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Turbulent stresses as a function of shear rate in a local disk model
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We present local numerical models of accretion disk turbulence driven by the magnetorotational instability with varying
shear rate. The resulting turbulent stresses are compared with predictions of a closure model in which triple correlations
are modelled in terms of quadratic correlations. This local model uses five nondimensional parameters to describe the
properties of the flow. We attempt to determine these closure parameters for our simulations and find that the model
does produce qualitatively correct behaviour. In addition, we present results concerning the shear rate dependency of the
magnetic to kinetic energy ratio. We find both the turbulent stress ratio and the total stress to be strongly dependent on the
shear rate.
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1 Introduction

Since the work of Balbus & Hawley (1991) it is now gen-
erally accepted that turbulence in accretion disks is caused
by the linear magneto-rotational instability (hereafter MRI)
that was originally discovered by Velikhov (1959) in con-
nection with Couette flow of liquid metals. This linear in-
stability can be excited in sufficiently ionized, differentially
rotating fluids where the angular momentum decreases with
increasing radius. When the fluid is threaded by a mag-
netic field, differential rotation causes stretching of the field
lines. The tension that builds up opposes the shearing, act-
ing to enforce rigid rotation. If the field is subthermal, the
interplay between differential rotation and magnetic tension
destabilizes the fluid, resulting in linear growth of Reynolds
and Maxwell stresses, which transport angular momentum
outwards. The instability eventually leads to a fully turbu-
lent, non-linear state.

Let us assume a rotation profile of the form Ω ∝ r−q ,
where Ω is the angular velocity at distance r. A necessary
condition for the MRI to be excited is q > 0, i.e. the an-
gular velocity decreases outward. The Keplerian case with
q = 1.5 has been extensively studied by means of numerical
simulations making use of the shearing box approximation
(e.g., Hawley, Gammie & Balbus 1995, 1996; Brandenburg
et al. 1995; Johansen & Klahr 2005), as well as in global
disks (e.g. Armitage 1998; Hawley 2001; Lyra et al. 2008).
These studies have shown that the MRI leads to a fully tur-
bulent saturated state in which the Maxwell stress is respon-
sible for the majority (about 80%) of the angular momentum
transport. Even in the absence of vertical density stratifi-
cation a turbulent small-scale magnetic field can be main-
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tained by dynamo action (Hawley et al. 1996). When strati-
fication is present, cyclic large-scale dynamo action can be
excited (Brandenburg et al. 1995).

The dependence of Reynolds and Maxwell stresses on
the shear rate has been investigated numerically by Abramo-
wicz, Brandenburg & Lasota (1996) in the presence of
stratification and Hawley, Balbus & Winters (1999) in the
absence of stratification. It turns out that near q = 0 the
Reynolds stress, which couples to the large-scale vorticity
W = (2 − q)Ω, is small due to the strong stabilizing ef-
fect of the vorticity (Hawley et al. 1999). This makes the
Maxwell to Reynolds stress ratio very high. As the shear
rate qΩ increases, the shear-coupled Maxwell and Reynolds
stresses increase due to the decrease of the vorticity. How-
ever, the growth of the Reynolds stress is significantly faster,
so the stress ratio diminishes with increasing q.

The interest in MRI-generated turbulent stresses as a
function of q was rekindled in a recent study where a lin-
ear analysis of the Reynolds and Maxwell stresses was pre-
sented (Pessah, Chan & Psaltis 2006a, hereafter PCP06).
They derived a simple relation for the stress ratio, depending
only on the shear parameter q. Comparing this result with
the non-linear simulations of Hawley et al. (1999), they find
that, even in the saturated turbulent regime, the stress ra-
tio does indeed depend almost entirely on q alone, and that
there is only a weak dependence on other properties of the
flow or on the initial conditions.

The Shakura-Sunyaev viscosity parameter α (Shakura
& Sunyaev 1973) is still a popular tool to link accretion
disk observations to theory. The so-called α model of disks
is based on the assumption that the turbulent stresses Trφ

scale linearly with the thermal pressure; α ≤ 1 being the
proportionality factor. In this formalism, the outward trans-
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port of angular momentum is characterized by a turbulent
viscosity of the form

νt = αcsH, (1)

where the eddy viscosity is assumed to scale with the sound
speed cs and the correlation length with the disk scale height
H .

As this model linearizes the turbulent system into a stan-
dard Navier-Stokes fluid suitable for analytical manipula-
tion, it has been an invaluable tool in developing theory
of accretion disk dynamics, even though the parametriza-
tion offers no explanation of what is causing the viscosity.
Even after the realization of the astrophysical importance
and subsequent reinvigorated interest in the theory of the
MRI, the α-model is still widely used.

New, more physically motivated models have been de-
veloped recently to describe the angular momentum trans-
port in accretion disks (e.g. Kato & Yoshizawa 1995; Pes-
sah, Chan & Psaltis 2006b; Ogilvie 2003, hereafter O03).
A common characteristic of these models is the treatment
of the problem of angular momentum transport: the govern-
ing magnetic and kinetic equations are divided into linear
and non-linear terms. The non-linear correlation functions
are then modelled by closing the system of equations with
approximate expressions that still embody the physics but
are considerably easier to solve (such closure models are
commonly used in modelling turbulence; see references in
O03). It should be noted that the α-model is mathematically
equivalent to the simplest closure model, where the correla-
tion functions are modelled by one single coefficient. All
these models also operate in the absence of mean magnetic
fields. A first attempt to validate the O03 model was made
by Garaud & Ogilvie (2005) in connection with shear flow
where linear and non-linear instabilities were found to be
well reproduced by the model.

In the present study, the turbulent stresses are extracted
as functions of q from non-stratified local numerical mod-
els with zero net flux using the shearing box approxima-
tion. The simulation data are compared with the linear re-
sults of PCP06 and the non-linear closure model of O03.
There are a few other closure models that describe the be-
haviour of local, magnetohydrodynamic turbulence. In par-
ticular, the model of Pessah et al. (2006b) assumes a uni-
form vertical field in the disk which is not incorporated in
our three-dimensional simulations. Therefore we concen-
trate here mainly on the closure model of O03.

The remainder of the paper is organised as follows: in
Sects. 2, 3, and 4 the linear MRI model of Pessah et al.
(2006b), the non-linear closure model of O03, and the nu-
merical model are presented, respectively. Furthermore, the
results and related discussion are presented in Sects. 5 and
6.

2 Stress ratio in the model of PCP06

Here we briefly summarize the formalism employed in the
model of PCP06. Using the kinematic hydromagnetic equa-

tions, PCP06 calculated the ratio of the relevant components
of Reynolds and Maxwell stresses in a local approximation.
We use here a Cartesian frame of reference, where x, y and
z denote the radial, toroidal and vertical directions, respec-
tively. The relevant component of the stress tensor is then
Txy, which can be decomposed as

Txy ≡ Rxy − Mxy , (2)

where

Rij = 〈ρuiuj〉 , Mij = 〈bibj〉/μ0 (3)

are the Reynolds and Maxwell stresses, respectively, and u
is the departure from the mean flow, b is the departure from
the mean magnetic field, ρ is the density, μ0 the vacuum
permeability, and angular brackets denote a suitable volume
average. Throughout our paper, compressibility effects are
ignored in the turbulence models, i.e. ρ = ρ0 is assumed
constant, even through the simulations are fully compress-
ible. The rms velocity in our simulations remains consider-
ably smaller than unity and the flow is therefore subsonic.

Using linear theory, PCP06 found that for given wave-
number k the stress ratio is given by

−Mxy(k)
Rxy(k)

= 1 +
2(2 − q)Ω2

0

k2u2
A + γ2

k

, (4)

where Ω0 is the angular velocity, vA = B0/
√

μ0ρ0 is the
Alfvén speed based on a constant vertical magnetic field,
and γk is the corresponding growth rate of the mode with
wavenumber k. Moreover, for the fastest growing mode
with

γkmax/Ω0 = 1
2q , v2

Ak2
max/Ω2

0 = q − 1
4q2 , (5)

they find

−Mxy

Rxy
=

4 − q

q
. (6)

This expression shows that, for the relevant case with q < 2,
the magnitude of the Maxwell stress is always larger than
that of the Reynolds stress. This formula provides a strik-
ingly simple prediction of the stress ratio which is in good
agreement with simulation data, even if there is no imposed
magnetic field (PCP06). One envisages that the relevant
wavenumber is able to adjust itself to the value where the
growth rate is maximal.

3 The O03 closure model

The local closure model of O03 includes the linear inter-
action of the turbulent stress tensors with shear and rota-
tion. The linearized evolution equations for the Maxwell
and Reynolds stresses can be derived directly from the basic
MHD equations and are fairly straightforward to solve nu-
merically. For modelling the non-linear triple correlations
of fluctuating quantities and the small-scale diffusion, five
dimensionless, positive definite coefficients appear in the
closed system of equations. A closure model is needed to
deal with these non-linear terms which are described by
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physical effects and constrained by symmetry properties
and dimensional considerations.

The five closure coefficients stand for the turbulent dis-
sipation of the Reynolds stresses (C1), their isotropization
(C2), the effect of the small-scale Lorentz-force as a source
for Rij combined with a sink for Mij (C3), a source due
to small-scale dynamo for Mij combined with a sink for
Rij (C4), and turbulent dissipation of the Maxwell stresses
(C5).

The evolution equations of this model are given by

∂tRij = −LR
ij − τ−1ρ

−1/2
0 (NR

ij + Iij), (7)

∂tMij = LM
ij + τ−1ρ

−1/2
0 NM

ij , (8)

where τ = L/U is the turnover time, U = R1/2 is the rms
velocity, L is the typical scale of the energy-carrying eddies,
and

R ≡ Rii = 〈ρ(u2
x + u2

y + u2
z)〉, (9)

M ≡ Mii = 〈b2
x + b2

y + b2
z〉/μ0 (10)

are the traces of tensors Rij and Mij . Furthermore, Lσ
ij and

N σ
ij are linear and nonlinear terms, respectively, for σ = R

or M , and are given by

LR
ij = RikU j,k+RjkU i,k+2Ωk(εjklRil+εiklRjl), (11)

LM
ij = MikU j,k+MjkU i,k, (12)

NR
ij =

(
C1+C4B

2
)
Rij − C3BMij , (13)

NM
ij= C4B

2Rij − (C3 + C5)BMij , (14)

where B = (M/R)1/2 is the ratio of rms magnetic and
velocity fields,

Iij = C2(Rij − 1
3Rδij) (15)

is an isotropization term, and C1 . . . C5 are positive con-
stants that are of the order of unity. Advection operators of
the form Uk∂k have been neglected. The contribution of
the advection terms vanish under fully periodic boundary
conditions on average so they make no contribution. Note
also that τ and B are time-dependent, because R and M are
time-dependent.

A similar model for the hydrodynamic case has recently
been used to to model the generation of shear in rotating
anisotropic turbulence by the Λ effect; see Käpylä & Bran-
denburg (2008) for details. An important difference is that
in their model the flow was driven by an external body force,
so the equations for the evolution of the Reynolds stress
have a corresponding forcing term as well. Such a term is
here absent, because the turbulence is solely the result of
shear flow instabilities and are modelled by the equations
of O03 without external forcing. As explained by O03, the
model also predicts turbulence for q < 0, where simulations
have not shown self-excited turbulence. The reason for this
is that O03 do not specifically model the MRI dynamics.

In the present study the large scale velocity is given by
the shear flow U = U0 = −qΩ0xêy . We abbreviate the
parameter combination Ci/L of O03 by ci. O03 gave an

analytic solution for the hydrodynamic case. Here we give
a partial solution for the components of the two stresses if
R and M are known. In the steady state, the equations yield
for the Reynolds stresses

Rxx = RA
(

1
3c2 + Q

)
, (16)

Ryy = RA
(
c1 + 1

3c2 + aB2c5 − Q
)
, (17)

Rzz = 1
3RAc2, (18)

Rxy =
R1/2

2qΩ
[c1R − (Bc3 − c4)M ] , (19)

where we have introduced the abbreviations

A =
(
c1 + c2 + aB2c5

)−1
, a =

c4

c3 + c5
, (20)

and

Q =
2
q

[
c1 − B2 (Bc3 − c4)

]
. (21)

The components of the Maxwell stress tensor can be ex-
presses in terms of the corresponding components of the
Reynolds stress tensor as

Mxx = aBRxx , (22)

Myy = aB (Ryy − R) + M, (23)

Mzz = aBRzz , (24)

Mxy =
R1/2

2qΩ
[c4 − (c3 + c5)B] M. (25)

The remaining mixed components involving z vanish, i.e.
Rxz = Ryz = Mxz = Myz = 0. When M = 0, there is an
explicit expression for R, derived by O03.

For the general case with M �= 0, we did not find an
analytic expressions for R and M in closed form. However,
using the time-dependent equations it is possible to deter-
mine a linear fit of the form

R = R(0) +
5∑

i=1

ri

(
ci − c

(0)
i

)
, (26)

M = M (0) +
5∑

i=1

mi

(
ci − c

(0)
i

)
, (27)

where the c
(0)
1−5 are an approximation to the final fit parame-

ters, and R(0) and M (0) are the corresponding numerically
determined values of R and M . We are thus able to decrease
the degree of freedom of the fitted system. We refine the pa-
rameters ci with respect to the initial “guess” c

(0)
i based on

the quantity

δ =
[
(MO03 − Msim)2 + (RO03 − Rsim)2

]1/2
. (28)

In the analysis we seek the minimum value of δ.
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4 Simulations

For the simulations we adopt a cubic computational domain
of size (2π)3. The gas is isothermal with constant sound
speed cs; vertical gravity and stratification are omitted. The
calculations are local and therefore made under the shearing
box approximation (see below). The equations to be solved
read
Dρ

Dt
= −∇ · (ρu) , (29)

Du

Dt
= −(u · ∇)u − qΩ0uxêy − 2 Ω0êz × u

− 1
ρ
∇p +

1
ρ
J × B +

1
ρ
∇ · (2νρS), (30)

DA

Dt
= u × B + qΩ0Ayêx + η∇2A , (31)

where D/Dt = ∂/∂t + U0∂/∂y includes the advection
by the shear flow, u is the departure from the mean flow
U0, ρ is the density, A is the magnetic vector potential,
B = ∇ × A is the magnetic field, and J = ∇ × B/μ0

is the current density, μ0 is the vacuum permeability, Sij =
1
2 (ui,j + uj,i) − 1

3δij∇ · u is the traceless rate of strain
tensor, ν is the kinematic viscosity, and η is the magnetic
diffusivity.

In order to get as close as possible to the ideal limit,
we replace the diffusion terms by a hyperviscosity scheme,
i.e. we replace the ∇2-operators by ∇6, aiming at maxi-
mizing the Reynolds number in the quiescent regions of the
flow while diffusing and damping fluctuations near the grid
scale. Compared to direct simulations (e.g. Haugen & Bran-
denburg 2006) with uniform viscosities, smaller grid reso-
lution can be used to resolve the flow, which is crucial if the
plan is to, e.g., undertake a parameter study, like in our case.

Periodic boundary conditions are applied in all three di-
rections; in the radial direction we account for the shear flow
U0 by making use of the shearing box approximation (e.g.
Wisdom & Tremaine 1988)

f(1
2Lx, y, z) = f(− 1

2Lx, y + qΩ0Lxt, z), (32)

where f stands for any of the seven independent variables,
Lx stands for the radial extent of the computational domain,
and t is the time.

The domain is initially threaded by a weak magnetic
field,

A = A0êy cos kx cos ky cos kz , (33)

where k = k1 has been chosen, and k1 = 2π/Lz is the
smallest finite vertical wavenumber in the domain of height
Lz . Thus, the magnetic field contains periodic x- and z-
components with amplitude A0.

We choose the values of kA, Ω0 and A0 so that the most
unstable mode of the MRI, kmax = Ω/uA is well resolved
by the grid; in practise this means that we always adopt
k/k1 = 1, Ω0 = 0.2csk1 and A0 = 0.2

√
μ0ρ0 csk

−1
1 , re-

sulting in kmax = O(k1). For the initial setup, the other
condition for the onset of MRI, namely β 
 1, where β is

Fig. 1 Growth rates as a function of wavenumber from the 1D
calculations. Crosses: q = 1.75, triangles: q = 1.5, diamonds:
q = 1.25, squares q = 1.0. The solid lines represent the linear
growth rates; see, e.g., PCP06.

the ratio of the thermal to magnetic pressure, is also satisfied
as β is minimally 50 at the maximum values of the magnetic
field. In all our runs the Mach number is well below unity,
so compressibility effects are negligible.

For all the simulations we use the Pencil-Code1, which
is a high-order (sixth order in space, third order in time),
finite-difference code for solving the MHD equations (Bran-
denburg & Dobler 2002).

The local calculations have been carried out at two dif-
ferent resolutions, namely 128 (in 1D) and 643 (in 3D); the
corresponding numerical diffusion coefficients are νhyper =
ηhyper = 3.5× 10−6 and 2.0× 10−7, respectively. The cal-
culations were carried out on the IBM eServer Cluster 1600
at Scientific Computing Ltd., Espoo, Finland.

5 Results

5.1 Linear results

In order to make contact with the model of PCP06, we first
aim at reproducing their theoretical linear results (see also
Balbus & Hawley 1991) using one-dimensional calculations
with an imposed magnetic field. We calculate several sets by
fixing the shear rate (q = 1.00, 1.25, 1.50, 1.75) and angular
velocity Ω0 and varying the initial magnetic field strength
B0. The growth rate and the stress ratio are monitored dur-
ing the exponential growth of the instability. The results are
displayed in Figs. 1 and 2.

As can be seen from Fig. 1, the linear growth rates can
be reproduced by the numerical method quite accurately.
From Fig. 2 it can be observed that the linear prediction
(dotted curve) intercepts the numerical results (solid lines)
exactly at kmax for each q-curve. At each kmax(q), there-
fore, the linear prediction and numerical results show per-
fect agreement; see Eq. (4). In the 1D calculations, however,

1 http://www.nordita.org/software/pencil-code/
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Fig. 2 Stress ratio −Mxy/Rxy as function of wavenumber. The
solid lines represent the linear 1D results with varying shear pa-
rameter q. The dotted line shows the linear prediction of PCP06
plotted for each kmax(q).

the system has not much freedom to create any other MRI
mode than the one that is imprinted by the initial magnetic
field strength, due to which the stress ratio is observed to
vary as function of wavenumber, so that monotonically de-
creasing stress ratios are found with increasing wavenum-
ber for all the qs investigated. This is clearly in disagree-
ment with the PCP06 assumption, according to which the
mode with kmax should always get preferentially excited.
The wavenumber dependence of the stress ratios, however,
disappears in 3D: independent of the initial magnetic field
strength, the mode with kmax is observed to dominate. In
that sense our 3D results are giving support to the basic as-
sumption of PCP06, although, as will be discussed in the re-
maining part of the paper, the magnitudes and q-dependence
of the stresses are otherwise different from the linear analy-
sis.

5.2 Nonlinear results

We have performed a set of local calculations, in which
we have fixed the angular velocity Ω0 and the strength of
the initial magnetic field, and then varied the shear pa-
rameter q. For the investigated range of shear parameters
0.4 ≤ q ≤ 1.9, the maximally growing wavenumber, there-
fore, is varying according to Eq. (5), but is resolved by the
numerical grid in all the calculations. We have checked that
the resulting stresses are independent of the initial magnetic
field strength (computations with initial plasma β of 20–
800 were performed). This is particularly important in the
net flux case (Blackman, Penna & Varniere 2008).

For smaller shear the stabilizing effect of vorticity is
strong and the fluctuations grow larger than the stresses
themselves; these calculations, therefore, are not included
in the results. The data averaged over the nonlinear satu-
rated stage (typically from a hundred to a few hundreds of
rotations) for the range 0.4 ≤ q ≤ 1.9 is presented in Ta-
ble 1.

As is evident from Table 1, both Reynolds and Maxwell
stresses grow with the shear parameter q. The growth of
the Reynolds stress is much stronger than the growth of the
Maxwell stress, due to which the stress ratio (plotted in the
second panel of Fig. 3) decreases as function of q. The simu-
lated stress ratio significantly differs from the PCP06 linear
prediction given by Eq. (6) and plotted in the figure with
dotted lines. All the data points including the error bars are
consistently larger than the prediction by a factor of 2–3.

Panel 1 of Fig. 3 shows the total stress, defined in Eq.
(2), as a function of the shear-to-vorticity ratio, q/(2 − q).
The shear-to-vorticity ratio is a quantity that is independent
of the coordinate system, which was the main reason why
Abramowicz et al. (1996) presented the stress as a func-
tion of this ratio. Interestingly, they found that the stress is a
nearly linear function of the shear-to-vorticity ratio. This is
confirmed by the new data. If one were to plot the stress as
a function of q directly, the relation would become strongly
nonlinear.

Also the magnetic to kinetic energy ratio (panel 6 in
Fig. 3) exhibits q dependency, but it is less strong than that
of the magnetic to kinetic stress ratio (panel 2 in Fig. 3). The
energies are defined as EK = 1

2 〈ρu2〉 and EM = 1
2 〈B2〉.

Thus EK = 1
2R and EM = 1

2M . Our results indicate that
for flat (galactic) rotation curves with q = 1 the energy ratio
should be a factor of two higher than for the case of Keple-
rian accretion disks (q = 1.5).

5.3 Predicting stresses with the O03 model

In their treatment, O03 use fiducial closure parameters
C1−5 = 1 in order to demonstrate the overall behavior of
the model. He recommends the parameters to be calibrated
by comparison with numerical simulations in order to ob-
tain more accurate predictions. We have made an attempt to
determine the dimensionless closure parameters that work
for each value of q in the range 0.4 ≤ q ≤ 1.9.

There are essentially two ways to approach the problem.
The first is to take the time independent equations (16)–(25)
and solve for c1−5 using values of the traces R and M from
the simulations. We call this method “backward modelling”.
The problem with this method is that the Eqs. (16)–(25) are
incomplete and do not set any constraints to the ratio M/R.
Consequently, it does not produce the correct solution to
the time dependent Eqs. (7) and (8). Therefore we also used
the linear approximation described by Eqs. (26) and (27) to
improve the fit.

The second way of determining c1−5 is what we call
“forward modelling”. The idea here is to seek such c1−5

that the results of the time-dependent Eqs. (7) and (8) yield
the same individual stresses and the traces R and M as
the numerical simulations. This time a universal c1−5 is
determined so that it predicts the stresses for all values
0.4 ≤ q ≤ 1.9. Once a reasonably good set of c1−5 was
found, the result was fine tuned further using the linear ap-
proximation given by Eqs. (26) and (27); see Figs. 4 and 5.
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Table 1 Stress components averaged over the saturated regime of the local calculations. For the O03 closure model, Rxz = Ryz =
Mxz = Myz = 0.

q Rxx Rxy Ryy Rzz Mxx −Mxy Myy Mzz M/R

0.4 5.3 10−5 9.7 10−6 2.1 10−4 5.7 10−5 1.3 10−4 2.8 10−4 1.2 10−3 5.1 10−5 4.4
0.5 7.8 10−5 1.4 10−5 3.8 10−4 8.2 10−5 1.5 10−4 3.3 10−4 1.5 10−3 5.9 10−5 3.1
0.6 1.2 10−4 2.4 10−5 4.1 10−4 1.3 10−4 2.1 10−4 4.8 10−4 2.1 10−3 8.4 10−5 3.6
0.7 1.9 10−4 3.8 10−5 9.0 10−4 2.0 10−4 2.7 10−4 6.0 10−4 2.5 10−3 1.2 10−4 2.2
0.8 2.0 10−4 3.5 10−5 8.9 10−4 1.9 10−4 2.1 10−4 5.0 10−4 2.3 10−3 9.4 10−5 2.0
0.9 3.2 10−4 7.3 10−5 7.0 10−4 3.1 10−4 3.7 10−4 8.2 10−4 3.4 10−3 1.6 10−4 2.0
1.0 4.2 10−4 9.1 10−5 6.3 10−4 3.7 10−4 3.8 10−4 8.7 10−4 3.6 10−3 1.7 10−4 2.9
1.1 6.6 10−4 1.6 10−4 8.5 10−4 5.6 10−4 6.0 10−4 1.3 10−3 4.8 10−3 2.6 10−4 2.7
1.2 8.6 10−4 2.0 10−4 1.1 10−3 6.6 10−4 6.4 10−4 1.3 10−3 5.0 10−3 2.7 10−4 2.3
1.3 1.7 10−3 4.1 10−4 1.8 10−3 1.2 10−3 1.3 10−3 2.4 10−3 8.4 10−3 5.2 10−4 2.2
1.4 2.5 10−3 6.1 10−4 2.2 10−3 1.7 10−3 1.8 10−3 3.1 10−3 1.1 10−2 7.2 10−4 2.1
1.5 2.7 10−3 6.4 10−4 2.0 10−3 1.8 10−3 1.6 10−3 2.9 10−3 9.8 10−3 6.8 10−4 1.9
1.6 3.7 10−3 8.5 10−4 2.3 10−3 2.5 10−3 1.8 10−3 3.2 10−3 1.0 10−2 8.4 10−4 1.6
1.7 6.3 10−3 1.5 10−3 3.7 10−3 4.1 10−3 2.9 10−3 4.6 10−3 1.5 10−2 1.4 10−3 1.3
1.8 8.9 10−3 2.0 10−3 4.4 10−3 6.1 10−3 3.4 10−3 5.1 10−3 1.6 10−2 2.0 10−3 1.1
1.9 1.8 10−2 3.7 10−3 6.2 10−3 1.1 10−2 4.8 10−3 6.2 10−3 1.8 10−2 2.9 10−3 0.7

Fig. 4 The error estimate δ (see Eq. 28) as a function of C.

From the Fig. 4 it can be seen that the best fit is obtained by
fixing c4 while keeping the other ci unchanged.

The final closure parameters are thus c1 = 0.63, c2 =
0.73, c3 = 0.33, c4 = 0.58 and c5 = 1.35, corresponding
to Ci = ciL with C1 = 4.0, C2 = 4.6, C3 = 2.1, C4 = 3.6
and C5 = 8.5. For these c1−5 the relevant fit parameters in
Eqs. (26) and (27) are R(0) = 0.0057 and M (0) = 0.013
together with r1 = −0.0065, r2 = −0.00012, r3 = 0.024,
r4 = −0.010, r5 = −0.0061, and m1 = −0.0057, m2 =
−0.0012, m3 = 0.0042, m4 = 0.0038, m5 = −0.018.

6 Discussion

In this study we set out to investigate the shear rate depen-
dency of MRI-generated turbulent stresses. We have per-
formed a series of local shearing box simulations with vary-
ing q and measured the resulting turbulent stresses. We
find that the turbulent stress ratio −Mxy/Rxy, and the to-

Fig. 5 Comparison of the simulation data (diamonds) to the cho-
sen fit to Ogilvie model with c1 = 0.63, c2 = 0.73, c3 = 0.33,
c4 = 0.58, c5 = 1.36 (diamonds) for one particular run with
q = 1.5. The solid line shows the M/R-dependent result of the
stationary equations with the chosen set of c-parameters. The ad-
ditional constraint used in the fitting procedure required that the
difference in the simulated and model M/R is minimal, due to
which in this solution the values of M/R match while the individ-
ual stress ratios somewhat differ.

tal stress Txy exhibit strong q-dependency. The relation for
the stress ratio by PCP06; see Eq. (6) predicts similar be-
haviour, but the ratio computed from the simulations is con-
sistently 2–3 times larger than what their result indicates.

In order to further study the evolution of the MRI and
the stresses we have attempted to reproduce them using the
local closure model by O03. We first find a set c1−5 such
that the time-dependent equations give the same individ-
ual stresses and traces R and M . The linear approxima-
tion of Eqs. (26)–(27) is then used together with the time-
independent equations to improve the fit. The O03 closure
parameters that describe our numerical simulation results
are found to be C1 = 4.0, C2 = 4.6, C3 = 2.1, C4 = 3.6
and C5 = 8.5.

The closure model by O03 was thus found to predict
our simulation generated turbulent stresses quite well. The
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Fig. 3 Panel 1: total stress as a function of the shear-to-vorticity ratio, q/(2 − q), from the simulations (diamonds) and prediction
from the O03 closure model (line) using c1 = 0.63, c2 = 0.73, c3 = 0.33, c4 = 0.58 and c5 = 1.35. The error bars show the
standard deviation of the quantity in question. Behaviour predicted by the Shakura-Sunyaev α viscosity model has been presented for
comparison. Panel 2: stress ratio as a function of q from the simulations (diamonds), overplotted with the O03 closure result (solid line)
and the PCP06 linear prediction (dotted line). Panels 3–5 show several stress component ratios from the simulations overplotted with
the O03 closure results. To help visualisation, stress components Rxx, Mxx have been scaled up with a factor of 6. and Ryy, Myy with
a factor of 20. In panel 6, the ratio of magnetic to kinetic energy is presented. Throughout the figure, (s) is used to denote a simulation
result and (c) a result given by the closure model.

model certainly offers a much-needed method for studying
the evolution of turbulent stresses in the shearing sheet limit.
However, additional constraints for R and M are needed
in order to determine the closure parameters Ci. The linear
fitting approximation described in Eqs. (26) and (27) was
devised to overcome this shortcoming.

Our results may also have some relevance in the galactic
context, in which the MRI has been proposed to be respon-
sible of the anomalous turbulent velocity dispersions found
in the outer regions of some galaxies (e.g. Sellwood & Bal-
bus 1999). On the other hand, the energy balance estimates
from observations of NGC6949 (Beck 2004) indicate that
magnetic energy could become dominant over the kinetic
energy in the outer regions of this galaxy, so that the en-
ergy ratio EM/EK ≈ 3–4. According to our present results,
in MRI-driven systems the magnetic energy clearly domi-
nates over the kinetic energy for all q < 1.6, at the galactic
value of q = 1 for flat rotation curves we find the value

≈3, a number agreeing rather well with the observational
estimates.
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