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The role of the Yoshizawa effect in the Archontis dynamo
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ABSTRACT
The generation of mean magnetic fields is studied for a simple non-helical flow where a net
cross-helicity of either sign can emerge. This flow, which is also known as the Archontis
flow, is a generalization of the Arnold–Beltrami–Childress flow, but with the cosine terms
omitted. The presence of cross-helicity leads to a mean-field dynamo effect that is known as
the Yoshizawa effect. Direct numerical simulations of such flows demonstrate the presence of
magnetic fields on scales larger than the scale of the flow. Contrary to earlier expectations,
the Yoshizawa effect is found to be proportional to the mean magnetic field and can therefore
lead to its exponential instead of just linear amplification for magnetic Reynolds numbers
that exceed a certain critical value. Unlike α effect dynamos, it is found that the Yoshizawa
effect is not notably constrained by the presence of a conservation law. It is argued that this is
due to the presence of a forcing term in the momentum equation, which leads to a non-zero
correlation with the magnetic field. Finally, the application to energy convergence in solar
wind turbulence is discussed.
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1 IN T RO D U C T I O N

The dynamo effect in astrophysical objects is often associated with
the occurrence of helicity in them. In magnetohydrodynamics, there
are several helicities that can be important. A particularly impor-
tant one is the kinetic helicity, because its value is finite in rotating
stratified bodies and can lead to an α effect (Moffatt 1978; Parker
1979; Krause & Rädler 1980). Another important helicity is the
magnetic helicity. Unlike the kinetic helicity, the magnetic helicity
is conserved by the quadratic interactions, so its value can only
change through resistive effects or through magnetic helicity fluxes
(Brandenburg & Subramanian 2005). Such a conservation law is
crucial to understanding the saturation behaviour of α effect dy-
namos. This is because the α effect tends to produce large-scale
magnetic fields that are helical, but conservation of total magnetic
helicity implies that there must be small-scale magnetic helicity of
the opposite sign, so that the sum of small- and large-scale magnetic
helicities is close to zero. This then leads to a resistively slow sat-
uration phase in the non-linear regime (Brandenburg 2001). Math-
ematically, the consequence of magnetic helicity conservation can
be described by the attenuation of the total α effect by the addition
of a term proportional to the magnetic helicity effect (Blackman &
Brandenburg 2002; Field & Blackman 2002).

In a topological sense, magnetic helicity describes the linkage of
magnetic flux tubes (Moffatt 1969), while the kinetic helicity char-
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acterizes the linkage of vorticity tubes. However, there is yet another
helicity, the cross-helicity, that describes the linkage of magnetic
flux tubes with vortex tubes. This quantity is important because
it too is conserved by the quadratic interactions, i.e. it can change
only by visco-resistive effects or by cross-helicity fluxes. Moreover,
the small-scale cross-helicity can itself lead to large-scale dynamo
action (Yoshizawa 1990). Such a mechanism is quite different from
the α effect, because it corresponds to an inhomogeneous term in
the dynamo equations and could therefore play the role of a tur-
bulent battery term. Indeed, Brandenburg & Urpin (1998) showed
that the battery term due to cross-helicity can facilitate large-scale
dynamo action in young galaxies and hence could be responsible
for the relatively strong magnetic fields observed in such galaxies
at high redshifts.

In spite of several additional studies (Yoshizawa & Yokoi 1993;
Yokoi 1996; Blackman & Chou 1997), large-scale dynamo action
due to cross-helicity has not received much attention because this
effect was never seen in simulations, nor was it found to be respon-
sible for driving large-scale magnetic fields found therein. Such an
effect would require that the small-scale magnetic field is systemat-
ically aligned with the flow, i.e. it is either mostly parallel or mostly
antiparallel to the flow. Such circumstances are known to prevail in
the solar wind, but here the field comes presumably directly from
the Sun and would therefore not be produced by a dynamo.

In the present paper, we consider the so-called Archontis (2000)
dynamo (see also Dorch & Archontis 2004; Cameron & Galloway
2006) which is driven by a forcing function that is based on the
Arnold–Beltrami–Childress (or ABC) flow, but with the cosine
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terms being omitted. This flow was first proposed by Galloway
& Proctor (1992) to study fast dynamo action by calculating growth
rates for the kinematic version of this flow. The ABC flow is he-
lical and produces efficient dynamo action (Galloway & Frisch
1986). However, the omission of cosine terms renders the flow non-
helical, so that there is no α effect, but numerical studies (Dorch &
Archontis 2004) have shown that such a dynamo produces magnetic
fields that are either aligned or anti-aligned with the flow almost ev-
erywhere. This means that there is cross-helicity in the system,
which can give rise to the Yoshizawa effect and produce large-scale
dynamo action. Furthermore, owing to the conservation property of
cross-helicity, such dynamos may be controlled by this effect and
may also show slow saturation behaviour. It is therefore of interest
to investigate whether the formulation for the slow saturation of α

effect dynamos carries over to the present case.
We begin by explaining first the simulations, discuss the features

of the kinematic growth phase of the dynamo and then consider
the slow saturation regime using a non-linear dynamical feedback
formalism that is analogous to the dynamical quenching formalism
for the α effect. Next, we argue that the kinematic growth in such
a dynamo is indeed due to the cross-helicity effect. We show that
the estimated growth rate obtained from a simple model involving
the induction and momentum equations along with the evolution
equation for the small-scale cross-helicity can be brought in good
agreement with our simulation results.

2 BASIC EQUATIONS

We consider here a model that is similar to that of Archontis (2000)
and Dorch & Archontis (2004) who assumed a compressible gas
with an energy equation included. However, in their model the
temperature was kept approximately constant by applying a heating
and cooling term. Here, we assume instead an isothermal equation of
state, i.e. the pressure is given by p = ρc2

s , where ρ is the density
and cs is the isothermal sound speed. The evolution equations for
the density ρ, velocity U and magnetic vector potential A are then

D ln ρ

Dt
= −∇ · U, (1)

DU
Dt

= −c2
s ∇ ln ρ + F + 1

ρ
[ J × B + ∇ · (2ρνS)] , (2)

∂A
∂t

= U × B + η∇2 A, (3)

where D/Dt = ∂/∂t + U · ∇ is the advective derivative, B =
∇ × A is the magnetic field, J = ∇ × B/μ0 is the current density,
μ0 is the vacuum permeability, η is the magnetic diffusivity, which
is assumed constant, ν is the kinematic viscosity,

Sij = 1
2 (Ui,j + Uj,i) − 1

3 δij∇ · U (4)

is the traceless rate of strain tensor and

F = F0 (sin k0z, sin k0x, sin k0y) (5)

is the forcing function where F0 is an amplitude factor and k0 is a
wavenumber.

For analytic considerations, we consider the flow to be incom-
pressible, i.e. ∇ · U = 0 and ρ = ρ0 = const. While this simplifies
the treatment significantly, it should be remembered that the dif-
ferences between compressible and incompressible cases are not
critical if the Mach number is small (Cameron & Galloway 2006).
In the present paper, we consider cases where the Mach number is

around 0.03 (see below). In order to simplify the notation, we use
units, where

k0 = cs = ρ0 = μ0 = 1, (6)

although in several places we shall keep these units for clarity.
The simulations have been performed using the PENCIL code.1

Triply periodic boundary conditions are employed for all variables
over a cubic domain of size L × L × L. As initial condition,
we use zero velocity, constant density given by ρ = ρ0 and a
spatially random vector potential of sufficiently low amplitude so
as to obtain a clear initial exponential growth phase over several
orders of magnitude before non-linear effects become important
and lead to saturation of the magnetic field.

Our simulations are characterized by the values of the magnetic
Reynolds and Prandtl numbers,

Rm = u0

ηk0
and Pm = ν

η
, (7)

respectively. Here, we have defined u0 = (F 0/k0)1/2 as our reference
velocity. Occasionally, we also use the visco-resistive Reynolds
number,

Rμ = u0

μk0
= Rm

1 + Pm
, (8)

where μ = ν + η. Throughout this paper, we restrict ourselves to
the case P m = 1. The forcing amplitude is chosen such that the
Mach number, Ma = u0/cs, is small (about 0.03), so the flow stays
close to incompressible.

The flow is of course isotropic with respect to the three coordinate
directions, so there is no preferred definition for the mean field
in this case. Indeed, there are three equivalent definitions of two-
dimensional averages (xy, yz and xz averages). They all would lead
to finite mean flows and mean magnetic fields. In the following,
we consider mean fields defined by averaging over the x and y
directions, i.e.

B(z, t) = 1

L2

∫
B dx dy. (9)

Throughout this paper, we focus on the case L = L0, where we
have defined L0 = 2π/k0. However, on one occasion we compare
with the cases L = 2L0 and 4L0, where the domain is big enough
to allow for a field configuration that is four times bigger than the
wavelength of the sine waves. The residual, b = B − B, is normally
referred to as the small-scale or fluctuating field, but in the present
case such a characterization might be misleading, because such a
field is quite regular and not actually fluctuating in the real sense
of the word. Note in particular that the forcing function has a finite
average, i.e.

F(z) = F0(sin k0z, 0, 0), (10)

so the residual is f = F 0(0, sin k0x, sin k0y). It turns out that also
U and B point mainly in the x direction. Throughout this paper, we
denote the residuals by lower-case characters.

3 SI MULATI ON R ESULTS

Dynamo action is possible once the value of Rm exceeds a certain
critical value of around 3 (see Fig. 1). A similar curve was first
shown by Galloway & Proctor (1992) for the case of a prescribed
flow U = u0. For smaller values of Rm, the growth rate is negative
while for larger values it levels off at a value comparable to u0k0.

1 http://pencil-code.googlecode.com
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Figure 1. Dependence of the dynamo growth rate λ on Rm. Note that the
critical value of Rm for dynamo action is around 3. For larger values of Rm,
the growth rate levels off at a value around u0k0.

Figure 2. Visualization of Bx and Bz on the periphery of the domain in
models with L/L0 = 1 (upper row), 2 (middle row) and 4 (lower row) for
Rm = 13. In the case L = L0, the magnetic field has a scale that is equal to
that of the flow, but in the other cases the field breaks up into smaller-scale
contributions with a modulation in the y direction on the scale of the domain.
The coordinate directions are indicated in the lower-left panel and the origin
is indicated by O.

One may expect the Archontis flow to be a small-scale dynamo,
which means that the scale of the field would not exceed the scale
of the flow, L0. In order to check whether this flow can also generate
fields on a scale larger than that of the flow we consider now also
cases with L = 2L0 and 4L0. In Fig. 2, we compare visualizations
of Bx and Bz for L/L0 = 1, 2 and 4. In the case L = L0, the
magnetic field has a scale that is equal to that of the flow, but in
the other cases the field breaks up into smaller-scale contributions

with a modulation in the y direction on the scale of the domain.
In the latter case, the field on the scale of the domain is reminis-
cent of that found in helical turbulence (Brandenburg 2001), but
it is less dominant and less persistent than for L = L0. This is
mainly explained by a strong reduction of net cross-helicity when
the field breaks up into smaller-scale contributions. For these rea-
sons, we focus in the remainder of this paper on the case L = L0,
which is perhaps the simplest case known to produce net cross-
helicity.

Dynamos with L > L 0 produce large-scale fields, but they are not
as prominent and persistent as in the case of large-scale dynamos
that are driven by kinetic helicity. This is mainly because in the sim-
ulations with larger domains the cross-helicity is strongly reduced
once the magnetic field breaks up into smaller-scale fields.

In Fig. 3, we show the evolution of the mean magnetic field,
mean velocity and the small-scale cross-helicity, hc = 〈u · b〉, for a
run with Rm = 16 in a logarithmic scale; see panel 1 and also the
evolution of the magnetic energy compared to that of an α2 dynamo
on a linear scale in panel 2. Time is normalized with respect to
the microscopic visco-resistive time-scale, (μ k2

0)−1. Given that the
initial magnetic field is spatially random, it is first smoothened
by resistive effects, leading to a short period where the magnetic
energy decreases. Exponential growth occurs after about half a
visco-resistive time, and then turns into a slow saturation phase
after about two visco-resistive times, which is best seen on a linear
scale (lower panel of Fig. 3). However, the late saturation behaviour
deviates from that of the α2 dynamo, where the late evolution of the
mean field is well described by a switch-on curve of the form

B
2 ∼ 1 − exp(−	t/τη), (11)

where 	t = t − t s is the time after the end of the exponential growth
phase at t = t s and τ η = (2ηk2

1)−1 is the large-scale resistive time
based on the wavenumber k1, which would be equal to k0 in the
present case.

Figure 3. Saturation behaviour for a run with Rm = 16. The dotted
line shows that the simple-minded helicity constraint formula does not

describe the saturation of B
2

correctly. The labels U, B and hC denote

〈U2
k0/F0〉1/2, 〈B

2
k0/μ0ρ0F0〉1/2 and 〈u · b〉 (k0/F 0)1/2 (μ0ρ0)−1/4.
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Figure 4. Comparison of the saturation behaviour for three different values
of Rμ.

In Fig. 4, we demonstrate that the saturation time is essentially
independent of the value of Rμ. Here, time is expressed in dynamical
units by normalizing it in terms of the turnover time (u0k0)−1. The
amplitude of the mean field increases mildly with Rμ. A suitable
non-dimensional representation of the mean field is the quantity

B
2
μk0/μ0ρ0u

2
0. This number turns out to be of order unity and only

weakly dependent on the value of Rμ for values between 5 and 20.
In the three cases displayed in Fig. 4, we have verified that the

choice of averaging is unimportant. In other words, the results for
yz and xz averages agree with those for the xy averages shown in
Fig. 4 within 0.1–0.5 per cent.

4 TURBULENT MAG NETIC DIFFUSIVITY

In a number of circumstances, it has been possible to characterize the
production of mean magnetic field in terms of α effect and turbulent
magnetic diffusivity. Here, ‘turbulent’ refers to the commonly used
name for transport coefficients describing the evolution of mean
fields rather than a distinction between turbulent and laminar flow
properties. Both α effect and turbulent magnetic diffusivity have
been determined also for other laminar flows such as the Roberts
flow (Brandenburg, Rädler & Schrinner 2008c). However, such a
description may not be applicable in the present case because of the
possible presence of the additional Yoshizawa effect. Ignoring this
complication for a moment, we can determine the αij and ηij tensors
in the relation

(u × b)i = αijBj − ηij J j , (12)

using the test-field method (Schrinner et al. 2005, 2007). In this
approach, one solves an additional set of three-dimensional partial
differential equations for vector fields bpq, where the labels p =
1, 2 and q = 1, 2 correspond to different pre-determined one-
dimensional test fields B

pq
. This leads to four vector equations for

u × bpq that allow us to determine all components of αij and ηij

as functions of z and t. Owing to homogeneity and stationarity, it
makes sense to present their averages over z and t. The test-field
method has been criticized by Cattaneo & Hughes (2009) on the
grounds that the small-scale dynamo action would affect the results.
However, for magnetic Reynolds numbers of up to about 100 the
results of the test-field method have been proven to be consistent
with results from direct simulations (Mitra et al. 2009).

The evolution equations for bpq are derived by subtracting the
mean-field evolution equation from the evolution equation for B.
These equations are distinct from the original induction equation in

Figure 5. Dependence of the normalized diagonal components of the tur-
bulent resistivity tensor for Rm = 6 (upper panel) together with the corre-
sponding growth rates (lower panel).

that the curl of the resulting mean electromotive force is sub-
tracted. This method has been successfully applied to the kine-
matic case of weak magnetic fields in the presence of homogeneous
turbulence either without shear (Brandenburg et al. 2008c; Sur,
Brandenburg & Subramanian 2008) or with shear (Brandenburg
2005; Brandenburg et al. 2008a), as well as to the non-kinematic
case with equipartition-strength dynamo-generated magnetic fields
(Brandenburg et al. 2008b; Tilgner & Brandenburg 2008).

Using this method, it turns out that all components of αij vanish
within error bars, and that ηij has only diagonal components. How-
ever, as shown in Fig. 5, the η22 component can be negative within
a limited range of wavenumbers. (The fact that η11 �= η22 is not a
priori surprising, because both U and B have only components in
the x direction.) One of the two growth rates,

λ1 = −(η + η11)k2
0, λ2 = −(η + η22)k2

0, (13)

is therefore positive. This suggests that there is the possibility
of driving a dynamo by a negative turbulent resistivity effect
(Zheligovsky, Podvigina & Frisch 2001; Urpin 2002). In such a
case, it is important to determine the wavenumber where the growth
rate is largest. In our case, this happens for k ≈ k1 (see lower panel
of Fig. 5).

In the following, we discard the possibility of dynamo activ-
ity driven through a negative turbulent resistivity effect, because
the test-field method ignores the presence of the Yoshizawa effect.
Thus, we argue that equation (12) is an inadequate ansatz that re-
sults in an apparent negative turbulent resistivity component. In the
absence of a proper method for determining ηij, we consider now
a phenomenological description of the Yoshizawa effect using an
isotropic turbulent resistivity, ηt.

5 PH E N O M E N O L O G Y

The slow saturation process found here is reminiscent of the slow
saturation process found for the α2 dynamo, where net magnetic
helicity is being produced on a resistive time-scale. In the present
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case, the magnetic helicity is essentially zero, but net cross-helicity
is being produced. Owing to the conservation of cross-helicity,
there is the possibility here too that full saturation requires a visco-
resistive time-scale, τμ = (μk2

f )−1, where μ = ν + η and kf is the
wavenumber corresponding to the typical scale of u and b. In our
case, these fields depend essentially only on the x and y directions,
so k2

f = 2k2
0. The form of this relation is not known, although it is

already clear that it is not the same as in the case of the non-linear
α effect. Most importantly, the saturation time does not seem to
depend sensitively on the value of Rμ (Fig. 4). Moreover, owing
to the presence of a forcing term in the momentum equation, the
cross-helicity is not necessarily conserved in the limit μ → 0, but it
may change. Indeed, under the assumption of incompressibility, the
evolution of the cross-helicity per unit volume, 〈U · B〉, is given by

d

dt
〈U · B〉 = 〈F · B〉 − μ〈W · J〉. (14)

Here, angular brackets denote volume averages and W = ∇ × U
is the vorticity. Note the presence of the forcing term that can lead
to the production of net cross-helicity if the field has a component
that is aligned with the forcing.

Next, we restrict ourselves to horizontal averages, denoted by an
overbar, and consider first their evolution equations,

∂

∂t
A = U × B + E − η J, (15)

∂

∂t
U = U × W + J × B + F + F − ν Q, (16)

where E = u × b is the mean electromotive force due to the cor-
relation of small-scale velocity and magnetic field correlations,
F = u × w + j × b is the mean force due to advection and
Lorentz force of small-scale contributions and Q = ∇ × W is
the curl of the vorticity. As discussed above, lower-case characters
denote the residual or ‘fluctuating’ components, so, for example,
w = W − W is the residual vorticity.

We note that the U × W and J × B terms will be of no sig-
nificance, because for our one-dimensional z-dependent averages
only the x and y components of A and U will be important for the
evolution of the dynamo. We assume that E has only contributions
from the Yoshizawa (1990) effect and from turbulent resistivity and
that F has only a contribution from turbulent viscosity, i.e.

E = ϒW − ηt J, (17)

F = −νt Q. (18)

A simplified derivation of the Yoshizawa (1990) effect is given in
Appendix A, which shows that

ϒ = τu · b. (19)

We have chosen here the symbol ϒ instead of Yoshizawa’s original
symbol γ , because γ is frequently used to describe the turbulent
pumping velocity. Furthermore, ϒ looks similar to γ and it also
reminds of the letter Y in Yoshizawa’s name.

In addition, there is also turbulent viscosity νt = 2
15 τu2 and

turbulent resistivity ηt = 1
3 τu2 (Kitchatinov, Rüdiger & Pipin

1994), although numerical simulations suggest ν t ≈ ηt (Yousef,
Brandenburg & Rüdiger 2003). Here, τ is a typical time-scale that
may be estimated in terms of the turnover time, τ = (urmsk0)−1,
where urms = 〈u2〉1/2.

Inserting equations (17) and (18) into equations (15) and (16),
we derive the following evolution equation for the cross-helicities

Figure 6. Plot of the force–magnetic field correlations for a run with
Rm = 32.

of the mean and fluctuating fields:

d

dt
〈U · B〉 = 〈F · B〉 + ϒ〈W

2〉 − μT〈W · J〉, (20)

d

dt
〈u · b〉 = 〈 f · b〉 − ϒ〈W

2〉 + μt〈W · J〉 − μ〈w · j〉, (21)

where μt = ν t + ηt is the sum of turbulent viscosity and resistivity
and μT = μt + μ is the total (turbulent and microscopic) value.
One can easily verify that the sum of equations (20) and (21) gives
equation (14).

In the following, we shall use equation (21) to describe the evo-
lution of ϒ fully in terms of mean-field quantities. This approach
was recently pursued by Kandus (2007) for the more complete case
where kinetic and magnetic helicities are also present. In equa-
tion (21), the term 〈u · b〉 is directly related to the mean-field
quantity ϒ , and so is 〈w · j〉 = k2

f 〈u · b〉. An exception is the cor-
relation of the forcing term with b, i.e. the term 〈 f · b〉. However,
it turns out that for the Archontis flow considered here, each of the
three terms, 〈FiBi〉 for i = 1, 2 and 3, contributes equal amount,
so 〈F · B〉 = 1

3 〈F · B〉 and 〈 f · b〉 = 2
3 〈F · B〉, so that we can

express

〈 f · b〉 = 2〈F · B〉 (22)

purely in terms of mean-field quantities. The validity of these re-
lations can be seen in Fig. 6, where we plot the aforementioned
correlations for a run with Rm = 32.

With these preparations, we can write down an evolution equa-
tion for ϒ ,

dϒ

dt
= 2τ 〈F · B〉 − τϒW

2 + μtτ 〈J · W〉 − R̃−1
μ

ϒ

τ
, (23)

where we have defined a modified visco-resistive Reynolds number

R̃μ = (
μk2

f τ
)−1

. (24)

Note that it is related to Rμ via

R̃μ = (kf/k0)2(urms/u0)Rμ. (25)

Analogous to the magnetic case, we can write this equation as a
quenching formula by keeping the time derivative as an implicit
term,

ϒ = R̃μ

2τ 2〈F · B〉 + τ 2μt〈W · J〉 − τdϒ/dt

1 + R̃μ〈W
2〉τ 2

. (26)

These equations show that the generation of large-scale magnetic
field by the ϒ term produces 〈U · B〉 of the same sign as that of
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Figure 7. Saturation behaviour of large- and small-scale cross-helicities for
two different values of Rm.

ϒ (= τu · b). This is also seen in the simulations, where 〈U · B〉
and u · b do indeed have identical signs for the same Rm, but could
individually, depending on initial conditions, have different signs;
see Fig. 7 for two cases with different Rm values. However, this sign
property is a major difference to the case of the α2 dynamo where
〈A · B〉 and 〈a · b〉 have opposite signs. The reason for this lies
in the absence of a ϒ term that is independent of u · b, i.e. there
is only the term ϒ = τu · b. By contrast, the α effect has also a
contribution from kinetic helicity that is independent of magnetic
helicity, i.e. α = 1

3 τ j · b − 1
3 τω · u.

It is instructive to inspect this difference by comparing equa-
tion (26) with the analogous equation for α quenching. Written in
implicit form (see e.g. Brandenburg 2008), and ignoring magnetic
helicity fluxes, this equation takes the form

α = α0 + Rm

(
ηt〈J · B〉/B2

eq − τdα/dt
)

1 + Rm〈B
2〉/B2

eq

, (27)

where Beq = 〈ρu2〉1/2 is the equipartition field strength and α0 is the
kinematic α effect, i.e. the term proportional to ω · u, which is the
crucial term that has no correspondence with equation (26). Another
difference is the presence of the forcing term in equation (26). Apart
from that, the two equations are quite analogous, i.e. R̃μ is replaced
by Rm, μt is replaced by ηt, ϒ is replaced by α, τ 2 is replaced by
B−2

eq and W is replaced by B.

6 K INEMATIC GROW TH PHASE

The equations discussed above were originally motivated by trying
to understand the late non-linear stage of the dynamo. However,
as we see from equation (26), ϒ itself has terms proportional to
the mean field, suggesting that ϒ should increase with the mean
magnetic field. This is indeed the case during the kinematic stage;
see the dotted line in the upper panel of Fig. 3. This suggests that
the ϒ term might also be responsible for the kinematic exponential
growth of the dynamo. In order to identify the relative importance
of this mechanism compared with the negative magnetic diffusivity
effect discussed at the end of Section 3, we investigate a simple
model based on the induction and momentum equations along with
the evolution equation for the small-scale cross-helicity. The z-
dependent averaging procedure for the mean magnetic and velocity
fields then implies,

∂U
∂t

= F − νT Q, (28)

∂B
∂t

= ∇ × (ϒW − ηT J), (29)

where νT = ν t + ν and ηT = ηt + η. We write equations (28) and
(29) along with equation (23) in the form

U̇ = F0 − νT k2
0U, (30)

Ḃ = ϒk2
0U − ηT k2

0B, (31)

ϒ̇ = 2τF0B + τk2
0U (μtB − ϒU ) − R̃−1

μ τ−1ϒ, (32)

where the dots denote a time derivative and double z derivatives
have been replaced by a multiplication with −k2

0. During the early
kinematic phase, the mean velocity is approximately constant. Sim-
ulation results for a run with Rm = 32, then yield Ũ = U/u0 ≈ 0.6.
Applying therefore equation (30) to the steady state gives νT =
F 0/k

2
0U , i.e. νT = 1.7u0/k0.

The early exponential growth of both B and ϒ is governed by
just the first terms on the RHS of equations (31) and (32), i.e.

d

dt

(
B

ϒ

)
=

(
0 k2

0U

2τF0 0

)
. (33)

This assumes that the ηT term in equation (31) is negligible. There-
fore, the expected maximal growth rate for the Yoshizawa effect
is

λϒ = ±
√

2F0τk2
0U. (34)

Here, we may estimate τ in terms of the turnover time, τ =
(urmsk0)−1. Our dimensionless turnover time, u0/urms, is then about
0.4, so the dimensionless growth rate is

λϒ

u0k0
= ±

√
2τ̃ Ũ . (35)

This amounts to about 0.7, which is in good agreement with the
simulation data. This suggests that the Yoshizawa effect may indeed
be responsible for driving the dynamo in the kinematic stage.

This simple model does not describe the non-linear saturation
process. So, if one wanted to model this, one would need to assume
some ad hoc quenching prescriptions for various quantities such as
ν t, ηt and τ . This is in stark contrast to the case of the α2 dynamo
where equation (27) describes both the kinematic growth and the
slow saturation phase quite accurately in the case of periodic bound-
ary conditions (Blackman & Brandenburg 2002; Field & Blackman
2002).

7 C O N C L U S I O N S

We considered here the Archontis flow, which is a generaliza-
tion of the ABC flow. Such a flow was thought to be a small-
scale dynamo capable of generating magnetic fields at most on the
scale of the flow. However, this flow tends to produce net cross-
helicity, which can lead to a mean-field dynamo effect proposed
originally by Yoshizawa (1990). Direct numerical simulations of
such flows performed with bigger box size show the presence of
magnetic fields on scales larger than the scale of the box (Fig. 2).
This is reminiscent of large-scale dynamos driven by kinetic helic-
ity, where the resulting field is however much more prominent or
persistent.

The strongest cross-helicity production is found when the scale
of the domain coincides with that of the flow. In that case, dynamo
action is possible once Rm exceeds a certain critical value which in
our units turns out to be Rm 
 3. The present work has shown that
the kinematic phase of the Archontis dynamo can be modelled in
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terms of the Yoshizawa effect. The sign of the cross-helicity depends
on initial conditions, so either sign is possible for one and the same
flow field. Simple phenomenological considerations support the
idea that the Yoshizawa effect can be expressed in terms of the mean
field alone; see equation (26). This expression looks similar to the
dynamical quenching formula for the α effect under the constraint of
magnetic helicity conservation. However, this expression does not
actually describe quenching, but growth. So, contrary to our initial
expectation, this mechanism is not constant in time and so it does
not correspond to a battery with linear growth, as was assumed
by Brandenburg & Urpin (1998). Instead, it leads to exponential
growth. At the end of the exponential growth phase, the dynamo
shows a characteristic saturation behaviour that is reminiscent of
α effect dynamos that are controlled by resistive magnetic helicity
evolution. In the present case, the conservation of cross-helicity
was initially thought to be responsible for this prolonged saturation
behaviour, but it turns out that the presence of a forcing term in the
momentum equation can lead to a production of net cross-helicity
even in the ideal limit.

It has long been speculated that the Yoshizawa effect could be
relevant in accretion discs and galaxies where differential rotation
is strong (Yokoi 1996). However, it turns out that, unlike α effect
dynamos that normally have a given kinematic value of α, the
ϒ term cannot be calculated a priori, but it itself depends on the
mean field. The end result is again reminiscent of the α effect in
that both ϒW as well as αB are linear in B during the kinematic
growth phase. However, the results of the test-field method show
clearly that there is no α effect in that case. Indeed, the mean
electromotive force has no component along the mean magnetic
field, confirming that there is no α effect. There is also no shear–
current (or W × J) effect (Rogachevskii & Kleeorin 2003, 2004),
because the off-diagonal components of ηij were found to be zero
within error bars (Section 4). This supports the idea that the growth
of the magnetic field is here indeed the result of the Yoshizawa
effect. Although the η22 component is found to be negative when
ignoring the Yoshizawa effect, it is argued that this result is an
artefact of using an inadequate ansatz for the mean electromotive
force.

Obviously, the flow considered here is relatively simple and
hardly of direct astrophysical relevance. However, it has been sug-
gested that dynamos with field-aligned flows might be particu-
larly efficient in generating magnetic fields in the solar tachocline
(Galloway 2008). If those ideas can be substantiated, it would be
interesting to see whether the phenomenological description devel-
oped in the present paper carries over also to other cases such as
this tachocline model.

Another possible avenue for future research would be the study
of fully turbulent dynamos in the presence of cross-helicity. An
example of this was shown in Fig. 2, where the flow was driven
by the Archontis forcing function, but on a scale that is smaller
than that of the computational domain. Those dynamos produce
large-scale fields, but they are not as prominent and persistent as in
the case of large-scale dynamos that are driven by kinetic helicity.
This is mainly because in the simulations with larger domains the
cross-helicity is strongly reduced once the magnetic field breaks up
into smaller-scale fields.

As mentioned in the introduction, the solar wind is one of the
few examples where the turbulence is believed to have net cross-
helicity, but with opposite signs in the two hemispheres. Although
the solar wind is not normally thought to harbour dynamos, there
is the problem of an unexplained contribution to energy deposition
away from the source. It would therefore be worthwhile exploring

the role of the Yoshizawa effect in the conversion of energy in solar
wind turbulence.
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Zheligovsky V. A., Podvigina O. M., Frisch U., 2001, Geophys. Astrophys.

Fluid Dyn., 95, 227

APPENDIX A : C RO SS-HELICITY EFFECT

We present here a simplified derivation of equation (19) using the
minimal τ approximation (Blackman & Field 2002). We use the
linearized evolution equations for the fluctuations b and u and cal-
culate

∂E/∂t = u × ḃ + u̇ × b. (A1)

In order to highlight the essence of the Yoshizawa (1990) term, we
isolate from the very beginning the terms that are proportional to
the mean vorticity. Thus, we consider in the evolution equations of
ḃ and u̇ only those terms that contribute to terms proportional to W
and write

ḃ = +b · ∇U + · · · = − 1
2 b × W + · · · , (A2)

u̇ = −u · ∇U + · · · = + 1
2 u × W + · · · , (A3)

where we have included only the antisymmetric contribution to ∇U
that leads to terms with W , i.e. Ui,j = − 1

2 εijkWk+ the symmetric

part, where a comma denotes a partial derivative. Next, we calculate
∂E/∂t and include only terms proportional to u · b by assuming
uibj = 1

3 δij u · b+ terms proportional to u × b, but those would
later not contribute to the component of E that is parallel to W . In

this way, we obtain from u × ḃ and u̇ × b each the term 1
3 u · b, so

∂E/∂t = 2
3 u · b W + · · · − triple correlations. (A4)

In the spirit of the minimal τ approximation, we approximate the
triple correlations by a quadratic correlation in the form of a damp-
ing term, i.e. we assume that the triple correlations are equal to
E/τ . Finally, assuming stationarity, we drop the time derivative and
obtain E = 2

3 τu · b W .
In an alternative derivation, one can write U · ∇U = U × W −

1
2 ∇U2 and subsume the gradient term in a generalized pressure
term. Splitting U × W into mean and fluctuating part yields then
directly a term u × W without the 1/2 factor. The final result is then

E = τu · b W , (A5)

which is also the expression used here.
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