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In this study we provide the first numerical demonstration of the effects of turbulence on the mean Lorentz force and
the resulting formation of large-scale magnetic structures. Using three-dimensional direct numerical simulations (DNS)
of forced turbulence we show that an imposed mean magnetic field leads to a decrease of the turbulent hydromagnetic
pressure and tension. This phenomenon is quantified by determining the relevant functions that relate the sum of the tur-
bulent Reynolds and Maxwell stresses with the Maxwell stress of the mean magnetic field. Using such a parameterization,
we show by means of two-dimensional and three-dimensional mean-field numerical modelling that an isentropic density
stratified layer becomes unstable in the presence of a uniform imposed magnetic field. This large-scale instability results in
the formation of loop-like magnetic structures which are concentrated at the top of the stratified layer. In three dimensions
these structures resemble the appearance of bipolar magnetic regions in the Sun. The results of DNS and mean-field nu-
merical modelling are in good agreement with theoretical predictions. We discuss our model in the context of a distributed
solar dynamo where active regions and sunspots might be rather shallow phenomena.
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1 Introduction

Turbulence effects generally refer to the occurrence of
correlations between components of velocity, temperature,
and/or magnetic fields at small scales. A typical example is
turbulent viscosity, which results from the spatial exchange
of turbulent eddies characterized by velocity correlations.
This leads to the dissipation of energy at small scales.

However, there is also the possibility of additional (e.g.
non-diffusive) turbulence effects, as is perhaps best known
in mean-field electrodynamics and dynamo theory. Here one
models the effects of the mean electromotive force, i.e. the
turbulence effects of velocity and magnetic field fluctua-
tions, on the evolution of the mean field. This can lead to
the occurrence of the famous α effect, in addition to turbu-
lent magnetic diffusion, turbulent diamagnetic velocity, etc.
(Moffatt 1978; Krause & Rädler 1980). Another example
is the Λ effect in rotating anisotropic hydrodynamic turbu-
lence, which can lead to the occurrence of differential rota-
tion in cosmic bodies such as the Sun (Rüdiger 1980, 1989;
Rüdiger & Hollerbach 2004). In that case the relevant cor-
relations come from the mean Reynolds stress tensor and its
dependence on the local angular velocity.

A related example is the combined Reynolds and Max-
well turbulent stress tensor and its dependence on the mean
magnetic field. The first analytic calculations of the de-
pendence of the turbulent Reynolds stress on the mean
magnetic field in the framework of the first-order smooth-
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ing approximation were performed by Rädler (1974) and
Rüdiger (1974). Later, also the combined effects of the tur-
bulent Reynolds and Maxwell stress tensors were consid-
ered (Kleeorin et al. 1989, 1990; Rüdiger & Kichatinov
1990). It was noticed that this can lead to a local reduction
of the total turbulent pressure and hence to the possibility
of self-induced concentrations of large-scale magnetic fields
(Kleeorin et al. 1989, 1990, 1996; Kleeorin & Rogachevskii
1994; Rogachevskii & Kleeorin 2007). Such a process may
play an important role in the formation of sunspots and ac-
tive regions in the Sun. It may be complementary to the
magnetically induced suppression of the turbulent energy
flux, which would lead to further cooling and hence a fur-
ther concentration of the structures (Kitchatinov & Mazur
2000).

The currently leading explanation for the formation of
sunspots is related to the emergence of deeply rooted mag-
netic flux tubes (Parker 1955, 1982, 1984). Such flux tubes
are generally believed to be produced and ‘stored’ near the
bottom of the convection zone (Spiegel & Weiss 1980). The
storage of magnetic fields and the formation of flux tubes in
the overshoot layer near the bottom of the solar convective
zone was investigated in a number of publications (see, e.g.,
Spruit 1981; Spruit & van Ballegooijen 1982; Schüssler et
al. 1994; Moreno-Insertis et al. 1996; Tobias et al. 2001;
Tobias & Hughes 2004). However, in order that the tubes
retain their basic east–west orientation during their ascent
over many pressure scale heights, the magnetic field must be
strong enough (Choudhuri & D‘Silva 1990) and is estimated
to be around 105 G at the bottom of the convection zone
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6 A. Brandenburg, N. Kleeorin & I. Rogachevskii: Large-scale magnetic flux concentrations

(D‘Silva & Choudhuri 1993). Such fields would be up to a
hundred times stronger than the equipartition value, which
is one of several arguments that have led to the idea that flux
emergence of dynamo-generated fields might instead be a
shallow phenomenon (Brandenburg 2005; Schatten 2009).
Such a scenario appears also compatible with solar subsur-
face flows, as inferred from local helioseismology (Zhao et
al. 2001; Kosovichev 2002). In particular, Zhao et al. (2004)
and Hindman et al. (2009) find the presence of converging
flows around active regions at radii as large as 100–200 Mm.
It appears that these convergent flows might actually be
the source of the formation of active regions and perhaps
sunspots rather than a consequence, as is normally believed
(Parker 1979a; Hurlburt & Rucklidge 2000). Of course, in
the immediate proximity of individual spots one observes
outgoing flows. Those are probably superficial, less than 1–
2 Mm deep, and appear to be due to the dynamical effects
of magnetoconvection in an inclined magnetic field of the
penumbra (e.g., Thomas et al. 2002; Heinemann et al. 2007;
Rempel et al. 2009; Kitiashvili et al. 2009).

The goal of this paper is to investigate the effects of
turbulence on the mean Lorentz force by means of direct
numerical simulations (DNS) for forced turbulence and to
study the instability of a uniform large-scale magnetic field
in an adiabatically stratified layer by means of mean-field
numerical modelling based on parameterizations both of an-
alytic formulae by Rogachevskii & Kleeorin (2007) and the
results of DNS for forced turbulence. In order to study the
essence of the effect, we make several simplifications by ne-
glecting the energy equation, i.e. the specific entropy is as-
sumed to be strictly constant in space and time. In the mean-
field numerical modelling we neglect the suppression of
turbulent magnetic diffusivity and turbulent viscosity, and
omit correlations with density fluctuations. Nevertheless,
the mean density is allowed to evolve fully self-consistently
according to the usual continuity equation.

2 Turbulence effects on mean Lorentz force

Throughout this paper we adopt units for the magnetic field
where the vacuum permeability is equal to unity, i.e. the
magnetic pressure is given by 1

2B2.

2.1 General considerations

We use the equations of mean-field magnetohydrodynam-
ics (MHD). These equations are obtained by averaging the
original MHD equations over small-scale fluctuations. This
technique is best known in the case of the induction equa-
tion (Moffatt 1978; Krause & Rädler 1980). In this study we
are mainly interested in effects of turbulence on the mean
Lorentz force. Let us consider the momentum equation,
∂

∂t
ρ U = − ∂

∂xj
Πij , (1)

where

Πij = ρ UiUj + δij

(
p + 1

2B2
)− BiBj − σij (2)

is the momentum stress tensor, U and B are velocity and
magnetic fields, p and ρ are the fluid pressure and density,
δij is the unit Kronecker tensor, σij = 2ρνSij is the viscous
stress tensor, with

Sij = 1
2 (Ui,j + Uj,i) − 1

3δij∇ · U (3)

being the traceless rate of the strain tensor, and ν is the
kinematic viscosity. Ignoring the turbulent correlations with
density fluctuations for low-Mach number turbulence, the
averaged momentum equation is

∂

∂t
ρ U = − ∂

∂xj
Πij , (4)

where Πij = Π
m

ij + Π
f

ij is the mean momentum stress ten-
sor split into contributions resulting entirely from the mean
field (indicated by superscript m) and those of the fluctuat-
ing field (indicated by superscript f). The tensor Π

m

ij has the
same form as Eq. (2), but all quantities have now attained
an overbar, i.e.

Π
m

ij = ρ U iU j + δij

(
p + 1

2B2
)− BiBj − σij . (5)

We emphasize here that p is just the mean gas pressure and
σij is the average of the microscopic viscous stress tensor,
σij . In this paper we consider isotropic background turbu-
lence (i.e., turbulence with a zero-mean magnetic field). The
contribution from the fluctuating fields, in turn, is split into
contributions that are independent of the mean fields (and
hence isotropic and proportional to δij) and contributions
which depend on the mean fields,

Π
f

ij = pt0δij − σeff
ij . (6)

Here, pt0 is the turbulent pressure in the absence of a mean
magnetic field and σeff

ij = σK
ij + σM

ij quantifies the turbu-
lent viscosity, σK

ij = 2ρνtSij , and the additional effects of
the mean magnetic field on the effective stress tensor. The
combination pt0δij−σM

ij results from the fluctuations of ve-
locity and magnetic fields, u = U − U and b = B − B,
respectively, and is given by

pt0δij − σM
ij = ρ uiuj + 1

2δijb2 − bibj . (7)

In the absence of a mean magnetic field, the turbulent back-
ground pressure is

pt0 = 1
6b2

0 + 1
3ρu2

0, (8)

where the subscripts 0 on b2 and u2 indicate values in the
absence of the mean magnetic field. Magnetic fluctuations
b are generated both by small-scale dynamo action and by
tangling of the mean magnetic field by velocity fluctuations.
On the other hand, the velocity fluctuations also have two
contributions, those that depend on the mean magnetic field
and those that do not.

Following Rogachevskii & Kleeorin (2007), the part of
the effective stress tensor that depends on the mean mag-
netic field is parameterized as

σM
ij (B) = −qsBiBj + 1

2δijqpB
2, (9)

where qs and qp are functions of the mean field, B, and the
magnetic Reynolds number, Rm. Equation (9) implies that
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the effective mean Lorentz force that takes into account the
effects of turbulence, can be written as

ρ FM = − 1
2∇[(1 − qp)B2] + B · ∇ [

(1 − qs)B
]
. (10)

The detailed analytic expressions for qs(B) and qp(B) have
been given by Rogachevskii & Kleeorin (2007). Asymptotic
formulae for the nonlinear functions, qp(B) and qs(B), are
given below. For this purpose we define β ≡ B/Beq, where
Beq = (ρu2

0)
1/2 is the equipartition field strength.

For very weak mean magnetic fields, 4β � Rm−1/4,
qp and qs are approximately constant and given by

qp(β) =
4
45
(
1 + 9 lnRm

)
,

qs(β) =
2
15
(
1 + 4 lnRm

)
;

for Rm−1/4 � 4β � 1 we have

qp(β) =
16
25

[1 + 5| ln(4β)| + 32 β2] ,

qs(β) =
32
15

[
| ln(4β)| + 1

30
+ 12β2

]
,

and for strong fields, 4β � 1, we have, according to Ro-
gachevskii & Kleeorin (2007),

qp(β) = 1/6β2 , qs(β) = π/48β3 .

In Sect. 2.2 we present DNS evidence that the functions
qp(B) and qs(B) are positive, indicating the possibility of
a reduction of the effective Lorentz force, i.e., a decrease
of the effective magnetic pressure and magnetic tension in
small-scale turbulence.

2.2 DNS of turbulence effects on mean Lorentz force

In order to study turbulence effects on the mean Lorentz
force and to determine the functions qp(B) and qs(B) from
DNS, we consider forced turbulence in a periodic three-
dimensional domain in the presence of an imposed uniform
magnetic field, say B0 = (B0, 0, 0). We determine qs and
qp from Eqs. (7) and (9) for i = j = x,

pt0 + 1
2 (b2

x − b2
y − b2

z) − ρu2
x = (1

2qp − qs)B
2

0, (11)

and i = j = y,

pt0 + 1
2 (b2

y − b2
x − b2

z) − ρu2
y = 1

2qpB
2

0, (12)

where pt0 is given by Eq. (8). First, we determine pt0 from a
simulation with B0 = 0. Then, we use Eq. (12) to determine
qp(B). Finally, to determine qs(B) we subtract Eq. (11)
from Eq. (12), i.e.

(b2
y − b2

x) − ρ (u2
y − u2

x) = qsB
2

0. (13)

In order to determine separately the effects of the mean field
on the turbulent Maxwell and Reynolds stresses we also
compute their respective contributions qM

p + qK
p = qp and

qM
s + qK

s = qs. We consider here cases where 1 � Rm <
Rmc, i.e., Rm is smaller than the threshold Rmc for small-
scale dynamo action. Thus, we have

qM
p = (b2

y − b2
x − b2

z)/B
2

0, qK
p = 2(pt0 − ρu2

y)/B
2

0. (14)

Fig. 1 B0 dependence of the normalized turbulent energy ẼT =
ET/E0, where E0 is the value of ET for B0 = 0, together
with the contributions from kinetic and magnetic energies, ẼK =
EK/E0 and ẼM = EM/E0 (upper panel), as well as the coeffi-
cients qp, qK

p , qM
p , and qs (second and third panels), obtained from

DNS for Re = 180 and Rm = 45.

In Fig. 1 we show the results from the simulations of
forced turbulence in the presence of an imposed magnetic
field. Here we have also plotted the total turbulent energy,
ET = EK + EM, where

EK = ρ u2/2, EM = b2/2 (15)

are the energy densities of velocity and magnetic fluctua-
tions, respectively. In all cases we adopt volume averages
over a triply-periodic domain. The simulations were per-
formed with the PENCIL CODE1, which uses sixth-order
explicit finite differences in space and third-order accu-
rate time stepping method. They are similar to the DNS
of Haugen & Brandenburg (2004), which also have an im-
posed uniform field, but the value of the magnetic Reynolds
number was large enough to support dynamo action. As
in earlier work, the forcing function consists of plane non-
polarized waves with an average wavenumber kf = 1.5 k1,
where k1 = 2π/L is the smallest wavenumber that fits
into a 3D periodic domain of size L. We use an isothermal

1 http://pencil-code.googlecode.com
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8 A. Brandenburg, N. Kleeorin & I. Rogachevskii: Large-scale magnetic flux concentrations

equation of state with constant sound speed cs. The forc-
ing strength is arranged such that the turbulent rms velocity,
urms, is below cs. In all our runs the maximum turbulent
Mach number, urms/cs, is around 0.2, so that compressibil-
ity effects are still weak.

The fluid Reynolds number based on the forcing wave-
number, kf = 2π/lf , is Re = urms/νkf ≈ 180 and the mag-
netic Prandtl number is ν/η = 0.25, so the magnetic
Reynolds number, Rm = urms/ηkf ≈ 45, is just small
enough so that no small-scale dynamo is excited.2 Note that
the magnetic Reynolds number, Rm, used in Sect. 2.1 is
based on forcing scale lf = 2π/kf , and thus Rm = 2πRm.
In all cases we normalize the field strength in terms of the
equipartition value, Beq = ρ

1/2
0 urms. The number of mesh

points is 643.
As follows from our DNS study, both functions qp(B)

and qs(B) are positive and exceed unity for weak fields. The
error bars are obtained by calculating averages over each of
three equally long intervals of the full time series and taking
the largest deviation from the full averages. For small values
of B0/Beq, the turbulent fluctuations dominate over the ef-
fects of shredding the imposed field, which increases the er-
ror bars. Indeed, for zero mean field the relative anisotropy,
(2pt0−ρu2

x)/3pt0, is about±10−3. In order for the absolute
error of qp to stay below 10, we must have B0/Beq > 0.01.
For those field strengths the results are in agreement with
the prediction of Rogachevskii & Kleeorin (2007). Note that
both theory and simulations suggest that qp > 2qs.

2.3 Physics of turbulence effects on Lorentz force

The physics of the effect of turbulence on the large-scale
Lorentz force is as follows. The equation of state for
isotropic turbulence is given by

pt0 =
1
3
EM +

2
3
EK (16)

(see Eq. 8 and also, e.g., Landau & Lifshitz 1975, 1984),
where EK and EM were defined by Eq. (15). The total en-
ergy density ET = EK + EM of homogeneous turbulence
with a mean magnetic field B is determined by the equation

∂ET

∂t
= IT − ET

τ0
+ ηt(∇ × B)2, (17)

where τ0 is the correlation time of the turbulent velocity
field in the maximum scale lf of turbulent motions, IT is
the energy source of turbulence, ηt is the turbulent mag-
netic diffusion. For a given time-independent source of tur-
bulence IT and for t � τ0 the total energy density of the
turbulence reaches a steady state

ET = const = τ0 IT , (18)

where we neglect a small magnetic source ηt(∇ × B)2 of
the turbulence [that is of the order of O(l2f /H2

B), and HB

is the characteristic scale of the mean magnetic field spatial

2 Following Haugen et al. (2004) and Schekochihin et al. (2005, 2007),
the critical value of Rm is between 70 and 80 for this value of the magnetic
Prandtl number.

variations]. The approximate constancy of ET is compati-
ble with DNS, where we found only a small decrease (20%)
for strong (equipartition strength) mean fields (see the up-
per panel of Fig. 1). The reason for the departure is possibly
a dependence of τ0 on B. However, this decrease only en-
hances the modification of the Lorentz force by turbulence.

Equations (16) and (18) imply that the change of tur-
bulent pressure δpt0 is proportional to the change of the
magnetic energy density δEM. In particular, using δEK =
−δEM, one expects δpt0 = −(1/3) δEM. Therefore, the to-
tal turbulent pressure is reduced when magnetic fluctuations
are generated.

For a non-zero large-scale mean magnetic field B, the
change of the magnetic energy density δEM is proportional
to B2. Therefore, the total turbulent pressure is given by
Pt = pt0 − 1

2qp B2, where pt0 is the turbulent pressure in a
flow with a zero mean magnetic field. When magnetic fluc-
tuations are generated, we have qp > 0. Now we examine
the part, Peff(B), of the total pressure, Ptot = p+Pt+ 1

2B2,
that depends on the mean magnetic field, B, i.e., we con-
sider the effective mean magnetic pressure that takes into
account the contribution of turbulence, Peff(B) = 1

2 (1 −
qp)B2. We study the case when p � B2/2, and therefore,
the total pressure Ptot is always positive, while the effec-
tive mean magnetic pressure Peff(B) may be negative when
qp > 1.

The modification of the mean Lorentz force can result
in the excitation of a long wavelength instability even in an
initially uniform mean magnetic field in a density stratified
layer (Kleeorin et al. 1990, 1996; Rogachevskii & Kleeorin
2007). Indeed, the growth rate of the instability for the per-
turbations perpendicular to both the gravity field g and the
mean magnetic field B is given by

λ =
ca

Hρ

√
(1 − qp)

(
Hρ

HB
− 1
)

, (19)

where ca = B/ρ
1/2
0 is the Alfvén speed, H−1

ρ = |∇ ln ρ0|,
H−1

B = |∇ ln B|, and we have, for simplicity, neglected the
dissipation processes due to turbulent viscosity and turbu-
lent magnetic diffusion. For qp > 1 the instability is excited
when Hρ < HB , i.e., it occurs even in an initially uniform
mean magnetic field.

The mechanism of the instability can be understood
as follows. An isolated magnetic tube moving upward be-
comes lighter than the surrounding plasma since the de-
crease of the magnetic field in it, due to expansion of the
tube, is accompanied with an increase of the magnetic pres-
sure inside the tube. This increase, due to the fact that the ef-
fective magnetic pressure is negative, leads to a decrease of
the density inside the tube and to the appearance of a buoy-
ancy force. It results in the further upward displacement of
the flux tube, i.e. it causes the excitation of the instability.
The instability causes the formation of inhomogeneities and
thus magnetic structures. The energy for this instability is
supplied by the small-scale turbulence. In contrast, the free

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org
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energy in Parker’s magnetic buoyancy instability, that is ex-
cited when Hρ > HB , is drawn from the gravitational field
(Newcomb 1961; Parker 1966). The growth rate of Parker’s
magnetic buoyancy instability is determined by Eq. (19) for
qp = 0.

Magnetic buoyancy in astrophysics applies usually to
two different situations (see, e.g., Priest 1982). The first cor-
responds to a problem described by Parker (1966, 1979b)
and Gilman (1970a, 1970b). They considered the instability
of a stratified continuous magnetic field and did not invoke
a magnetic flux tube. The other situation was considered
by Parker (1955), Spruit (1981), Spruit & van Ballegooijen
(1982), Ferriz-Mas & Schüssler (1993), and Schüssler et al.
(1994), who studied buoyancy of horizontal magnetic flux
tubes.

In the present study we investigate the first situation, i.e.,
we study the large-scale instability of a continuous (diffu-
sive) magnetic field in small-scale turbulence. This instabil-
ity is caused by turbulent velocity and magnetic fluctuations
and leads to the formation of large-scale magnetic structures
(see Sect. 3).

3 Mean-field numerical modelling

In order to understand in more detail the appearance of mag-
netic structures from this large-scale instability we consider
now numerical solutions of the mean-field MHD equations
in a density stratified layer. We apply a mean-field model
that includes for the first time the effects of turbulence on
the mean Lorentz force. We solve the evolution equations
for mean velocity U , mean density ρ, and mean vector po-
tential A in the form

∂U

∂t
= −U · ∇U − c2

s∇ ln ρ + g + FM + FK,tot, (20)

∂ ln ρ

∂t
= −U · ∇ ln ρ − ∇ · U , (21)

∂A

∂t
= U × B − (ηt + η)J , (22)

where FM is given by Eq. (10), and FK,tot = FK + F visc

with ρFK = ∇ · σK and with ρF visc = ∇ · σ, so that

FK,tot = (νt + ν)
(∇2U + ∇∇ · U + 2S∇ ln ρ

)
(23)

is the total (turbulent and microscopic) viscous force and S
is given by Eq. (3).

We consider two- and three-dimensional models of an
isentropically stratified atmosphere, where the gravitational
potential is written as Φ(z) = (z − z∞)g, so the gravity
vector g = −∇Φ = (0, 0,−g) is constant. We arrange the
initial profiles of density and sound speed such that they
take given reference values at z = 0, i.e. ρ = ρ0 and cs =
cs0 at z = 0. This implies that z∞ = (3/2)c2

s0/g. Our initial
profiles therefore obey

ρ/ρ0 = (cs/cs0)3, c2
s = − 2

3Φ. (24)

Fig. 2 Density stratification in a model with ztop = Hρ0. The
dashed lines indication the reference value with ρ = ρ0 at z = 0.

The local density scale height is Hρ = c2
s/g, and the value

of Hρ at z = 0 is Hρ0 = c2
s0/g. In Fig. 2 we show the

vertical dependence of the initial density.
We allow for the presence of an imposed field in the y

direction, B0 = (0, B0, 0). The total field is then written as

B = B0 + ∇ × A, (25)

so the departure from the imposed field is expressed in terms
of the mean magnetic vector potential A.

On the upper and lower boundaries we adopt stress-free
boundary conditions for velocity, i.e. Ux,z = Uy,z = Uz =
0, and a normal-field condition for the magnetic field, i.e.
Bx = By − B0 = 0, corresponding to Ax,z = Ay,z =
Az = 0 for the vector potential. Here, commas denote par-
tial differentiation. No boundary condition for the density
is required. Again, all computations have been carried out
with the PENCIL CODE.

In setting up our model we introduce the wavenum-
ber kf of the energy-carrying eddies. This relates the tur-
bulent magnetic diffusivity to the rms velocity via ηt =
urms/3kf . This means that the ratio of our non-dimensional

field strength to turbulent diffusivity, i.e. B0/cs0ρ
1/2
0 to

ηt/cs0Hρ, is given by 3kfH0 times B0/Beq.
In this paper we approximate qp and qs by simple profile

functions,

qp = qp0

(
1 − 2

π
arctan

B2

B
2

p

)
, (26)

qs = qs0

(
1 − 2

π
arctan

B2

B
2

s

)
. (27)

Following Rogachevskii & Kleeorin (2007), we also define
Qp = 1 − qp and Qs = 1 − qs. Correspondingly, we de-
fine the coefficients Qp0 = 1 − qp0 and Qs0 = 1 − qs0.
For our fiducial model we use Qp0 = 2Qs0 = 20, corre-
sponding to qp0 = 21 and qs0 = 11. The resulting magnetic
pressure is shown in Fig. 3 for their analytic theory and the
result from DNS is shown in Fig. 4, together with the corre-
sponding fits. For our fiducial model we choose furthermore

www.an-journal.org c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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0.1 0.2 0.3 0.4 0.5
−0.05

0

0.05

0.1

P
m

B̄/Beq

Fig. 3 The effective mean magnetic pressure Pm(B) = (1 −
qp)B

2
/B

2
p determined by Rogachevskii & Kleeorin (2007) – solid

line, and by the model described by Eq. (26) – dashed line (Bp =

0.21 cs0ρ
1/2
0 and qp0 = 4).

Fig. 4 Same as Fig. 3, but from simulation (dotted line). The
solid line shows a fit [Eq. (26)] with Bp = 0.022 cs0ρ

1/2
0 (corre-

sponding to Bp/Beq = 0.18) and qp0 = 21.

Bp = Bs = 0.1 cs0ρ
1/2
0 . For the imposed field strength we

choose B0/cs0ρ
1/2
0 = 0.01 and for the turbulent magnetic

diffusivity we take ηt/cs0Hρ = 0.01. As discussed above,
this means that B0/Beq = 1/3 if we assume kfH0 = 1.

3.1 Magnetic structures in two-dimensions

In this paper we consider both two-dimensional and three-
dimensional solutions. We begin with two-dimensional
models in the xz plane with an imposed field in the normal
(y) direction, B0 = (0, B0, 0).

In Table 1 we present a summary of some exploratory
runs where we list the nondimensional growth rate λ̃ ≡
λH2

ρ/ηt, as well as the nondimensional saturation values

of rms mean velocity and mean magnetic field, Ũrms ≡
U rmsHρ0/ηt and B̃rms ≡ BrmsHρ0/ηtρ

1/2
0 . These experi-

ments show that decreasing Qp0 and Qs0 lowers the growth
rate and the saturation values, while increasing the degree
of stratification (e.g., increasing z̃top ≡ ztop/Hρ0 from 1 to

Table 1 Summary of non-dimensional run parameters together
with the resulting non-dimensional growth rates λ̃ as well as the
non-dimensional saturation values of rms velocity and magnetic
field. The tildes indicate non-dimensional quantities, as explained
in Sect. 3.1. Our fiducial run is Run C.

B̃0 η̃t z̃top Qp0 Qs0 λ̃ Ũsat B̃sat

A 0.01 0.01 1 −4 −2 0.0005 0.000 0.000
B 0.01 0.01 1.2 −20 −10 0.012 0.013 0.013
C 0.01 0.01 1 −20 −10 0.006 0.013 0.013
D 0.02 0.01 1 −20 −10 0.032 0.025 0.026
E 0.01 0.02 1 −20 −10 0.001 0.001 0.010

Fig. 5 Growth of the rms value of mean velocity and mean mag-
netic field for two runs with different degree of stratification.

1.2, corresponding to an increase of bottom to top density
ratio from 108 to 237) enhances them. Likewise, increasing
the strength of the imposed field enhances the growth rate
and the saturation values, while increasing the magnetic dif-
fusivity lowers them. These results are in agreement with
Eq. (19).

In Fig. 5 we compare the evolution of the rms values of
velocity and magnetic field for two different stratifications.
As discussed above, increasing the amount of stratification
increases the growth rate. The scaling of the growth rate
with the strength of the imposed field is shown in Fig. 6.

Next, we consider the structure of the resulting magnetic
field. In Fig. 7 we show “meridional” (x, z) cross-sections
of the magnetic field at three different times during the early
phase where the magnetic field just begins to saturate. The
horizontal wavelength of the pattern is about 10 Hρ. As time
goes on, the structures of enhanced magnetic field inten-
sify. The decrease of the effective pressure makes them even
heavier which explains their subsequent descent.

At later times new structures can form near the surface.
In Fig. 8 we show an example during the fully saturated
phase of the instability, where one sees the emergence of a
new patch that is then swept to the larger one and merges.
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Fig. 6 Growth rate as a function of B0, keeping all other param-
eters as for the fiducial Run C.

Fig. 7 (online colour at: www.an-journal.org) Early evolution of
magnetic field in the y direction (color coded) together with veloc-
ity vectors in the x, z plane. Note the spontaneous production of
flux structures.

3.2 Magnetic structures in three-dimensions

In order to demonstrate the three-dimensional nature of
the instability we extend the domain in the y direction, so
both x and y are between ±10Hρ0, and −10 ≤ z/Hρ0 ≤ 1.
These simulations are otherwise similar to those in the two-

Fig. 8 (online colour at: www.an-journal.org) Later evolution of
magnetic field for the same run as in Fig. 7. Note the mutual merg-
ing of flux structures.

dimensional cases. In Fig. 9 we show visualizations of the
field at three characteristic times. Note in particular that
the wavelength of the pattern in the y direction (parallel to
the field) is 3–4 times shorter than that in the x direction
(perpendicular to the field). Again, the instability begins to
emerge first near the surface where it develops magnetic
structures which begin to sink downwards. Viewed from
above, one sees the emergence of what looks like multiple
bipolar regions.

In Fig. 10 we show a horizontal cross-section from an-
other simulation, where the horizontal extend is only half as
much as before. This figure is suggestive of the formation of
bipolar structures. The plane has been rotated by 90◦ such
that the y direction points now from left to right. The black
horizontal bar gives the density scale height at the depth of
the cross-section, which is about twice the value Hρ0 at the
reference depth.

4 Conclusions

In this study we have demonstrated in DNS the effects of
turbulence on the mean Lorentz force. This effect is quanti-
fied by determining the relevant functions qp(B) and qs(B)

www.an-journal.org c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Fig. 9 (online colour at: www.an-journal.org) Visualizations
of the magnetic field at the early saturation phase (t =
700 Hρ0/cs0 = 7 H2

ρ0/ηt, top), at an intermediate time (t =
1000 Hρ0/cs0 = 10 H2

ρ0/ηt, middle), and a later time (t =
1300 Hρ0/cs0 = 13 H2

ρ0/ηt, bottom). Note the broad similarity
of field in the x, z plane with the two-dimensional cases. Note that
the wavelength of the pattern is shorter in the y direction than in
the x direction. In the final time much of the magnetic field struc-
tures have sunk beneath the surface, leaving only a few isolated
bipolar structures at the surface.

that relate the sum of the turbulent Reynolds and Maxwell
stresses with the Maxwell stress of the mean magnetic field.
Using three-dimensional simulations of forced hydromag-
netic turbulence with an imposed field, we confirm that
the function qp(B) is positive and can reach values much
larger than unity for B/Beq � 1. This thereby reverses
the sign of the effective magnetic pressure Peff(B) asso-
ciated with the mean magnetic field, which then becomes

Peff(B) = 1
2 (1 − qp)B

2
. We find that the function qs(B)

that determines the modification of magnetic tension, also

Fig. 10 (online colour at: www.an-journal.org) Magnetic field in
the x, y plane. Note that the plane has been rotated by 90◦ in the
counterclockwise direction, so the y direction, corresponding to
the azimuthal direction when applied to the Sun, points from left
to right. The black horizontal bar gives the density scale height at
the depth of the cross-section, which is about twice the value Hρ0

at the reference depth.

reaches values much larger than unity, but its value is less
than half the value of qp and the error bars are larger.

This work has also demonstrated explicitly the possibil-
ity of a large-scale instability of the full system of mean-
field MHD equations. Our study has revealed the presence
of spatial structures arising from the instability that might be
associated with the formation of bipolar magnetic regions
and perhaps also sunspots when applied to the Sun.

The effects of turbulence on the large-scale Lorentz
force may also be important in applications to the solar tor-
sional oscillations by changing the effective coefficient in
front of the magnetic tension force, B · ∇B (Rüdiger et
al. 1986; Rüdiger & Kichatinov 1990). More specifically,
these turbulence effects may be critical for explaining the
narrow structure of the observed solar torsional oscillations
(Kleeorin et al. 1996).

Clearly, there are several possibilities of improvement
that might make the model more realistic and eventually
suitable for confrontation against observations. Most impor-
tant is perhaps the fact that our reference values Bp0 and
Bs0 in the quenching profiles (26) and (27), as well as the
coefficients qp0 and qs0 in these profile functions, are cur-
rently kept constant. It will be more realistic to make them
vary with depth, because density and turbulent rms velocity
vary with depth. Another extension of the model would be
to allow for the possibility that the magnetic field is gen-
erated by a mean-field dynamo rather than relying on an
imposed field.
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On the more theoretical side, there is a need for further
verification of the essential physics of the negative magnetic
pressure effect. In particular, one must wonder why the ef-
fects of this instability have not yet been seen in DNS. A
likely possibility is the lack of sufficient scale separation.
Only now realistic simulations are beginning to be large
enough to encompass sufficiently many cells in all three di-
rections. The importance of sufficient horizontal extent was
already emphasized by Tao et al. (1998), who find clear evi-
dence of a segregation into strongly magnetized and weakly
magnetized regions, a phenomenon that might be closely
related to that reported here. A particularly promising ap-
proach might be to generalize the direct simulations dis-
cussed in the present paper to the case with vertical den-
sity stratification such that the setup becomes similar to the
mean-field models that we also studied in this paper. The
turbulence would then still be driven by a forcing function.
Another possibility is to study this effect with turbulent con-
vection instead of forced turbulence. This is particularly in-
teresting, because theoretical predictions of Rogachevskii &
Kleeorin (2007) suggest that the modification of the effec-
tive Lorentz force will be even stronger in turbulent convec-
tion.
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