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ABSTRACT

The existence of large-scale dynamos in rigidly rotating turbulent convection without shear is studied using three-
dimensional numerical simulations of penetrative rotating compressible convection. We demonstrate that rotating
convection in a Cartesian domain can drive a large-scale dynamo even in the absence of shear. The large-scale
field contains a significant fraction of the total field in the saturated state. The simulation results are compared with
one-dimensional mean-field dynamo models where turbulent transport coefficients, as determined using the test
field method, are used. The reason for the absence of large-scale dynamo action in earlier studies is shown to be due
to the rotation being too slow: whereas the α-effect can change sign, its magnitude stays approximately constant
as a function of rotation, and the turbulent diffusivity decreases monotonically with increasing rotation. Only when
rotation is rapid enough a large-scale dynamo can be excited. The one-dimensional mean-field model with dynamo
coefficients from the test-field results predicts reasonably well the dynamo excitation in the direct simulations. This
result further validates the test field procedure and reinforces the interpretation that the observed dynamo is driven
by a turbulent α-effect. This result demonstrates the existence of an α-effect and an α2-dynamo with natural forcing.

Key words: convection – MHD – stars: magnetic fields – Sun: magnetic fields – turbulence

Online-only material: color figures

1. INTRODUCTION

Convective instability drives turbulence in the outer layers of
late-type stars, such as the Sun. The large-scale magnetic fields
of these stars are thought to arise from the interaction of turbulent
convection and the overall rotation of the object. In mean-field
dynamo theory (e.g., Moffatt 1978; Parker 1979; Krause &
Rädler 1980; Rüdiger & Hollerbach 2004), this process relies
on large-scale differential rotation (Ω-effect) producing toroidal
field by shearing and the α-effect which regenerates the poloidal
field. In simple situations, the α-effect is related to the kinetic
helicity of the flow (e.g., Steenbeck & Krause 1969). Dynamos
where differential rotation is important, e.g., the solar dynamo,
are therefore often called αΩ-dynamos.

The αΩ dynamo process was first invoked by Parker (1955)
to explain solar magnetism. Mean-field models have been used
extensively ever since to study various aspects of dynamos. Al-
though very useful in their own right, these models often rely on
ill-known parameterizations of turbulence, such as the α-effect
and turbulent diffusivity. Only during recent years numerical
simulations have reached a level of sophistication where large-
scale αΩ-dynamos have been obtained self-consistently within
the framework of local Cartesian simulations. These simula-
tions operate in highly simplified situations and the turbulence
is driven by external forcing (e.g., Brandenburg et al. 2001;
Brandenburg & Käpylä 2007; Käpylä & Brandenburg 2009). In
rapidly rotating stars differential rotation is likely to play only
a minor role (e.g., Hall 1991) and there the α-effect also gen-
erates the toroidal field. These systems are called α2-dynamos.
Again, such solutions have been found from direct simulations
of forced turbulence (Brandenburg 2001; Mitra et al. 2009b,
2009c).

On the other hand, numerical simulations of magnetoconvec-
tion have been around for at least two decades, but somewhat
surprisingly large-scale dynamos were not found until quite re-
cently (Jones & Roberts 2000; Rotvig & Jones 2002; Browning

et al. 2006; Brown et al. 2007; Käpylä et al. 2008, hereafter Paper
I; Hughes & Proctor 2009). The first two studies are related to the
geodynamo and therefore convection is rotationally dominated.
The next two use a global models with an imposed tachocline
(Browning et al. 2006) or rapid rotation (Brown et al. 2007),
respectively. The last two are local models with imposed shear
flows, reminiscent of the shear dynamos reported from nonheli-
cal turbulence (Yousef et al. 2008a, 2008b; Brandenburg et al.
2008). The origin of large-scale fields in the nonhelically forced
simulations cannot be due to the mean-field α-effect. How-
ever, the incoherent α-shear dynamo (e.g., Vishniac & Branden-
burg 1997; Proctor 2007) or the mean-field shear-current effect
(Rogachevskii & Kleeorin 2003, 2004; Kleeorin & Ro-
gachevskii 2008) could drive these dynamos. In the shearing
local convection simulations the same two effects have been
suggested mainly due to the fact that rotating convection alone
has so far been found unable to generate large-scale magnetic
fields (e.g., Nordlund et al. 1992; Brandenburg et al. 1996; Cat-
taneo & Hughes 2006; Tobias et al. 2008), although it should
produce a mean α-effect according to theory. This drawback
has prompted speculations that the α-effect in its mean-field
incarnation simply does not work (Hughes & Proctor 2009).

A conclusive proof of the existence of an α2-dynamo should
be the demonstration of large-scale dynamo action in a simula-
tion without shear. An additional property of such a setup is that
the Vishniac & Cho (2001) flux of magnetic helicity is absent.
This might lead to slow saturation of the large-scale magnetic
field, unless there are other ways of shedding small-scale mag-
netic helicity.

The most natural way of explaining the large-scale magnetic
fields seen in the rapidly rotating global convection simulations
(Brown et al. 2007) would be in terms of a mean-field α2- or
αΩ-dynamo. In the global models large-scale shear flows can
also be generated, so it is not straightforward to determine what
type of dynamo is operating there. In the present study, we
use local simulations to demonstrate that large-scale dynamos
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can indeed be excited in rapidly rotating convection, i.e., in
the absence of shear, as long as rotation is rapid enough.
We determine the turbulent transport coefficients from the
simulations using the test field procedure (Schrinner et al. 2005,
2007) and use them in a one-dimensional dynamo model to test
their consistency with the direct simulations. A more thorough
study of the turbulent transport coefficients from convection
using the test field method is presented elsewhere (Käpylä et al.
2009, hereafter Paper II).

2. THE MODEL

Our model setup is similar to that used by Brandenburg
et al. (1996), Ossendrijver et al. (2001, 2002), Käpylä et al.
(2004, 2006), and those in Papers I and II. A rectangular
portion of a star is modeled by a box situated at colatitude θ .
The box is divided into three layers, an upper cooling layer,
a convectively unstable layer, and a stable overshoot layer
(see below). The following set of equations for compressible
magnetohydrodynamics is being solved:

∂ A
∂t

= U × B − ημ0 J, (1)

D ln ρ

Dt
= −∇ · U, (2)

DU
Dt

= − 1

ρ
∇p + g − 2Ω × U +

1

ρ
J × B +

1

ρ
∇ · 2νρS, (3)

De

Dt
= −p

ρ
∇ ·U +

1

ρ
∇ ·K∇T + 2νS2 +

η

ρ
μ0 J2 − e−e0

τ (z)
, (4)

where D/Dt = ∂/∂t + U · ∇. The magnetic field is written in
terms of the magnetic vector potential, A, with B = ∇ × A,
J = μ−1

0 ∇ × B is the current density, μ0 is the vacuum
permeability, η and ν are the magnetic diffusivity and kinematic
viscosity, respectively, K is the heat conductivity, ρ is the density,
U is the velocity, g = −g ẑ is the gravitational acceleration, and
Ω = Ω0(− sin θ, 0, cos θ ) is the rotation vector. The fluid obeys
an ideal gas law p = (γ − 1)ρe, where p and e are pressure
and internal energy, respectively, and γ = cP/cV = 5/3 is
the ratio of specific heats at constant pressure and volume,
respectively. The specific internal energy per unit mass is related
to the temperature via e = cVT . The rate of strain tensor S is
given by

Sij = 1

2
(Ui,j + Uj,i) − 1

3
δij∇ · U . (5)

The last term of Equation (4) describes cooling at the top
of the domain. Here, τ (z) is a cooling time which has a
profile smoothly connecting the upper cooling layer and the
convectively unstable layer below, where τ → ∞.

The positions of the bottom of the box, bottom and top of the
convectively unstable layer, and the top of the box, respectively,
are given by (z1, z2, z3, z4) = (−0.85, 0, 1, 1.15)d, where d
is the depth of the convectively unstable layer. Initially, the
stratification is piecewise polytropic with polytropic indices
(m1, m2, m3) = (3, 1, 1), which leads to a convectively
unstable layer above a stable layer at the bottom of the domain.
The cooling term leads to a stably stratified isothermal layer
at the top. The horizontal extent of the box LH ≡ Lx = Ly

is varied between 2d and 8d. All simulations with rotation use
θ = 0◦ corresponding to the north pole.

2.1. Units and Nondimensional Parameters

Nondimensional quantities are obtained by setting

d = g = ρ0 = cP = μ0 = 1, (6)

where ρ0 is the initial density at z2. The units of length, time,
velocity, density, entropy, and magnetic field are

[x] = d, [t] =
√

d/g, [U ] =
√

dg, [ρ] = ρ0,

[s] = cP, [B] =
√

dgρ0μ0 . (7)

We define the fluid and magnetic Prandtl numbers and the
Rayleigh number as

Pr = ν

χ0
, Pm = ν

η
, Ra = gd4

νχ0

(
− 1

cP

ds

dz

)
0

, (8)

where χ0 = K/(ρmcP) is the thermal diffusivity, and ρm is the
density in the middle of the unstable layer, zm = 1

2 (z3 − z2).
The entropy gradient, measured at zm, in the nonconvecting
hydrostatic state, is given by

(
− 1

cP

ds

dz

)
0

= ∇ − ∇ad

HP
, (9)

where ∇ − ∇ad is the superadiabatic temperature gradient
with ∇ad = 1 − 1/γ , ∇ = (∂ ln T/∂ ln p)zm , and where
HP is the pressure scale height (Brandenburg et al. 2005).
The amount of stratification is determined by the parameter
ξ0 = (γ − 1)e0/(gd), which is the pressure scale height at the
top of the domain normalized by the depth of the unstable layer.
We use ξ0 = 1/3 in all cases, which results in a density contrast
of about 23 across the domain. We define the fluid and magnetic
Reynolds numbers via

Re = urms

νkf
, Rm = urms

ηkf
= Pm Re, (10)

where kf = 2π/d is adopted as an estimate for the wavenumber
of the energy-carrying eddies. Note that with our definition Rm
is smaller than the usual one by a factor 2π . The amount of
rotation is quantified by

Co = 2Ω0

urmskf
. (11)

In order to facilitate comparison with earlier studies of
rotating Rayleigh–Bénard convection, we also quote the value
of the Taylor number,

Ta = (2Ω0d
2/ν)2 = (4π2Co Rm/Pm)2. (12)

The equipartition magnetic field is defined by

Beq ≡ 〈μ0ρU2〉1/2, (13)

where angular brackets denote volume averaging.

2.2. Boundary Conditions

Stress-free boundary conditions are used in the vertical (z)
direction for the velocity,

Ux,z = Uy,z = Uz = 0, (14)
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Table 1
Summary of the Runs

Run Grid LH Pr Pm Ra Rm Co Ta Ma B̃rms B̃(0) B̃(1) BC

A1 1283 2 0.27 2 1.5 × 106 70 0 0 0.044 0.12 0.02 0.05 VF
A2 1283 2 0.27 2 1.5 × 106 68 0.37 2.5 × 105 0.043 0.23 0.04 0.10 VF
A3 1283 2 0.27 2 1.5 × 106 68 0.74 106 0.043 0.25 0.04 0.09 VF
A4 1283 2 0.27 2 1.5 × 106 69 1.5 4 × 106 0.043 0.14 0.02 0.05 VF
A5 1283 2 0.27 2 1.5 × 106 62 4.1 2.5 × 107 0.039 0.18 0.04 0.07 VF
A6 1283 2 0.27 2 1.5 × 106 42 11.6 108 0.028 0.38 0.22 0.18 VF
A7 1283 2 0.27 1 1.5 × 106 22 11.6 108 0.028 0.27 0.15 0.16 VF
A8 1283 2 0.27 0.67 1.5 × 106 17 9.8 108 0.033 0.00 0.00 0.00 VF
A9 1283 2 0.27 0.4 1.5 × 106 10 9.7 108 0.033 0.00 0.00 0.00 VF
A10 2563 2 0.14 2 3.0 × 106 107 9.5 4 × 108 0.034 0.41 0.08 0.15 V F

B1 2562 × 128 4 0.27 2 1.5 × 106 77 0 0 0.048 0.22 0.02 0.06 VF
B2 2562 × 128 4 0.27 2 1.5 × 106 67 0.38 2.5 × 105 0.042 0.25 0.02 0.05 VF
B3 2562 × 128 4 0.27 2 1.5 × 106 66 0.76 106 0.042 0.22 0.02 0.05 VF
B4 2562 × 128 4 0.27 2 1.5 × 106 67 1.5 4 × 106 0.042 0.16 0.01 0.03 VF
B5 2562 × 128 4 0.27 2 1.5 × 106 55 4.6 2.5 × 107 0.035 0.31 0.05 0.09 VF
B6 2562 × 128 4 0.27 2 1.5 × 106 42 11.9 108 0.027 0.41 0.12 0.15 VF
B7 2562 × 128 4 0.27 2 1.5 × 106 41 12.4 108 0.026 0.48 0.18 0.26 PC

C1 5122 × 128 8 0.27 2 1.5 × 106 42 12.0 108 0.026 0.45 0.07 0.17 VF

D1 5122 × 256 4 0.14 2 3.0 × 106 97 10.5 4 × 108 0.030 0.58 0.08 0.30 VF

Notes. Here, Ma = urms/(gd)1/2, B̃rms ≡ Brms/Beq, and the B̃(k) are the sum of the rms values of the Fourier amplitudes of the horizontal components of
the magnetic field for mode k normalized by Brms. Values with B̃(0) � 0.07 or B̃(1) � 0.15 are shown in bold face and indicate the presence of significant
large-scale fields. The last column denotes the magnetic field boundary condition at the z-boundaries.

where commas denote partial derivatives, and either vertical
field (VF) of perfect conductor (PC) conditions are used for the
magnetic field, i.e.,

Bx = By = 0 (vertical field), (15)

Bx,z = By,z = Bz = 0 (perfect conductor). (16)

The VF conditions permit a magnetic helicity flux, but no
Poynting flux, whereas the PC conditions do not allow helicity
fluxes either. In the x and y directions periodic boundary
conditions are used. The simulations were made with the Pencil

Code,3 which uses sixth-order explicit finite differences in space
and third-order accurate time stepping method. Resolutions of
up to 5122 × 256 mesh points were used.

3. RESULTS

We perform a parameter study where we vary the system
size, the effect of rotation, quantified by Co, and the Reynolds
numbers in order to study the existence of large-scale dynamos
in rotating convection. The runs are listed in Table 1. We briefly
describe the hydrodynamics of these runs in Section 3.1, and the
results on dynamo excitation and large-scale magnetic fields are
given in Section 3.2. Finally, in Sections 3.3 and 3.4 the turbulent
transport coefficients and the interpretation of the results in
the framework of mean-field electrodynamics, respectively, are
presented.

3.1. The Hydrodynamic State

All our simulations start with a small (of the order of
10−5Beq) random magnetic field. This field remains dynamically
insignificant in the initial stages, which, in most cases, span
the first 200 turnover times of the run. As in Paper I, we

3 http://www.nordita.org/software/pencil-code/

consider this interval to represent the hydrodynamic state of the
simulation.

The effect of rotation on convection has been described
in various papers (e.g., Käpylä et al. 2004; Giesecke et al.
2005; Cattaneo & Hughes 2006; Hughes & Cattaneo 2008;
Tobias et al. 2008). The most visible effect is the decreasing
size of convective cells as rotation is increased, see Figure 1.
Without rotation (Run B1) and for horizontal extent LH/d = 4
the flow is dominated by essentially a single large cell, but
already for Co ≈ 1.5 (Run B4) there are of the order of
10 or more cells in the domain. When rotation is increased
further, the cell size continues to diminish. This feature is
familiar from simulations of unstratified convection (King et al.
2009), although there the flow appears to become more easily
laminar at large Taylor numbers (Ta = 108) and modestly large
Rayleigh numbers (Ra = 1.5 × 106) that we used here (see
Table 1).

The decrease in cell size is also manifested by two-
dimensional power spectra of the velocity, see the upper panel
of Figure 2. For the nonrotating case (Run B1), the most power
is found at k/k1 = 1, where k1 = 2π/LH. There is a ten-
dency for the wavenumber of the maximum, kmax, to shift to-
ward higher k for more rapid rotation. The lower panel of Figure
2 shows the velocity power spectra for Runs A6, B6, and C1
with LH/d = 2, 4, 8, respectively, shifted so that the same spa-
tial scales coincide. All runs have Re ≈ 28 (21) and Co ≈ 9
(12) in the kinematic (saturated) regime. For the smallest sys-
tem size the energy still peaks near the box scale. When the box
size increases the spatial scale at which most energy is found
stays the same and, as a consequence, the scale separation,
kmax/k1, between the energy-carrying scale and the box scale
increases.

Our finding that kmax is independent of the horizontal system
size is important because large-scale dynamos require some
amount of scale separation, i.e., that the power spectrum of
the turbulence should peak at some scale smaller than the

http://www.nordita.org/software/pencil-code/
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Figure 1. Vertical velocity Uz from the middle of the convectively unstable layer from Runs B1 to B6 in the kinematic stage at t = 400
√

d/g, corresponding to
turmskf ≈ 70, . . . , 110, depending on the run. Light (dark) color indicates ascending (descending) motion.

(A color version of this figure is available in the online journal.)

Figure 2. Two-dimensional power spectra of velocity from the middle of the
convectively unstable layer as functions of rotation (upper panel) and system
size (lower panel) in the kinematic regime at t = 400

√
d/g. Power-law slopes

proportional to k−5/3 are shown for reference. The spectra in the lower panel
have been shifted so that the same spatial scales coincide on the x-axis and
scaled by LH/d so that the curves lie on top of each other.

system size. This allows the energy to cascade to smaller
and larger scales. The former eventually dissipates the energy
into heat whereas the latter can generate large-scale structures
through an inverse cascade of energy. The turbulent α-effect
can also be interpreted as an inverse cascade (Brandenburg
2001). If, however, the flow energy peaks at, or close to, the
scale of the system, it is impossible to cascade energy to larger
scales.

3.2. Dynamo Excitation and Large-scale Magnetic Fields

Recent numerical studies have indicated that shear plays an
important role in exciting large-scale dynamos (e.g., Yousef
et al. 2008a, 2008b; Paper I; Hughes & Proctor 2009). Al-
though the process generating the large-scale magnetic field in
the nonhelical case is still under debate (e.g., Rogachevskii
& Kleeorin 2003, 2004; Rüdiger & Kitchatinov 2006;
Proctor 2007; Brandenburg et al. 2008; Schekochihin et al.
2009; Sridhar & Subramanian 2009), there are some indi-
cations that in helical turbulence with shear a classical αΩ,
or α-shear dynamo, simultaneously with a shear-current and
Ω × J-dynamos, might be the explanation (Paper II). How-
ever, in the absence of shear, large-scale dynamos due to he-
lical turbulence have so far been obtained only in idealized
systems where the helical flow is driven by external forcing
(Brandenburg 2001; Mitra et al. 2009b, 2009c). In particular,
the lack of large-scale dynamos in rotating convection has been
puzzling (e.g., Cattaneo & Hughes 2006), although an α-effect
should be present according to theory. One possible explanation
is that, whereas the turbulence in more idealized studies can be



No. 2, 2009 LARGE-SCALE DYNAMOS IN RIGIDLY ROTATING TURBULENT CONVECTION 1157

Figure 3. Upper panel: rms of the total magnetic field as a function of time for
the same runs as in the upper panel of Figure 2. Lower panel: the same as above
but in linear scale.

almost fully helical owing to the forcing, in rotating convection
the fractional helicity is often much smaller (e.g., Brandenburg
et al. 1990, 1996; Käpylä et al. 2004).

In Paper II, we found that the turbulent α-effect increases
and turbulent diffusivity decreases, respectively, as functions of
rotation for small fluid Reynolds numbers (see below). These
results suggest that a large-scale dynamo in rotating convection
is excited only if rotation is rapid enough. Our conjecture is that
this regime might not have been reached in earlier studies thus
failing to produce large-scale dynamos.

The evolution of the rms value of the total magnetic field for
Runs B1–B6 is shown in Figure 3. We find that the growth rate
of the field increases for Co � 0.74 (Runs B1–B3) after which it
starts to decrease. However, for the most rapid rotation (Run B6)
the growth rate again increases and is close to the nonrotating
case. The saturation level of the magnetic field is practically
constant for Co � 0.74 (Runs B1–B3) and somewhat lower for
Co ≈ 1.5 (Run B4). For the two most rapidly rotating cases the
saturation level is generally higher and more variable. In these
runs, the maxima of the field are associated with periods where
significant amounts of large-scale fields are present; see Figure 4
for the time evolution of horizontally averaged fields Bx and By

for Run A6. Comparing the field in the kinematic and saturated
stages (Figure 5) shows that in the kinematic regime the field is
concentrated in small scales, whereas in the late stages a clear
large-scale structure is visible. The behavior of the growth rate
and saturation level of the field as functions of rotation could be
understood as follows: the small-scale dynamo is enhanced for
slow rotation but starts to be rotationally quenched for Co � 1.
This might be explicable by an associated decrease in the length
scale of the turbulence. On the other hand, for rapid enough
rotation, i.e., Co � 3, the large-scale dynamo becomes excited
and increases the growth rate and saturation level. We stress that
the proposed suppression of the small-scale dynamo action due

Figure 4. Horizontally averaged magnetic field components Bx (top panel) and
By (bottom panel), normalized by the equipartition magnetic field strength.
From Run A6 with Co ≈ 12 and Rm ≈ 42. The horizontal dotted lines at
z/d = 0 and z/d = 1 indicate the base and top of the convectively unstable
layer, respectively.

(A color version of this figure is available in the online journal.)

to rotation is at this stage only a conjecture that is consistent with
the numerical data. Whether this interpretation is correct should
be studied in more detail separately. It should also be noted that
we cannot expect rotation to quench the small-scale dynamo
in the astrophysically relevant regime where Rm is much
larger than in the present simulations. There are, however, no
compelling reasons to expect that the large-scale dynamo is
suppressed when a small-scale dynamo is also present as long
as magnetic helicity fluxes are allowed to leave the domain. For
the most rapidly rotating case, with Co ≈ 9 in the kinematic
regime, the critical magnetic Reynolds number is roughly 20, see
Figure 6. In Paper I, we reported that in the absence of rotation,
the critical Rm for the excitation of a small-scale dynamo is
roughly 30 for a similar system.

In Paper I, we found the large-scale field to be dominated by
the kx = ky = 0 mode and it could thus be well described by a
horizontal average. However, in the present case the mean fields
show a more complicated structure and tend to have comparable
contributions from kx, ky �= 0 modes as well (see, e.g., the
right panel of Figure 5). Thus, a simple horizontal average no
longer suffices to represent the large-scale field. For a better
measure, we perform a two-dimensional Fourier transform of
the field at each horizontal layer, the result of which we denote
by B̂i(kx, ky, z, t). Now, we project this quantity onto a one-
dimensional wavenumber k2 = k2

x + k2
y and denote its Fourier

amplitude by B̂
(m)
i (z, t), where m is the discretized wavenumber

bin corresponding to k/k1. So, for k/k1 = 0, B̂
(0)
i (z, t) is the

same as a horizontal average Bi . For larger k, B̂
(m)
i (z, t) gives

a measure of the strength of the mode k. In the following we
restrict the analysis to the smallest values of k/k1 = 0, . . . , 2
that describe the large-scale field.

Representative results for the horizontal components of
B̂

(0)
i (z, t) and B̂

(1)
i (z, t) from Run B6 with Co ≈ 12 are shown

in Figure 7. The large-scale field seems to show opposite signs
in the convectively unstable and stable layers. Sign changes
also occur but they are rather irregular and do not appear to
follow a consistent cycle. The rms of the amplitudes for the
k/k1 = 0 and 1 contributions to the horizontal magnetic fields
are of the order of 10% of the equipartition value. This is to be
contrasted with Figure 8 where the sums of the rms values of
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the amplitudes of the three smallest wavenumbers are shown as
functions of rotation. Substantial large-scale fields are observed
only for the two largest values of Co; for Co � 1.5 the runs
show very weak large-scale contributions. This is also visible
in the two-dimensional power spectra, taken from the middle of
the convectively unstable layer, see Figure 9. The most rapidly
rotating case (Run B6) is the only one showing clear signs of
large-scale fields, in accordance with the fact that the large-scale
field is only periodically present in Run B5. The velocity spec-
tra in the saturated state are similar to those in the kinematic
phase.

In comparison to earlier studies of rotating convection (e.g.,
Cattaneo & Hughes 2006; Tobias et al. 2008), we note that it is
characteristic of these studies that when the Rayleigh number is
increased, the Taylor number is kept constant. Increasing Ra in
these models generates a larger urms and this inevitably means
that the Coriolis number decreases as the Rayleigh number is
increased, i.e., for a fixed Ta the rotational influence is large for a
small Rayleigh number and vice versa. For example, in the paper
of Cattaneo & Hughes (2006), the smallest Rayleigh numbers
in combination with Ta = 5 × 105 gives a Coriolis number
comparable to our largest values. However, these simulations
do not exhibit dynamo action due to a too low Rm, whose
value also depends on urms. For their highest Rayleigh number
case, however, Rm is large enough for dynamo excitation but
the Coriolis number is smaller by approximately an order
of magnitude and no large-scale fields are observed. Similar
arguments apply to the simulations of Tobias et al. (2008).

We find that the large-scale dynamo is excited for all box
sizes for the most rapidly rotating case explored in the present
study, as is evident from the spectra shown in Figure 10. From
the spectra it would seem that an increasing amount of energy
is in the large scales as the box size increases. The growth rate
of the total field does not show any clear trend with the system
size: the largest departure from a constant growth rate is the
somewhat lower value for Run B6 with the intermediate box
size (see Figure 11).

Figure 11 shows the sums of the Fourier amplitudes of the
three smallest wavenumbers as functions of the system size.
For the smallest box (Run A6), the large-scale field is more
concentrated on the k/k1 = 0 contribution, whereas in Run B6
with LH/d = 4 the amplitudes for k/k1 = 0 and 1 are similar.
For the largest domain size the k = 0 mode is significantly
weaker than the k/k1 = 1 and 2 modes. These results suggest

Figure 6. Root-mean-square total magnetic field as a function of time for four
magnetic Reynolds numbers for Runs A6–A9.

that for the present parameters the maximum size of the large-
scale structures is somewhere in the range 2 < Lmax/d < 8.

Comparing the saturation level of the large-scale magnetic
field in the small box Runs A7, A6, and A10 shows a significant
decrease in the m = 0 component in Run A10 whereas the
strength of the m = 1 mode is only mildly affected. On the
other hand, comparing Runs B6 and D1 with a larger domain
size shows again a decreasing m = 0 contribution in Run D1 but
a two times larger m = 1 component. However, these numbers
should be taken only as a rough guide because the large-scale
contribution to the magnetic field shows large fluctuations and
the higher Rm runs are fairly short. Taken at face value, the
results would seem to suggest that the strength of the m = 0
mode decreases with increasing Rm and that the m = 1 mode
remains unaffected or that it can even increase. We note that the
highest Rm runs also have larger fluid Reynolds and Rayleigh
numbers which means that also the flow is more turbulent
in those cases which could affect the dynamo and thus the
saturation level of the large-scale field.

Although we have used open (VF) boundary conditions that
do permit magnetic helicity fluxes, such fluxes may not actually
occur unless they are driven toward the boundaries by internal
magnetic helicity fluxes. One such flux is the Vishniac & Cho
(2001) flux, but it requires shear which is absent in our case.
Other fluxes are possible (Subramanian & Brandenburg 2006),
but we do not know how efficient they are in our model. It is

Figure 5. Magnetic field component Bx for Run D1 in the kinematic (left panel) and saturated (right) states. The sides of the box show the periphery of the
domain whereas the top and bottom panels show the field from the top (z = d) and bottom (z = 0) of the convectively unstable layer, respectively. See also
http://www.helsinki.fi/∼kapyla/movies.html.

(A color version of this figure is available in the online journal.)

http://www.helsinki.fi/~kapyla/movies.html
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Figure 7. Fourier amplitudes of the two horizontal components of the magnetic
field for the two smallest wavenumbers k/k1 = 0 and 1 from Run B6. From top
to bottom: B̂

(0)
x (z, t), B̂

(1)
x (z, t), their rms values; B̂

(0)
y (z, t), B̂

(1)
y (z, t) and their

rms values.

(A color version of this figure is available in the online journal.)

therefore unclear whether one should expect the saturation of the
large-scale field to occur on a dynamical or a resistive timescale,
and what the relevant length scale is. In Figure 12, we show
the saturation behavior for Run B6 and compare with a curve
proportional to 1−exp[−2ηk2(t−ts)] that would be expected for
resistively dominated saturation behavior (Brandenburg 2001).
Here, k = kf has been chosen and ts marks the end of the
linear growth phase, which is also the time when the small-
scale magnetic field has saturated. The result is not entirely
conclusive, and larger magnetic Reynolds number would be
needed to clarify this, but it is certainly possible that saturation
of the large-scale field is resistively dominated. Similar behavior
is certainly expected in the case of PC boundary conditions (Run
B7; see the dashed lines in Figure 12). We note that the saturation
level of the total and mean fields are higher in Run B7 with

Figure 8. Sums of the root-mean-square values of the Fourier amplitudes of Bx
and By for the modes k/k1 = 0, . . . , 2 as a function of rotation for the Runs
B1–B6. Line styles as in the upper panel of Figure 2.

Figure 9. Two-dimensional power spectra of velocity (upper panel) and
magnetic field (lower panel) from Runs B1 to B6 in the saturated state. Power
laws proportional to k−5/3 are shown for reference.

PC boundary conditions than in Run B6 with VF conditions.
The behavior is qualitatively similar to the forced turbulence
simulations of Brandenburg (2001).

3.3. Turbulent Transport Coefficients

We attempt to connect the dynamos seen in the direct
simulations to theoretical considerations by comparing the
results to a mean-field dynamo that relies on turbulent transport
coefficients, such as the α-effect and turbulent diffusivity. In
order to extract these coefficients, we use the test field method
(Schrinner et al. 2005, 2007) in the kinematic regime. Detailed
descriptions of the method, as implemented here, have been
presented elsewhere (e.g., Brandenburg et al. 2008; Sur et al.
2008; Mitra et al. 2009a; Paper II); here we only outline the
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Figure 10. Two-dimensional power spectra of velocity (upper panel) and
magnetic field (lower panel) as functions of system size. Line styles and scaling
as in the lower panel of Figure 2. In the lower panel, the upper curves show the
spectra from the saturated state whereas the lower curves show the spectra from
the kinematic state multiplied by 107.

general procedure. The method relies on a set of orthogonal
test fields that do not evolve in time and do not react back onto
the flow. These properties allow an unambiguous determination
of the turbulent transport coefficients in the kinematic regime
without the complications associated with some other methods
that can be used.

We restrict the study to test fields that depend only on z:

B
1c = B0(cos kz, 0, 0), B

2c = B0(0, cos kz, 0), (17)

B
1s = B0(sin kz, 0, 0), B

2s = B0(0, sin kz, 0), (18)

where B0 is the amplitude of the field and k is the wavenumber
of the test field. (The results are strictly independent of the
value of B0, so in nondimensional units it can be set to 1.)
We use k/k1 = 1, where k1 = 2π/Lz, in all models. The
k-dependence of the coefficients in convection was studied in
Paper II. The electromotive force can be written as

E i = αijBj − ηijμ0J j , (19)

where ηi1 = ηi23 and ηi2 = −ηi13. The 4 + 4 coefficients are
then obtained by inverting a simple matrix equation, relating the
rank-2 tensor components to rank-3 tensor components.

It is convenient to discuss the results in terms of the quantities

α = 1

2
(α11 + α22), γ = 1

2
(α21 − α12), (20)

ηt = 1

2
(η11 + η22), δ = 1

2
(η21 − η12). (21)

These quantities can be understood to represents the gener-
ation of large-scale magnetic fields (α), turbulent pumping of

Figure 11. Top panel: rms values of the total magnetic field as functions of the
system size. The three lower panels show the sums of the rms values of the
Fourier amplitudes of Bx and By for k/k1 = 0 (the second panel from the top),
k/k1 = 1 (second from the below), and k/k1 = 2 (bottom panel). Line styles
as in the lower panel of Figure 2.

magnetic fields (γ ), turbulent diffusivity (ηt), and the Ω × J ef-
fect (δ). To normalize our results, we use isotropic expressions
derived under first-order smoothing approximation (see, e.g.,
Paper II)

α0 = 1

3
urms, ηt0 = 1

3
urmsk

−1
f . (22)

Figure 13 shows the kinetic helicity ω · u, where ω = ∇× u,
and the turbulent transport coefficients for Runs B2–B6 as
functions of rotation. The magnetic Reynolds number varies
between Rm ≈ 58, . . . , 86 with larger values occurring for
slower rotation. Pm = 2 used in all runs. These simulations
differ from those in Paper II in that Pr and Pm are, respectively,
five times and 2.5 times smaller. We find that the kinetic
helicity increases monotonically as a function of rotation as
in Paper II, although here the increase is not as steep as in
the previous results. The α-effect is approximately constant for



No. 2, 2009 LARGE-SCALE DYNAMOS IN RIGIDLY ROTATING TURBULENT CONVECTION 1161

Figure 12. Top panel: rms values of the total magnetic field as functions of
time for VF (Run B6, solid lines) and PC boundary conditions (Run B7, dashed
lines). The two lower panels show the sums of the rms values of the Fourier
amplitudes of Bx and By for k/k1 = 0 (middle panel) and k/k1 = 1 (bottom
panel). The dotted lines in the two lower panels show a saturation predictor
according to the model of Brandenburg (2001).

Co ≈ 0.3, . . . , 1.2, whereas for Co ≈ 3.3 the positive region
in the top half of the convectively unstable layer disappears
giving nearly zero value. For the most rapid rotation, Co ≈ 8.7,
α is negative in the whole convection zone. At first sight this
result seems to contradict the corresponding results of Paper II,
but we find that there is a qualitative change in the behavior
of α in the rapid rotation regime when the fluid Reynolds
number is increased. For Re ≈ 2 there is no sign change and
a monotonously increasing magnitude whereas for Re ≈ 7 the
positive region in the upper layers of the convectively unstable
layer disappears. Increasing the Reynolds number further to
roughly 30 gives the result shown in Figure 13. We note that
controlling Re and Co a priori is difficult in the rapid rotation
regime because convection is increasingly suppressed especially
for small Reynolds numbers.

For the slowest rotation, the turbulent pumping, γ , is very
similar in profile and magnitude as in Paper II. In the case of γ ,
the behavior seems again different with negative values in the
whole convection zone for Co � 1.17. The magnitude of γ is
significantly decreased for our case with the most rapid rotation.
The turbulent diffusivity is rotationally quenched similarly as in
Paper II. Also the coefficient δ behaves in a similar fashion as
in Paper II.

The relatively unchanged magnitude of α and the significantly
reduced value of ηt suggests that excitation of a mean-field
dynamo could be possible in our cases with the most rapid
rotation. One way to quantify this is to compute a local dynamo
number

cα(z) = α

ηTkf
, (23)

where ηT = ηt + η. The results are shown in Figure 14. We find
that the dynamo number peaks in the overshoot layer just below
z/d = 0 because the profile of the α-effect extends somewhat

Figure 13. From top to bottom: normalized profiles of kinetic helicity, α, γ ,
ηt, and δ from kinematic test field simulations. The vertical dotted lines at
z/d = 0 and z/d = 1 indicate the base and top of the convectively unstable
layer, respectively.

deeper than that of turbulent diffusivity. The magnitude of the
maximum of cα in the overshoot increases monotonically until
Co ≈ 3.3 but the value in the convectively unstable layer
remains small. For the most rapidly rotating case, cα(z) increases
significantly also in the convectively unstable region due to
the rotationally quenched value of ηt. In the homogeneous
case, where cα is constant, dynamo action is possible when
its value based on the lowest wavenumber in the domain
exceeds unity, i.e., Cα ≡ cαkfLz/2π > 1. In our case, owing
to the presence of the overshoot layers, kfLz/2π = 2, so
one might expect that dynamo action is possible when the
average value of cα(z) exceeds 0.5. For our case with the
largest rotation rate this is clearly the case for most of the
domain. We can therefore conclude that dynamo action should
be possible in that case. However, a more detailed comparison
would require using test fields with wavenumbers other than
k = k1, as was done in Paper II for a case with slower rotation
than here. We should therefore not overinterpret our present
comparisons.
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Figure 14. Vertical profiles of cα(z) for the same runs as in Figure 13. The
horizontal line at −cα = 0.5 denotes where |Cα | = |cα |kfLz/2π = 1.

The significance of an overshoot layer in connection with
large-scale dynamo action is not yet entirely clear. Tobias et al.
(2008) argue that its presence is unimportant for promoting the
generation of large-scale fields, while Browning et al. (2006)
find it to be crucial. However, as discussed in the present paper,
the rotation rate used in Tobias et al. (2008) may be too slow
for a successful large-scale dynamo. Another issue might be
the absence of shear-induced helicity fluxes (Vishniac & Cho
2001), as discussed in Paper I. In Browning et al. (2006), on the
other hand, the presence of shear in the overshoot layer plays an
important role, as is demonstrated by the striking difference to
earlier results of Brun et al. (2004) without overshoot. Another
aspect of the problem is that in local convection simulations the
amount of overshoot decreases as rotation increases (Ziegler &
Rüdiger 2003; Käpylä et al. 2004).

3.4. Mean-Field Models

In order to check how well the turbulent transport coefficients
presented in the previous section describe the excitation of
large-scale dynamos in the direct simulations, we use a one-
dimensional mean-field dynamo model in which the test-field
results for αij and ηij are used as input parameters. The model
solves the equation

Ȧi = αijBj − (ηij + ηδij )μ0J j , (24)

where the dot refers to a time derivative. The mean magnetic
field and current density are given by B = (−A

′
y, A

′
x, 0) and

μ0J = −A
′′
i , respectively. Here, primes denote z-derivatives.

The test-field results for αij and ηij can now be directly used in
the mean-field model, leaving little freedom. We must, however,
bear in mind the limitations of this simple model. First, the
transport coefficients were determined for a single value of k,
whereas in the direct simulations a larger set of wavenumbers are
available. Second, the model is restricted to fields that depend
only on z, whereas the direct simulations indicate that the large-
scale field can also vary in the horizontal directions.

Nevertheless, it is interesting to study whether the transport
coefficients derived using the test field procedure can excite
a dynamo in the present case. The results for the growth rate
λ of the magnetic field from the mean-field models, using the

Figure 15. Growth rate of the large-scale magnetic field for the same runs as in
Figure 13 from the one-dimensional dynamo model.

coefficients shown in Figure 13, are shown in Figure 15. We find
that the two most rapidly rotating runs show clear dynamo action
which is consistent with the direct simulations. These results
support the notion that the mechanism generating the large-
scale magnetic fields in the direct simulations is the turbulent
α-effect.

It should be noted that for values of λ different from zero
the actual growth rate will not be exactly equal to λ, because
in general the components of αij and ηij depend on frequency
(and thereby on λ)—just as they also depend on the value of k;
see Hubbard & Brandenburg (2009) for details.

4. CONCLUSIONS

We use numerical simulations to demonstrate that rigidly
rotating convection can generate a large-scale dynamo. The
importance of this result lies in the fact that, according to mean-
field theory, rotating turbulent convection leads to an α-effect,
which should result in a large-scale dynamo. So far this has
not been seen in simulations without shear, leading to doubts of
the applicability of the mean-field approach. The present results
show that the lack of large-scale dynamos in rotating convection
previously reported is probably due to too slow rotation. We find
that an appreciable large-scale field is generated in the direct
simulations if Co � 4.

With the smallest system size explored here, the scale
separation is small even in the most rapidly rotating case (Run
A6), i.e., kmax/k1 ≈ 2. In this case, the large-scale magnetic field
is concentrated in the k = 0 mode. Doubling the domain size
increases the scale separation to kmax/k1 ≈ 5 (Run B6). Here,
the k = 0 contribution is smaller and most of the magnetic
energy is found for k/k1 = 1 and 2 modes. Doubling the size of
the box once more, kmax/k1 ≈ 10. The magnetic energy peaks
at the largest scales, although the k = 0 mode is significantly
weaker than in the cases with smaller system sizes. This suggests
that for the present parameters there is a maximum size for the
large-scale magnetic field structures which is larger than 2d and
smaller than 4d.

We compute the turbulent transport coefficients using the
test field method and find that the magnitude of the α-effect
remains relatively unaffected when rotation increases. However,
at the same time the turbulent diffusion is severely quenched
by the rotation. When these coefficients are used in a one-
dimensional mean-field dynamo model, the two most rapidly
rotating runs exhibit a growing dynamo in accordance with the
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direct simulations. Although the mean-field model is too simple
to fully describe the field in the direct simulations, our results
seem to validate the test field method further and lend support to
our interpretation that the large-scale magnetic fields observed
in the simulations are due to a turbulent α-effect.

On a more general note, the present results also represent a
nice demonstration of the usefulness of mean-field theory as a
predictive tool. In fact, as explained in Section 3.2, our work
was motivated by the earlier findings of Paper II that the α-effect
increases and the turbulent diffusivity decreases as the rotation
rate is increased. This did already suggest the existence of an
α2-dynamo for sufficiently rapid rotation—a suggestion that we
have now been able to confirm in this paper.

It should be noted that the magnetic field structure of mean-
field dynamos depends crucially on the geometry of the domain
and the nature of the boundary conditions. Therefore, our re-
sults are not directly relevant to astrophysical bodies, because
their geometry is not Cartesian nor the boundaries periodic. Our
models can also not be thought of as local representations of
a star, although it is possible to get some idea about the de-
pendence of the transport coefficients on latitude (Ossendrijver
et al. 2002; Käpylä et al. 2006; Paper II). Furthermore, the val-
ues of the magnetic Reynolds number are obviously not in the
astrophysically relevant regime. Nevertheless, our simulations
provide the first concrete evidence of dynamo action from ro-
tating convection without the additional help of shear. This is
an important point, because it proves for the first time that an
α2-dynamo from rotating convection exists and that it is strong
enough to produce large-scale fields. This was thought impos-
sible until now (Cattaneo & Hughes 2006; Hughes & Cattaneo
2008; Hughes & Proctor 2009).
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Mitra, D., Käpylä, P. J., Tavakol, R., & Brandenburg, A. 2009a, A&A, 495, 1
Mitra, D., Tavakol, R., Brandenburg, A., & Moss, D. 2009b, ApJ, in press

(arXiv:0812.3106)
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