and η̃t(ω) look similar
and share the same basic features at both values of ReM ,

Figure 10. Real and imaginary parts of α̃(ω) and η̃t(ω) for the Roberts flow
with ReM = 10. Note that the lines are not analytical fits.

Figure 11. Laplace-transformed quantities, α̃(s), η̃t(s), and λ̃(s) for the Roberts
flow with ReM = 10 and 50. Note the different signs of the slope at the
intersection with the diagonal (denoted by circles).

suggesting that the resulting fits for the response functions
might be robust. We note that in all cases the phase shows a
gradual transition from 0 to π/2 as ω increases, but it does not
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Figure 12. Real and imaginary parts of α̃(ω) and η̃t(ω) for turbulence at
ReM = 22. The lines denote fits to Equations (44) and (45) with Aα = 1,
Stα = 2.0, ωατα = 1.2, and Aη = 0.48, Stη = 1.4, ωητ = 0.55, respectively.

Figure 13. Real and imaginary parts of α̃(ω) and η̃t(ω) for turbulence at
ReM = 90. The lines denote fits to Equations (44) and (45) with Aα = 1,
Stα = 1.4, ωατα = 1, and Aη = 1.8, Stη = 1.7, ωητ = 0.78, respectively.

Figure 14. Laplace-transformed quantities, α̃(s), η̃t(s), and λ̃(s) for forced
turbulence at ReM = 90. In the last panel, the diagonal λ = s is shown as a
dotted line. The growth rate obtained by solving the three-dimensional induction
equation, which allows for small-scale dynamo action, is indicated by an open
symbol.

Table 1
Comparison of Fit Coefficients for α̃(ω) and η̃t(ω) for Forced Turbulence

Re Aα Stα ωατα Aη Stη ωητη

22 1.00 2.00 1.20 0.48 1.40 0.55
90 1.00 1.40 1.00 1.80 1.70 0.78

become negative (not shown). The corresponding fit parameters
are summarized in Table 1. All the six non-dimensional fit
parameters should be of order unity, and we see that this is
indeed the case. Given that these values have unknown errors
connected with the ambiguity in determining good fits, it is not
possible to draw any serious conclusions from the trends that
could be read off the table.

Similar to the case of the Roberts flow, the fits to the Fourier
transformed quantities are not perfect. Therefore, we cannot
use the Fourier transform fits to determine the corresponding
Laplace transforms. In Figure 14, we show the directly de-
termined Laplace-transformed values and compare with the fit
inferred from Figure 13. However, in order to make the fits
agree reasonably well, we have modified the amplitude factors
to Aα = 1.37 and Aη = 2.07. Note that the agreement is rea-
sonably good, except near s = 0, where the actual growth rate
is lower than what is inferred from the fit. This is related to the
fact that the actual value of α̃(s) near s = 0 is less than what is
predicted by the fit formula. This suggests that the assumption
of similar fit formulae both for α and ηt may be too simplistic.

As for the Roberts flow, the actual growth rate of the mean-
field dynamo is obtained from the intersection with the diagonal,
which is shown as a dotted line in Figure 14. By solving the
induction equation for this flow for ReM = 90, we find that the
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actual growth rate is 0.04urmskf , which is clearly above the point
where λ(s) intersects with the diagonal (see the open symbol).
However, this is to be expected, because for ReM = 90 there is
strong small-scale dynamo action so the actual growth rate will
always exceed that expected from the mean-field dynamo. Such
a discrepancy was noticed recently in connection with a study
of the dependence of large-scale dynamo action on the magnetic
Prandtl number (Brandenburg 2009).

7. DISCUSSION

7.1. Frequency and Growth Rate Dependence

An important application of the present results is the deter-
mination of dynamo growth rates. The usual dispersion relation
for isotropic helical turbulence predicts the growth rate to be

λ = αk − (η + ηt)k
2 (for constant α, ηt). (60)

However, if the resulting magnetic field really were to grow
like eλt , the effective values of α and ηt would be modified and
would no longer be constant. By applying Equations (44) and
(45) for a range of values of λ for which 1 + λτ > 0, we find
that α and ηt become

α(λ) = α0Aα

1 + λτα

(1 + λτα)2 + ω2
ατ 2

α

(61)

and

ηt(λ) = ηt0Aηt

1 + λτηt(
1 + λτηt

)2
+ ω2

ηt
τ 2
ηt

, (62)

respectively. In these equations, the occurrence of the terms
ωiτi for i = α or ηt is qualitatively new compared with earlier
expectations based on the τ approximation; see Section 4.1.
Note that the relaxation times τi and oscillation frequency
ωifrom Equation (41) are in general different for α and ηt;
see Table 1.

A more direct way of calculating α(λ) and ηt(λ) is by using
exponentially growing or decaying test functions proportional
to est, provided that 1 + sτ > 0, which sets the maximal decay
rate for which Equations (61) and (62) are meaningful. The
existence of a maximal decay rate is interesting: in such a system
the fluctuating fields survive long enough to preserve the mean
field. Clearly then, solutions of Equation (60)

λ = α(λ)k − [η + ηt(λ)]k2 (63)

are required for self-consistent systems (be they dynamos or
decaying mean fields).

7.2. Wavenumber Dependence

In the work of Brandenburg et al. (2008a), which led to this
paper, similar methods were used to find the dependences of α
and ηt on the wavenumber k of the mean magnetic field. In that
paper, it was shown for the Roberts flow that under FOSA we
have

α̃(k) = α0

1 + (aαk/kf)2
, η̃t(k) = ηt0

1 + (aηk/kf)2
, (64)

where aα = aη = 1. They found that this result is also a good
approximation to turbulent flows, but then aα and aη were treated
as fit parameters that are of order unity. While that work noted
that memory effects should be expected, they were not treated.

Equation (64) can be directly compared to Equation (61) with
the growth rate λ set to 0 which recaptures the test-field method
as used in Brandenburg et al. (2008a). This might suggest that
cos ω0t is related to the advection term in Equation (41), so one
might expect that ω0 ∼ kurms. For ω0 = Stikurms then, the
formulae from Equations (61) and (64) and match exactly, and
by capturing the dependency of α and ηt on past times, we
are perforce treating the problem as also non-local in space.
One might therefore be tempted to suggest that the combined
dependence on ω and k could be of the form

α̃(k, ω) = α0Aα

1 − iωτα

(1 − iωτα)2 + (aαk/kf)2
, (65)

and

η̃t(k, ω) = ηt0Aηt

1 − iωτηt(
1 − iωτηt

)2
+ (aηk/kf)2

. (66)

However, although such a formula is indeed obeyed in the
two special cases ω = 0 (Brandenburg et al. 2008a) and
k = k1 (present work), some preliminary work suggests that this
equation is not valid in general, and that a multiplicative relation
of the form α̃(k, ω) = α̃(k)α̃(ω) and η̃t(k, ω) = η̃t(k)η̃t(ω) might
be more accurate.

7.3. Linear Time Dependence

After our paper appeared in preprint form, Hughes & Proctor
(2009) pointed out an inconsistency in the turbulent mag-
netic diffusivity tensor when allowing mean fields with a
linear time dependence. They attributed this to the occur-
rence of a new contribution to the magnetic diffusivity. In
the following, we explain that their result is a natural conse-
quence of using Equations (44) and (45), as advocated in our
paper.

The time dependence of the mean field in the paper by Hughes
& Proctor (2009) is given by

B(t) = B0 + C0t, (67)

with constants B0 and C0. If we convolve this mean field with
the kernels α̂ and η̂, corresponding to the τ approximation (i.e.,
proportional to e−t/τα and e−t/τη , respectively), we find the E to
be

E(t) = (α0 − ηt0k)(B0 + C0t) − (ταα0 − τηηt0k)C0. (68)

This formulation matches the form of Equation (25) of Hughes
& Proctor (2009), where their Γ is given by −(ταα0 − τηηt0k).
Re-expressing Equation (68) in terms of B(t) and ∂ B/∂t , as
well as their curls, proportional J(t) and ∂ J/∂t , we can write
Equation (68) in the form

E = α0 B − ηt0μ0 J + Γα

∂ B
∂t

− Γημ0
∂ J
∂t

, (69)

where Γα = −α0τα and Γη = −ηt0τη quantify additional
contributions to the mean electromotive force. In the more
general case, where ωα and ωη are different from zero, we have

Γα = −α0τα

1 − ω2
ατ 2

α(
1 + ω2

ατ 2
α

)2 , Γη = −η0τη

1 − ω2
ητ

2
η(

1 + ω2
ητ

2
η

)2 . (70)
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Figure 15. Real and imaginary parts of α̃(ω) for k = 0 using the Otani (1993)
MW+ flow with ReM = 1 (upper panel) and ReM = 100 (lower panel). The
normalization is chosen to be α0 = u0. The insets show the scaling of Im ω̃ near
the origin with slopes 0.2 and 7.8 for the upper and lower panels, in agreement
with the results of Hughes & Proctor (2009).

We recall that the formulation in Equation (69) only applies
to the special case of variations of the mean field that are linear
in time. More generally, we have

E =
∞∑

n=0

(−1)n
(

α(n) ∂
n B
∂tn

− η(n)μ0
∂n J
∂tn

)
, (71)

where

α(n) =
∫ ∞

0
α̂(t) tn dt, η

(n)
t =

∫ ∞

0
η̂(t) tn dt. (72)

These moments are related to the derivatives of α̃(ω) and η̃t(ω)
at ω = 0 with

α(n) = (−i)n
dnα̃

dωn

∣∣∣∣
0

, η
(n)
t = (−i)n

dnη̃

dωn

∣∣∣∣
0

, (73)

where the subscripts 0 indicate that the derivatives are to be
evaluated at ω = 0. Note, in particular, that Γα = −α(1) =
Im(dα̃/dω)0.

Hughes & Proctor (2009) have computed values of Γα for
ReM between 1 and 100 using a particular form of the modulated
wave flow of Otani (1993), referred to as MW+ flow, which is
given by Equation (49) with kf = k0 and

ψ(x, y, t) = 2u0

k0
(cos2ωf t cos k0x − sin2ωf t cos k0y), (74)

where ωf = u0k0 has been chosen.

In order to substantiate our interpretation of their results,
we have computed α̃(ω) for their case with k = 0. The result
for the Fourier-transformed kernel is shown in Figure 15 for
the Otani MW+ flow with ReM = 1 and 100. Compared with
Figure 3, there are additional features related to resonances
with the frequency ωf of the Otani flow. Such features cannot be
explained with our simple fit formula. This means that higher
order terms will become important in those cases where the
variation of the mean magnetic field is more complicated than
just a linear increase.

The value of Γα can readily be read off as the slope of the
graph of Im ω̃ near the origin. Our results agree with those
of Hughes & Proctor (2009), as is shown in the insets of
Figure 15. We note, however, there are no good reasons to
associate the Γα term with a correction to turbulent diffusion
alone. Instead, there are corrections both to α and to ηt once the
mean magnetic field shows strong time dependence.

In this connection, it is important to emphasize that these
complications are mainly a consequence of the particular time
dependence inherent to the Otani flow and are not typical of
turbulence, as seen before. For ReM = 100 there is a distinct
spike at ω = ωf , while for ReM = 1 there is a smaller spike
at ω = 2ωf ; see Figure 15. We hypothesize that these spikes
are associated with the periodicity of the Otani flow. Similar
behavior is known to occur for the Galloway & Proctor (1992)
flow (Courvoisier et al. 2006), and is connected with the infinite
correlation time of a flow with sinusoidal time dependence
(Rädler & Brandenburg 2009).

8. CONCLUSIONS

Naive application of the values of α and ηt to time-dependent
problems can lead to errors. This is because the turbulent
transport coefficients are in general frequency-dependent, due
to memory effects. So, for each frequency and for each growth
or decay rate (corresponding to imaginary frequencies) the
transport coefficients need to be determined separately. The full
frequency dependence can then be used to calculate response
functions via Fourier transformation. The result can then be
used to determine the response to general time dependences,
including, for example, oscillatory growth.

The response function formalism shows that one needs to
know the past time history of the mean fields to compute
turbulent transport correctly. This is not new, but what is
new is the fact that the departures from the instantaneous
approximation can be quite substantial for flows such as the
Roberts flow. For isotropic turbulence, on the other hand, the
effects tend to be less dramatic and simple fit formulae with
an exponential decay and an oscillatory part can be reasonably
accurate.

The presence of an oscillatory part in the response function
proportional to cos ω0t leads to a sign reversal of α and ηt.
Hori & Yoshida (2008) associate this with the “over-twisting”
in illustrations of Parker’s Ω loops. In their picture, rising flux
tubes may twist by more than 90◦. This interpretation clarifies
the naive expectation that α may change the sign when the
Coriolis force becomes important. In fact, as our work now
shows, such an effect would only occur if the mean magnetic
field varies like a δ function in time or if it shows other rapid
variations. Conversely, for mean fields varying slowly in time
the net α would not change sign, although some past times are
weighted negatively.

In the present work, we have only looked at one type of
memory effect, where the typical timescales in the integral
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kernel are comparable to the dynamical timescales of the
turbulence. There is yet another type of memory effect that can
occur on a resistive timescale, namely the one associated with
magnetic helicity conservation. As explained in the appendix
of Blackman & Brandenburg (2002), this is a purely nonlinear
effect such that the relevant timescale becomes very long only
when the magnetic field is strong. Obviously, this effect is not
captured by our kinematic approach, nor would it be relevant in
connection with the calculation of growth rates of the dynamo.

The approach presented here may be useful for calculating
memory effects of turbulent transport coefficients over a range
of other related problems. Particularly important might be the
question of the damping of acoustic waves by turbulent viscosity
in the Sun, for example (Stix et al. 1993). Such damping would
lead to line broadening of the acoustic frequencies. The present
work has demonstrated that such quantities can only be useful
if one has a good idea of its frequency dependence relative to
the frequency at which the turbulent viscosity is determined and
the frequency at which it is to be applied.

Our approach could also be useful in cases where the
turbulence itself is time dependent. This would be relevant
for modeling convection in pulsating stars. Such systems are
currently being treated with time-dependent mixing length
theory (Gough 1977). It would seem appropriate to adopt
integral kernels also in that case. However, now there would
be two frequencies to be considered: the frequency at which
the turbulence varies and the frequency at which the mean field
varies. Another problem is that the test-field method has only
been used and tested in connection with magnetic and passive
scalar diffusion problems, and has not yet been developed for
calculating the components of the turbulent viscosity tensor.
This would indeed be one of the outstanding problems in this
field.

We thank the referee for suggesting many improvements
to the paper and for presenting us with the calculation that
is now reproduced in Appendix B. We acknowledge Matthias
Rheinhardt for making useful suggestions. The computations
have been carried out on the National Supercomputer Centre in
Linköping and the Center for Parallel Computers at the Royal
Institute of Technology in Sweden. This work was supported
in part by the Swedish Research Council, grant 621-2007-
4064, and the European Research Council under the AstroDyn
Research Project 227952.

APPENDIX A

CONVOLUTION FOR MONOCHROMATIC VARIATIONS

The purpose of this appendix is to show that for monochro-
matic signals a convolution corresponds to a multiplication in
real space. Consider Equation (A1) for a monochromatic func-
tion

G(t) = Gω(t) ≡ G0 cos ωt, (A1)

where ω is a constant. Inserting this into Equation (12) yields

Fω(t) = −
∫ ∞

−∞
κ̂t(t − t ′)G0 cos ωt ′ dt ′

= −G0Re
∫ ∞

−∞
κ̂t(t − t ′)e−iωt ′ dt ′

= −G0Re e−iωt

∫ ∞

−∞
κ̂t(t − t ′)eiω(t−t ′) dt ′. (A2)

By using a change of variables one sees that the integral is just
the Fourier transform of κ̂t(t). Thus, we arrive at

Fω(t) = −G0Re[e−iωt κ̃t(ω)]. (A3)

The real part of κ̃t shows therefore a modulation with cos ωt and
the imaginary part with sin ωt . By projecting against these two
functions separately, we can determine the real and imaginary
parts of κ̃(ω). Thus, the complex function κ̃(ω) can be obtained
from Fω(t) as

κ̃t(ω) = −2G−1
0 〈eiωtFω(t)〉t , (A4)

which is the result stated in Equation (30). The factor 2 stems
from the fact that the average values of cos2 ωt and sin2 ωt
are 1/2. This procedure can be trivially extended to tensorial
relationships; cf. Equation (33).

It is interesting to write Equation (A3) by expressing κ̃t(ω) in
terms of its modulus and its phase, |κ̃t| exp iφκ , so we have

Fω(t) = −|κ̃| G(t −Δt), where Δt = φκ (ω)/ω, (A5)

showing that memory effects change not only the amplitude of
the effective transport coefficient, but they also lead to a time lag
such that, for a given frequency, the mean flux is proportional
to the mean fields at a certain later time.

APPENDIX B

ROBERTS FLOW WITH OSCILLATORY MEAN
CONCENTRATION GRADIENT

As was generously pointed out by the referee, in the special
case of a Roberts flow, Equations (49) and (50), with a mean
concentration C = zG0 cos ωt , we can solve the problem
analytically. In this case, Equation (21) becomes

∂c

∂t
= −uzG0 cos ωt − ∇ · (uc − uc) + κ∇2c. (B1)

In a first step, we employ FOSA and neglect ∇ · (uc − uc), so
the above reduces to

∂c

∂t
− κ∇2c = −

√
2u0G0 cos k0x cos k0y cos ωt. (B2)

This has as a solution

c(x, y, t) = −
√

2u0G0(
ω2 +

(
κk2

f

)2)1/2 cos k0x cos k0y cos(ωt − φ),

(B3)
where

cos φ = κk2
f(

ω2 +
(
κk2

f

)2)1/2 , sin φ = ω(
ω2 +

(
κk2

f

)2)1/2 .

(B4)
Note that ∇ · (uc − uc) = 0 and so this particular solution is
also valid beyond FOSA. We obtain then

Fω(t) = − u2
0G0

2
(
ω2 +

(
κk2

f

)2)1/2 cos(ωt − φ) ẑ. (B5)

We can now find the Fourier-transformed kernel through
Equation (A4):
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Figure 16. Real (solid circles) and imaginary (open circles) components of
κt for kz = 5 and u = u0 ẑ cos x (see Appendix C), using as fit parameters
Aκ = 0.105, τα = 0.33, and ωκ = 1.8.

κ̃t(ω) = −2G−1
0 〈eiωtFω(t)〉t

= u2
0

2
(
ω2 +

(
κk2

f

)2)1/2

(
κk2

f + iω(
ω2 +

(
κk2

f

)2)1/2

)

= τku
2
0

2

(
1 + iωτk

1 + ω2τ 2
k

)
= τku

2
0

2

(
1

1 − iωτk

)
, (B6)

where we have defined τ−1
k = κk2

f . Equations (49) and (50)
imply that u2

z = u2
0

/
2, and Section 6.1 argues that τ = τk .

Accordingly, Equation (B6) reduces to Equation (36).

APPENDIX C

SIMPLIFIED ONE-DIMENSIONAL MODEL

A simple system that defies result (Equation (36)) of the τ
approximation is one with a passive scalar whose concentration
varies sinusoidally along z with kz �= 0 and a steady flow
u = (0, 0, u), such that u = u(x) = u0 cos k0x, so ∇ · u = 0.
The equation for the small-scale concentration then is

∂c

∂t
= −∇ · (uC + uc − uc) + κ∇2c, (C1)

which becomes

∂c

∂t
= −uG − u

∂c

∂z
+ u

∂c

∂z
+ κ∇2c, (C2)

and in turn

∂c

∂t
= −u

∂c

∂z
+ u

∂c

∂z
+ κ∇2c − u(x)G(t, z). (C3)

This system is linear, inhomogeneous, with variable coefficients.
We note that G(t, z) = G(t)eikzz, impose

G(t) = G0 cos ωt, (C4)

assume that
c = c̃(t, x)eikzz + c.c. (C5)

and treat as the system as a time-dependent problem with
complex c̃(t, x):

∂c̃

∂t
= −[

ikzu(x)+κk2
z

]
c̃+κ

∂2c̃

∂x2
+ ikzuc̃−u0G0 cos k0x cos ωt.

(C6)
Equation (C6) is the equivalent equation to Equation (B2) (and
reduces to that equation when kz = 0). The Fourier-transformed
kernel can be calculated similar to Appendix B, and in
Figure 16 we present a numerical solution for the Fourier-
transformed kernel for kz/k1 = 5 and u0/κkz = 5.
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