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Abstract
The predictive power of mean-field theory is emphasized by comparing theory with
simulations under controlled conditions. The recently developed test-field method is used
to extract turbulent transport coefficients both in the kinematic and the nonlinear or
quasi-kinematic cases. A striking example of the quasi-kinematic method is provided by
magnetic buoyancy-driven flows that produce an α effect and turbulent diffusion.
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(Some figures in this article are in colour only in the electronic version.)

1. Introduction

What happens when fluids mix? What if a fluid is moving in
a magnetized environment? Are there analogies between the
motion of a cloud in the sky, milk in a coffee cup and solar
flares? The study of fluids and magnetic fields has always been
a challenging branch of physics, leading to the development of
tools of wide applicability, from meteorology to the study of
galaxies. In particular, the connection between the existence
of fluids in motion and the amplification of magnetic fields
has been investigated both analytically and experimentally
since the beginning of the 20th century. This generation of
a magnetic field by dynamo action was already proposed by
Larmor (1919), but a proper understanding of such a process
requires both physical insight and a theoretical framework
that describes the magneto-hydrodynamical (MHD) context
in which the phenomena occur. The most common theoretical
approach to MHD dynamos is the application of mean-field
theory (Parker 1955, Steenbeck and Krause 1969, Moffatt
1978, Parker 1979, Krause and Rädler 1980). The core
concept on which mean-field theory (hereafter MFT) rests
is that turbulent systems (which include most natural MHD
dynamos) are often amenable to a two-scale approach, where
the velocity and magnetic fields are decomposed into mean
and fluctuating components:U =U +u andB =B + b. The
mean parts U and B generally vary slowly both in space and
time, and capture the global behavior of the system, which

is often also the observable one. The fluctuating fields, on
the other hand, describe irregular, often chaotic small-scale
effects.

Using the aforementioned decomposition the equation
for the time evolution of the magnetic field, known as the
induction equation, can be rewritten as a set of two equations
for mean and fluctuating quantities

∂B

∂t
= ∇ ×

(
U ×B

)
+ ∇ ×E + η∇

2B, (1)

∂b

∂t
= ∇ ×

(
U × b

)
+ ∇ ×

(
u×B

)
+ ∇ × (u× b)′ + η∇

2b,

(2)
where η is the microphysical magnetic diffusivity of the
fluid (here assumed uniform), while E ≡ u× b is the mean
electromotive force, and (u× b)′ = u× b−u× b.

Correlations such as u× b are at the heart of turbulent
transport, and apply to a broad range of processes, from
dynamos to the mixing of chemicals through stirring. For
example, the evolution of the mean C of a chemical
concentration C = C + c is governed by the mean flux uc
resulting from the interplay of the fluctuations. Likewise,
the evolution of mean momentum, ρU , is governed by the
Reynolds stress, ρui u j (with constant density ρ). We return
to the flux of chemicals at the end of section 4.1. Here, the
key task consists in relating the mean emf E to the mean
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fieldB. Underlying symmetries that constrain the form of this
relation are of significant help. E is a vector, so if the system is
homogeneous and the turbulence isotropic, in what direction
can it point? The answer is that in such a system E can have
constituents pointing along the mean magnetic fieldB and the
mean current density J = ∇ ×B/µ0 (as well as higher-order
spatial and time derivatives, see section 4.2), which leads to
approximations such as

E = αB− ηtµ0J . (3)

The coefficients linking correlations to mean quantities are
known unimaginatively as mean-field transport coefficients,
with each one describing a distinct physical effect. In
equation (3), α describes the (in)famous α effect that can drive
a dynamo, while ηt quantifies the turbulent diffusion of the
mean magnetic field (µ0 is the vacuum permeability). Note
that a much more general representation of E is given by the
convolution integral

E(x, t) =

∫ t

t0

∫
G(x,x′, t, t ′)B(x′, t ′) d3x ′ dt ′ (4)

with an appropriate tensorial kernelG.
Equation (2) contains terms that can sometimes be

neglected. Most famously, in the case of fluids with small
magnetic Reynolds number, that is ReM = U L/η � 1, or
low Strouhal number St = Uτc/L � 1, we can drop (u× b)′

and can thus make an analytical calculation of the transport
coefficients feasible. Under this approximation, known as the
second order correlation approximation (SOCA), equation (2)
takes for vanishing mean velocity the form

∂b

∂t
= ∇ ×

(
u×B

)
+ η∇

2b. (5)

In the limit of high ReM (hence small St), the coefficients α

and ηt reduce then to (Krause and Rädler 1980, Rädler and
Rheinhardt 2007)

α = −
τc

3
u · (∇ ×u), ηt =

τc

3
u2, (6)

where τc is a characteristic turbulent correlation time.

2. The need for MFT: a status report

2.1. Motivation

In the astrophysical context, MFT has mainly been applied
in order to understand and model the origin of the Sun’s
magnetic field and its differential rotation (Rüdiger and
Hollerbach 2004). Direct simulations of convection in
spherical shells begin to reproduce these phenomena to some
extent (Brun et al 2004, Browning et al 2006, Brown et al
2010, Käpylä et al 2010a), but interpreting their results
properly remains difficult. This task is approachable only in
the framework of a reasonably accurate theory.

MFT is sometimes perceived as uncertain and even
arbitrary owing to a large amount of parameters that are
often chosen to reproduce ‘whatever one wants’. Adjusting
parameters at will is certainly risky and clearly not permissible
in the long run, because it would imply a complete loss

of predictive power of MFT. There are several reasons
why the ‘free parameter’ approach has nevertheless often
been adopted. Firstly, the conventional theory for computing
turbulent transport coefficients is only accurate at low
Reynolds numbers, but is not well tested at higher ones.
Secondly, models of solar-like dynamos that are based
on a straightforward application of mixing-length ideas
to computing turbulent transport coefficients (Krivodubskii
1984) do not reproduce the Sun: the cycle periods are too
short (Köhler 1973) and the migration of sunspots and other
magnetic activity is poleward, not equatorward, which is
also found in direct numerical simulations (Gilman 1983,
Käpylä et al 2010a).

In this situation, it is sensible to reduce one’s ambitions
and focus on phenomena that are seen in direct simulations
of simplified systems, but are nevertheless relevant for
understanding the Sun. A useful goal consists then in
reproducing such phenomena by mean-field models, thus
obtaining a chance to trace down the reasons for discrepancies
between both representations. This will be exemplified in
section 3. First, however, we shall summarize the basic
saturation phenomenology of mean-field dynamos.

2.2. Saturated dynamos and magnetic helicity fluxes

A recent discovery that is now well explained by MFT
is the slow saturation behavior of an α2 dynamo in a
triply periodic box (Brandenburg 2001). Such systems are
unphysical, but they make good test problems due to the
ease of capturing them both numerically and analytically.
Initially, both the mean and the fluctuating fields grow
exponentially—as expected from kinematic theory. However,
when the small-scale field becomes comparable to the

equipartition value, i.e. b2
∼ B2

eq, the growth changes its
nature: the fluctuating field saturates while the mean field,
well below equipartition, continues to grow albeit extremely
slowly. Finally, after multiple microphysical resistive times,
the mean field itself reaches a steady, super-equipartition state;
see figure 9.4 of Brandenburg and Subramanian (2005).

This behavior is one aspect of the ‘catastrophic’
α-quenching phenomenon, and has come to be understood
in terms of the magnetic helicity density, h ≡A ·B, and the
magnetic α effect of Pouquet et al (1976), αM ≡ τj · b/3ρ.
It has usually the opposite sign of the α of equation (6), now
marked αK (kinetic), and grows with growing mean field, so
that the net α = αK + αM would be reduced and the dynamo
growth halted. This result has been extended to the dynamic
α quenching phenomenology (Kleeorin and Ruzmaikin 1982,
Field and Blackman 2002, Blackman and Brandenburg 2002),
where the mean magnetic helicity in the fluctuating fields,
hf ≡ a · b, is used as a proxy for the current helicity, j · b'

k2
f hf, with kf being the wavenumber of the energy-carrying

eddies. In a system that disallows the divergence of the
magnetic helicity flux, such as a triply periodic domain, the
time evolution of hf and the resulting dynamical α quenching
equation can be written as

dhf

dt
= −2E ·B− 2ηµ0j · b, (7)

2
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dαM

dt
= −2ηtk

2
f

(
αB

2
− ηtµ0J ·B

B2
eq

+
αM

ReM

)
. (8)

The three phases of the α2 dynamo in a triply periodic domain
can now be understood. First the fields grow exponentially and
the magnetic α effect grows with them until αM ∼ −αK. This
occurs rapidly enough that the magnetic helicity of the mean
field (hm) still obeys hm ∼−hf and so B/Beq '

√
k1/kf <1

(Brandenburg 2001), where k1 is the smallest possible
wavenumber in the domain. During the resistive phase, the
fluctuating fields are nearly steady but there is still a small
excess of α over ηtk1 needed to replenish the field in the face
of resistivity. This phase ends only when the time evolution of
the total magnetic helicity reaches a steady state, which occurs
when 〈J ·B〉 = 0 or B/Beq '

√
kf/k1 > 1.

A short exponential growth phase yielding only weak
mean fields poses severe problems for astrophysics as the
subsequent resistive growth phase is generally prohibitively
long. Real systems, however, allow for fluxes of magnetic
helicity across their borders, and/or show spatial variations
in the α effect, particularly regions where α has opposite
signs separated, say, by an equator. This raises the possibility
that the magnetic α will be exported from the system or
transported to the equator and destroyed. Research into such
transport is recent, but has already shown conclusively that
there is a flux of hf and that a larger residual α effect results
due to it. It is not yet clear how large an effect this has on the
final mean field strength.

3. Predictions versus realizations

In this section, we contrast the results of some computer
realizations with corresponding mean-field predictions. We
discuss examples from both linear and nonlinear regimes.

3.1. Parity and dependence on boundary conditions

A relatively old example is the emergence of oscillatory
dynamo solutions in local models of accretion discs
(Brandenburg et al 1995). Here, turbulence is driven by
the magneto-rotational instability that generates a negative
α effect in the upper half of the disc (Brandenburg et al
1995, Ziegler and Rüdiger 2000, Brandenburg 2005a, Gressel
2010). According to MFT, this negative α, for normal
field (pseudo-vacuum) boundary conditions and radial shear,
results in traveling wave solutions that are symmetric
about the midplane and migrating toward the boundaries
(Brandenburg and Campbell 1997). Conversely, when the
boundary condition is changed to a perfect conductor, one
expects non-oscillatory solutions that are antisymmetric about
the midplane. Indeed, this dependence is borne out by
simulations (Brandenburg 1998).

3.2. Onset of convective dynamo action depending on
rotation rate

Large-scale dynamos due to turbulent convection are of
particular interest in astrophysics. According to MFT, rotating
inhomogeneous (usually due to stratification) turbulence leads
to the generation of kinetic helicity and thus an α effect, which

should enable the generation of large-scale fields. However,
numerical simulations of rotating convection at first failed
to show large-scale dynamo action (e.g. Brandenburg et al
1996, Cattaneo and Hughes 2006). Erroneously low values of
α determined by what is now often called the imposed-field
method seemed to confirm that the α effect does not work. In
this method, a uniform magnetic field B0 is applied and one
determines the resulting mean electromotive force, 〈u× b〉,
and further α = 〈u× b〉 ·B0/B2

0 ; here the mean is defined
as volume average (e.g. Cattaneo and Hughes 2006; see,
however, Käpylä et al 2010b). On the other hand, when
computing the turbulent transport coefficients for convection
using the test-field method (see section 4.1), it was discovered
that, as the rotation rate in non-shearing runs increases,
the α effect increases and turbulent diffusion, ηt, decreases
(Käpylä et al 2009a). Mean-field models (hereafter MFM),
using these properly determined transport coefficients, then
suggested that a large-scale dynamo should be excited when
the Coriolis number, defined as the ratio of the rotation
period to the convective turnover time, exceeds a value
of ≈ 4. Subsequently, direct simulations in this parameter
range confirmed this prediction (Käpylä et al 2009b). Again,
this demonstrates that already kinematic MFT has predictive
power and that very likely MFMs can give useful and new
information about even more complex systems.

3.3. Helicity considerations

The helicity considerations outlined in section 2.2 provide
further prognostic power. The shear-induced (non-diffusive)
magnetic helicity flux, introduced by Vishniac and Cho
(2001), has been particularly important in explaining the
existence or the absence of a large-scale dynamo. For
example, Tobias et al (2008) presented simulations of
convection with vertical shear where no large-scale dynamo
was excited although the necessary ingredients for an efficient
dynamo (inhomogeneity, rotation and shear) were all present.
However, in that case the shear-driven magnetic helicity flux
is directed along the periodic x-direction and no net flux out
of the system could occur. Using instead, in an otherwise
similar setup, normal field boundary conditions, which do
allow a net flux, Käpylä et al (2008) showed that a large-scale
dynamo does exist and indeed saturates at near-equipartition
field strengths; see the left panel of figure 1 where we
show the effect of open versus periodic boundaries. Similar
results have also been obtained for forced turbulence with a
more complicated shear profile motivated by the differential
rotation pattern of the Sun (Brandenburg 2005b). By imposing
a toroidal magnetic field in a simulation with the same setup,
the α effect has been determined and, for ReM � 1, it is also
found to depend sensitively on whether the boundaries are
open or closed (Brandenburg and Sandin 2004); see the right
panel of figure 1.

Another issue approachable through magnetic helicity
considerations is the convergence problem of the MRI, i.e.
the steep decrease of the turbulence level with decreasing
magnetic Prandtl number, PrM, for small values of PrM in
fully periodic setups (e.g. Fromang et al 2007). An otherwise
similar setup, however, that does allow a net magnetic helicity
flux through the vertical boundaries produces indeed strong
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Figure 1. Upper plot: energy in the horizontally averaged
streamwise magnetic field from two convection simulations with
vertical shear U y(z) and either normal field (solid line) or periodic
(dotted line) magnetic boundary conditions in the x-direction.
Adapted from Käpylä et al (2008). Lower plot: dependence of
〈α〉/urms on ReM for open and closed boundaries. Note that for
ReM ≈ 30 the α effect is about 30 times smaller when the
boundaries are closed. Adapted from Brandenburg and Sandin
(2004).

large-scale dynamo action, roughly independent of the value
of PrM (Käpylä and Korpi 2010).

4. Computing mean-field transport coefficients

In view of such success stories, there should be an unbroken
interest in MFMs both because of their descriptive capabilities
and their predictive potential, but we have to realize that there
are serious shortcomings of MFT that have persuaded many
researchers to (re)turn to global direct numerical simulations
instead of designing improved MFMs. This critical stage of
MFT can be characterized by the following observations:

• The limitations of analytic approaches to calculating
mean-field coefficients are clearly too restrictive as the
interest has moved from pointing out the qualitative
existence of certain effects to their quantitative
reproduction and prediction. This is due to

∗ the obvious insufficiency of SOCA in astrophysical
contexts, as usually ReM � 1 and St 6� 1;

∗ the unclear aspects of closure approaches like the τ

approximation (Rädler and Rheinhardt 2007);
∗ the need for knowledge of velocity correlators

like ui u j · · · un even in mathematically well-
established (systematic) higher-order correlation
approximations.

• It is obvious that MFMs for realistic setups with
predictive abilities need to employ transport coefficients
that are

∗ fully tensorial;
∗ position dependent;

∗ dependent on the mean quantities themselves, i.e.
nonlinear;

∗ non-local and non-instantaneous;
∗ including magnetic background fluctuations.

There is no longer any chance of obtaining powerful
models by employing a few scalar coefficients, the basic
structure of which can be derived analytically leaving a
few free parameters to be adapted properly.

To find a way out of this impassé, one might look at how in
other fields of physics/engineering, modeling and simulation
of rather complex systems are being made possible if the
full resolution of the microphysics is not affordable. Let us
choose as an example the mechanics of elastic materials,
say, metals. Their elastic properties can in principle be
derived from the microphysics of their lattices, but it will
perhaps never be possible to simulate the static and dynamic
behavior of, say, a bridge by solving quantum physical
lattice equations. Instead, one relies upon the equations of
continuum mechanics in which the lattice physics enters via
macrophysical material properties such as Young’s modulus
and the Poisson number (sufficient for an isotropic material).
These are typically obtained by measurements in a series
of standardized experiments with test bodies having simple
geometries and being subject to clearly defined boundary
conditions. Of course, for such an approach to be successful,
a certain locality of the microphysics processes is necessary,
which can be expressed by the principle that neighboring
material elements of a structure ‘communicate’ only via
forces at their common borders.

A widely analogous procedure with respect to the task
of calculating transport coefficients for a certain type of
turbulence would consist in creating it in a (small) test volume
with well-defined boundary/environmental conditions (such
as a penetrating magnetic and/or gravitational field) and
to determine then the wanted coefficients somehow by
measurements. Then a major theoretical challenge consists
in specifying the set of experiments needed to find just
these coefficients and in prescribing the computational recipe
for extracting them from the measured quantities such as
fluctuating magnetic fields and/or velocities.

This program has been implemented by the so-called
test-field methods (Schrinner et al 2005, 2007) with the
modification that the physical experiments are replaced by
numerical ones. Clearly, there is an important difference
compared to the continuum mechanics scheme: the same
equations whose direct simulation was felt to be non-
affordable, what just created the need for an MFM, have
now, nevertheless, to be simulated within the numerical
experiments. However, in two aspects the test-field approach
can still be advantageous. Firstly, the ‘experimental’ volumes
can represent small sections of the object that is to be globally
analyzed. Hence, much finer structures can be resolved
with the same numerical effort. Secondly, if an MFM is
established once, it can thereafter be utilized for long-term
global simulations, which would otherwise be prohibitively
expensive.

The aforementioned locality of the actual physics here
has to be with respect to correlation properties of the
underlying fluctuating fields, say, a turbulent flow. For all
conceivable astrophysical situations this condition can hardly
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be considered too restrictive. In practice, correlation lengths
and times are the relevant quantities to be considered in
defining the simulation box size and the integration time.

Computing turbulent transport tensors such as α and η
(see equation (9) below) from simulations has been performed
with varying success over the last 20 years. Utilizing the
imposed-field method for α has led to either the confirmation
of well-known results (for example, a positive horizontal α

effect in the upper layers of convection in the Sun’s Northern
hemisphere) or the prediction of as yet unknown results (e.g.
a reversed sign of the vertical α under the same conditions;
see Brandenburg et al 1990) later confirmed by analytical
calculations (Ferrière 1992, Rüdiger and Kitchatinov 1993).

After having explained the new test-field method in
the next section, particular applications considering the
nonlocality of turbulent transport in space and time will be
discussed in section 4.2.

4.1. Test-field method

Let us return to equation (2) for the fluctuating magnetic field.
The wanted mean electromotive force E = u× b is obviously
a linear and homogeneous functional of B and we may
therefore write the ansatz

E =αB−η∇B, (9)

strictly valid for stationary mean fields depending only
linearly on position. The components ofα and η can be found
by the following procedure:

(a) solve

∂bk

∂t
−η∇

2bk
− curl

[
(U × bk +u× bk)′

]
=curl (u×B

k
)

for given u, U and test fieldsB
k
, k = 1, . . . , N ;

(b) calculate Ek
= u× bk ;

(c) determine the components of α and η by inverting

Ek
=αB

k
−η∇B

k
. (10)

The solution is unique if N is chosen appropriately and

the test fields B
k

are sufficiently independent. Since we
‘look at’ the given velocity fields u, U not from only one
perspective like in the case of the imposed-field method, but
obtain instead different views represented by the different test
solutions bk , the test-field approach could be characterized
as ‘holographic’ instead of ‘photographic’. Indeed, all of the
information needed to specify an ansatz like (9) is extracted
from the velocity fields.

For a number of explicitly given flows like those
introduced by Roberts (1970) and Galloway and Proctor
(1992), exact agreement of the determined tensors with SOCA
results could be demonstrated. In the case of the Roberts flow
there is agreement even with an analytic result for arbitrary
magnetic Reynolds numbers (Rädler et al 2002, Rädler and
Brandenburg 2009, Rheinhardt and Brandenburg 2010).

The method has now been applied to a number of
different flows ranging from homogeneous forced turbulence
without shear (Sur et al 2008, Brandenburg et al 2008a)
to cases with shear (Brandenburg et al 2008b, Mitra et al

2009) and to inhomogeneous turbulence in stratified discs
(Brandenburg 2005a, Gressel et al 2008) as well as convection
(Käpylä et al 2009a). It has also been utilized in passive scalar
transport, e.g. the transport of chemicals. Corresponding
turbulent transport coefficients have been calculated for
homogeneous turbulence under the influence of rotation or an
applied magnetic field (Brandenburg et al 2009), as well as
for homogeneous shear flows (Madarassy and Brandenburg
2010).

4.2. Nonlocality in space and time

Because the test fields are not native to the system, they can
disentangle effects that can not otherwise be distinguished.
However, for the same reason they can introduce temporal or
spatial scales that are again not native to the system.

With respect to temporal scales the consequences of
this mismatch can be seen in the memory effect: consider a
dynamo system with a growing mean field. Turbulence creates
a fluctuating field from the mean one and contributes to the
mean electromotive force. If the mean field is growing, the
small-scale field created in the past is weaker than it would
be when created in the present. Thus, if the time behavior of
the test fields is different from that of the ‘real’ mean field,
the α and η tensors from the test-field method will not be the
actual ones that rule the evolution of the mean field. A similar
problem occurs when the spatial scales of the test fields do not
coincide with the spatial scale of the mean field to be modeled,
due to nonlocality in space.

When the proper scales of the mean field are known,
corresponding test fields can be used. Otherwise, the scales
of the test fields, say, wavevector k and frequency ω, are
considered independent parameters and the test-field method
provides α(k, ω) and η(k, ω), which exhaustively describe
the response kernel introduced in (4).

The memory effect is demonstrated in figure 2 for the
case of the Roberts flow (for details, see Hubbard and
Brandenburg (2009). In the left plot, we see the difference
between the growth rate of a dynamo and that calculated
from the dispersion relation using α and η determined by
the test-field method with steady test fields. We can reconcile
these growth rates by deriving them all from a proper kernel,
which can be established by employing a set of test fields with
different time dependences.

The memory effect and nonlocality in space have been
studied using the integral kernel technique in Hubbard
and Brandenburg (2009) and Brandenburg et al (2008a),
respectively. Using test fields that oscillate sinusoidally in
time, the Fourier transforms α̂(ω) of the integral kernels α̃(t)
were found to fit the form:

α̂(ω) = α0
1 − iωτα

(1 − iωτα)2 + ω2
ατ 2

α

, (11)

where τα is the memory time of the flow and ωα is a fit
parameter of order τ−1

α . In turbulence, τα is comparable
to the turnover time, but in steady flows, it can approach
microphysical resistive time scales. In the right panel of
figure 2, we present such a fit for the MW + flow of Otani
(1993), being a flow pattern with wavenumber k0 and
amplitude u0 that is modulated with frequency ωf = u0k0.

5
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Figure 2. Upper plot: ReM dependence of the dynamo growth rate
for the Roberts flow as obtained from a direct calculation, λgrowth,
compared with the result of the dispersion relation,
λdisp = |αk| − (η + ηt)k2, using a cube of size L3; k1 = 2π/L ,
kf =

√
2k1. For this range of ReM, the most unstable mode has the

largest possible wavelength (k = k1). Lower plot: real (solid) and
imaginary (dashed) parts of α̂(ω) for k = 0 using the Otani (1993)
MW+ flow with ReM = 1. Normalization given by α0 = u0. Inset:
scaling of Im α̂ near the origin with slope 0.2, in agreement with the
results of Hughes and Proctor (2010). Adapted from Hubbard and
Brandenburg (2009).

This leads to an extra spike in α̂(ω) at ω = 2ωf. The slope of
the imaginary part at the origin, dIm α̂/dω|ω=0, represents the
coefficient of the first order term with respect to an expansion
in time. Its value of 0.2 is in agreement with that found by
Hughes and Proctor (2010). The real-space integral kernel
corresponding to (11) reads

α̃(τ ) = α02(τ)e−τ/τα cos ωατ, (12)

where τ is the time distance to the instant of consideration,
and 2 is the Heaviside step function that preserves
causality as the time integral kernel must only consider the
past. Hubbard and Brandenburg (2009) have found similar
expressions also for passive scalar transport.

The Fourier transform of the spatial integral kernels is
somewhat simpler, being fit by a Lorentzian:

α̂(k) =
α0

1 + (aαk/kf)2
, η̂t (k) =

ηt0

1 + (aηk/kf)2
, (13)

whose amplitude is nearly independent of ReM for ReM � 1.
The k dependence is reasonably close to inverse quadratic for
k/kf > 2; see figure 3. Here, aα ≈ 2aη ≈ 1 are coefficients of
the order of unity. The corresponding spatial integral kernels
are simple exponential decays

α̃(ζ ) = α0
kf

2aα

e−(kf/aα)ζ , η̃t (ζ ) = ηt0
kf

2aη

e−(kf/aη)ζ ,

(14)
where ζ is the distance from the point of consideration.

Figure 3. Upper plot: dependence of the normalized values of α
(dashed or red line) and ηt (solid line) on ReM for k/kf = 0.2 and
Re = 2.2. Adapted from Sur et al (2008). Lower plot: dependences
of the normalized α̂ (dashed or red line, small symbols) and η̂t (solid
line, bigger symbols) on the normalized wavenumber k/kf for
turbulence forced with kf/k1 = 5, ReM = 10 (squares) and
kf/k1 = 10, ReM = 3.5 (triangles). Lines give the Lorentzian fits
(13). Adapted from Brandenburg et al (2008a).

5. From linear to nonlinear

When the velocity U is given, the tensors α and η can
be obtained by a mathematically well-founded procedure as
outlined in section 4.1. Naturally, the question arises as to
how one should proceed when the mean magnetic field has
already acted upon this velocity. Inspecting equation (2) it can
be concluded that B, considered as a functional of U and B,
is always linear and homogeneous in the latter, irrespective
of the effects that U was subjected to and, in particular,
irrespective of whether or not a mean field had already acted
upon it. That is, the presented test-field method continues to be
valid without modification and as a tribute to this extension it
is called the quasi-kinematic method. The turbulent transport
coefficients are of course now depending on B, but this
dependence is entirely conveyed by the dependence of U
onB.

Clearly, a dynamically effective mean field represents
an additional preferred direction. As a consequence, for an
isotropic hydrodynamic background and a uniform B, the
formerly isotropic tensor α adopts now the shape

αi j = α1δi j + α2 B̂i B̂ j , i, j = 1, 2, (15)

with B̂ being the unit vector in the direction of B. If this
is, say, the x-direction we get α11 = α1 + α2 and α22 = α1.
Both coefficients are of course functions of B. Since E =

α11B, the effective scalar α effect is just given by α11. As an
example, the α quenching characteristic for the Roberts flow
was determined exhibiting a B−4 asymptotic dependency,
cf Rheinhardt and Brandenburg (2010) and figure 4. This

6
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Figure 4. Upper plot: variation of α with B for the forced Roberts
flow with ReM = 1/2

√
2 ≈ 0.35 and PrM = 1. Adapted from

Rheinhardt and Brandenburg (2010). Lower plot: ReM dependence
of α and ηt in the saturated state with B ≈ Beq. Adapted from
Brandenburg et al (2008c).

result is at odds with theoretical predictions, although it agrees
with data for a forced ABC flow (Sur et al 2007).

Things become more involved if the direction of the
mean current density J enters as a second preferred direction.
A situation in which this complication is circumvented,
without being as simple as the former one, is given by the
α2 dynamo due to homogeneous isotropic helical (forced)
turbulence. Here, the dynamo solution is a Beltrami field
with B ‖ J and constant modulus. Hence, J is not providing
an additional preferred direction and equation (15) remains
valid. The solution has always Beltrami shape, regardless of
at what level it eventually saturates. Consequently, α and
ηt are independent of position for any field strength. The
growth rate of the dynamo is given by λ = |αk| − (η + ηt)k2

and should approach zero in the course of saturation. Under
these conditions it is possible to confirm the quasi-kinematic
method in the way that α(B)and ηt(B) are determined
in the saturated stage and checked for consistency against
λ = 0. Indeed, this could be demonstrated to high accuracy
for different values of ReM; see Brandenburg et al (2008c).
Figure 4 shows α(B) and ηt(B) as functions of ReM in the
saturated state with B ≈ Beq.

6. Quasi-kinematic method for magnetic-buoyancy-
driven flows

So far, we have been dealing with situations in which a
hydrodynamic background was provided independently and
the mean magnetic field occurred as an additional, at most
coequal participant. But what about cases in which the
turbulence itself is a consequence of B? Examples are the
magneto-rotational instability and the magnetic buoyancy
instability (see below). Clearly, those setups do not know a
kinematic stage on which the influence of B is negligible.
One might worry that in such a situation the quasi-kinematic

test-field procedure fails (Courvoisier et al 2010). However,
equation (2) continues to be valid and hence all conclusions
drawn from it. Consequently, the quasi-kinematic method
should be applicable. The only peculiarity occurring here
is the fact that all components of α and η vanish for
06 B 6 B threshold, because a fluctuating velocity (and mag-
netic field) develops only after the instabilities have set in.

Let us now consider the magnetic buoyancy instability.
It has been proposed by Moffatt (1978) that, once the
dynamo-generated magnetic field in the overshoot layer of the
Sun reaches appreciable strengths, this instability can set in
and govern the dynamics thereafter. The buoyancy instability
of a localized flux layer in the presence of stratification and
rotation was later studied in detail by Schmitt (1984, 1985).
A necessary but not sufficient condition for instability is

∂

∂z
log

(
B2

ρ2

)
< 0, (16)

which essentially means that the magnetic field decreases
faster with height than density. Using the imposed-field
method, Brandenburg and Schmitt (1998) performed num-
erical calculations to determine the α effect of the resulting
turbulence. Here we determine all components of α and
η using a version of the quasi-kinematic test-field method
wherein mean fields are defined as xy averages.

Our setup is similar to that described in Brandenburg and
Schmitt (1998). The computational domain is a cuboid of
size −16 x 6 1, −36 y 6 3, −0.56 z 6 1.5, with gravity
pointing in the negative z-direction, and rotation Ω making
an angle θ with the vertical. The pressure scale height is
HP = 1 (half-height of the box). The base state is a polytrope
with index m = 3 (the adiabatic value here is 3/2), so that
it is stable to convection. The initial condition comprises
a horizontal magnetic layer of thickness HB = 0.1 with the
profile

By = vA0 HB
∂

∂z
tanh

(
z − 0.1

HB

)
, (17)

where the ratio of the reference values of Alfvén and sound
speed is vA0/cs0 = 0.5. We modify the base state such that
the density profile remains polytropic but the entropy profile
is adjusted to obey magnetostatic equilibrium. The initial
velocity consists of about 20 localized eddies with Mach
numbers of about 10−5 at z = 0.1 in the xy-plane. We
use stress-free boundary conditions for the velocity and the
vertical field condition for the magnetic field, whereas with
respect to entropy we keep the temperature at the top and the
(radiative) heat flux at the bottom constant. All calculations
have been done with Pr = PrM = 4 on a 643 grid. Figure 5(a)
gives the temporal evolution of the volume averages 〈u2

〉 and
〈B2

x 〉 and figure 5(b) the evolution of the mean field Bx . There
is a short exponential growth phase followed by a slow decay
on a resistive time scale.

When it comes to applying the test-field method, an
aspect not discussed up to now is the intrinsic inhomogeneity
of the flow both due to stratification and the background
magnetic field itself. Within kinematics, that is, without
the background field, no specific complication is connected
to this, as from the stationary version of equation (4),

7
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Figure 6. (a) The mean emf E y(z, t) calculated from the horizontal average u× b. (b) Reconstruction of E y(z, t) using only the k = 0
contributions in (18). (c) The same as (b) but using all contributions k = 0, 1, . . . 8.

α and η emerge straightforwardly in a shape expressing
inhomogeneity, that is, α(x,x′),η(x, x′) or, equivalently,
α(x, x−x′), η(x, x−x′). When subjecting the latter to a
Fourier transform with respect to their second argument, we
arrive at α̂(x, k) and η̂(x, k). In our case, harmonic test
fields with different wavenumbers k in the z-direction can be
employed to obtain α̂(z, k) and η̂(z, k).

In the nonlinear situation, the Green’s function approach
remains valid if E is considered as a functional of U and
B, which is then linear and homogeneous in the latter (cf
section 5). However, we have to label G by the B actually
acting upon U , that is, G(x, x′; B), and can thus only make
statements about the transport tensors for just the particular
B at hand. Hence, the tensors have to be labeled likewise:
α̂ (z, k; B), η̂ (z, k; B). As our initial mean magnetic field
is in the y-direction, the instability will generate a Bx and
we are mainly interested in the coefficients αyx , αyy , ηyx and
ηyy with rank-2 tensor components ηi j = −ηik3ε jk3; they are
shown in figures 5(c)–(f). (Note that our rank-3 η tensor in

equation (9) is defined with the opposite sign as, for example,
in Brandenburg et al (2008a).)

Our goal now is to confirm that the relationship
between E and B taken directly from direct numerical
simulations (DNS) can be represented by equation (9) with
the transport tensors determined using the quasi-kinematic
test-field method. In mathematical terms

E i (z;B)
?
= Re

{∑
k

[
α̂i j (z, k;B) − iπk η̂i j (z, k;B)

]
× c(k)

j exp(iπkz)
}
, (18)

with 2c(k)
=
∫
B(z) exp(−iπkz) dz and

?
= signifying the

question whether the equation is indeed satisfied. We find that
we can reasonably reconstruct the mean emf by truncating
the infinite Fourier series already at k = 8. The result of
the assembly of E as formulated on the right-hand side
of (18) is presented in figure 6(c) and turns out to be a

8
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faithful reproduction of E from the DNS shown in figure 6(a),
especially during the exponential growth phase. We conclude
that the quasi-kinematic test-field method may be used
for correctly calculating transport coefficients even in the
presence of inhomogeneous turbulence driven by an initial
mean magnetic field.

7. Conclusions

MFT still has a lot to offer in terms of new effects and
quantitative precision by combining analytics with numerics
in parameter regimes that were previously inaccessible.
The list of examples goes on and on; here we have
only mentioned some of the most striking cases. The
unmentioned ones concern, for example, the Reynolds and
Maxwell stresses that have important applications in accretion
discs (Blackman 2010) and possibly sunspot formation
(Brandenburg et al 2010). Also of particular interest is the
transport of passive scalars, admixed chemicals for example,
as was mentioned briefly in section 4.1. The test-field method
has been applied successfully to such cases as well. One may
anticipate that all these aspects of MFT will soon grow in
significance in our voyage toward understanding astrophysical
dynamos.
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