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ABSTRACT
We present non-linear mean-field α� dynamo simulations in spherical geometry with simpli-
fied profiles of kinetic α effect and shear. We take magnetic helicity evolution into account
by solving a dynamical equation for the magnetic α effect. This gives a consistent description
of the quenching mechanism in mean-field dynamo models. The main goal of this work is to
explore the effects of this quenching mechanism in solar-like geometry, and in particular to
investigate the role of magnetic helicity fluxes, specifically diffusive and Vishniac–Cho (VC)
fluxes, at large magnetic Reynolds numbers (Rm). For models with negative radial shear or
positive latitudinal shear, the magnetic α effect has predominantly negative (positive) sign
in the Northern (Southern) hemisphere. In the absence of fluxes, we find that the magnetic
energy follows an R−1

m dependence, as found in previous works. This catastrophic quenching
is alleviated in models with diffusive magnetic helicity fluxes resulting in magnetic fields
comparable to the equipartition value even for Rm = 107. On the other hand, models with
a shear-driven Vishniac–Cho flux show an increase in the amplitude of the magnetic field
with respect to models without fluxes, but only for Rm < 104. This is partly a consequence
of assuming a vacuum outside the Sun which cannot support a significant VC flux across the
boundary. However, in contrast to the diffusive flux, the VC flux modifies the distribution of
the magnetic field. In addition, if an ill-determined scaling factor in the expression for the VC
flux is large enough, subcritical dynamo action is possible that is driven by the action of shear
and the divergence of magnetic helicity flux.
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1 IN T RO D U C T I O N

A crucial point in the study of astrophysical dynamos is to un-
derstand the mechanism by which they saturate. Nevertheless, a
consistent description of this process has rarely been considered
in mean-field dynamo (MFD) modelling and only a heuristic de-
scription is often used. An important phenomenon occurs when
the dynamo operates in closed or periodic domains: the turbulent
contribution to the dynamo equation, i.e. the α effect, decreases
for large values of the magnetic Reynolds number (α ∼ R−1

m ). This
process is known as catastrophic quenching and can pose a problem
in explaining the generation of magnetic field in late-type stars like
the Sun or in the Galaxy, where Rm could be of the order of 109 or
1015, respectively.

In the last few years the nature of the catastrophic quenching has
been identified as a consequence of magnetic helicity conservation
(for a review see Brandenburg & Subramanian 2005a). It has been
found that in the non-linear phase of the dynamo process, the back-
reaction of the magnetic field on the velocity, due to the Lorentz
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force, gives rise to a magnetic α effect (αM) with a sign opposite to
the inductive contribution due to the helical motions, i.e. the kinetic
α effect. As the production of αM depends on Rm, the final value of
the magnetic field should follow the same dependence. However,
real astrophysical bodies are not closed systems, but they have open
boundaries that may allow a flux of magnetic helicity. The shedding
of magnetic helicity may mitigate the catastrophic α quenching.

These ideas have been tested in direct numerical simulations
(DNS) in both local Cartesian and global spherical domains. In
the former case (Brandenburg 2005; Käpylä, Korpi & Brandenburg
2008) it has been shown that open boundaries (e.g. vertical field
boundary conditions) lead to a faster saturation of a large-scale
magnetic field compared with cases in closed domains (perfect
conductor or triple-periodic boundary conditions). In the latter, it
has been found that it is possible to build up large-scale magnetic
fields either with forced turbulence (Brandenburg 2005; Mitra et al.
2010b) or with convectively driven turbulence (e.g. Brown et al.
2010; Käpylä et al. 2010). These models generally used vertical
field boundary conditions.

In flux-transport dynamos (Dikpati & Charbonneau 1999;
Guerrero & de Gouveia Dal Pino 2008) as well as in interface
dynamos of the solar cycle (e.g. Charbonneau & MacGregor 1997;
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MacGregor & Charbonneau 1997) the quenching mechanism has
been considered either through an ad hoc algebraic equation or by
phenomenological considerations (Chatterjee, Nandy & Choudhuri
2004), but most of the time the models do not consider the effects of
magnetic helicity conservation. An exception is the recent paper by
Chatterjee, Brandenburg & Guerrero (2010a), where these effects
have been considered in the context of an interface dynamo.

Magnetic helicity often evolves on slow time-scales, so it is nec-
essary to solve an additional dynamical equation for the contribution
of the small-scale field to the magnetic helicity together with the in-
duction equation for the mean magnetic field. The latter equation im-
plies the evolution of magnetic helicity from the large-scale field, so
that contribution is automatically included. Magnetic helicity losses
from large-scale fields have in principle an adverse effect on the sat-
uration amplitude (Brandenburg, Dobler & Subramanian 2002). In
fact the contributions from small-scale and large-scale fields can
be equally big (Blackman & Brandenburg 2003). In the past few
years, some effort has already been made to consider this dynam-
ical saturation mechanism in MFD models like in the 1D α2 dy-
namo models presented in Brandenburg, Candelaresi & Chatterjee
(2009), in axisymmetric models in cylindrical geometry for the
galactic α� dynamo (Shukurov et al. 2006; Sur, Shukurov &
Subramanian 2007), and also in models with spherical geometry
for an α2 dynamo (Brandenburg et al. 2007). The role of various
kinds of magnetic helicity fluxes has been explored in several pa-
pers (Shukurov et al. 2006; Zhang et al. 2006; Brandenburg et al.
2009). All these models show that catastrophic quenching can be
alleviated even when the magnetic helicity fluxes from small-scale
and large-scale fields are equally big.

Our ultimate goal is to develop a self-consistent MFD model of
the Sun, with observed velocity profiles and turbulent dynamo co-
efficients computed from DNS. This is a task that requires intensive
efforts. Hence we shall proceed step by step, starting with simple
models and then including more realistic physics on the way. In this
work we will study the effects of magnetic helicity conservation in
simplified α� dynamo models for a considerable number of cases.
More importantly, we shall perform our calculations in spherical
geometry, which is appropriate for describing stellar dynamos, with
suitable boundary conditions, and considering shear profiles that are
a simplified version of the observed solar differential rotation. We
shall also explore how magnetic helicity fluxes affect the properties
of the solution. Two classes of fluxes are considered in this paper:
a diffusive flux and a shear-driven or Vishniac–Cho (hereafter VC)
flux (Vishniac & Cho 2001). We consider models with either radial
or latitudinal shear. The effects of meridional circulation will be
investigated in detail in a companion paper (Chatterjee, Guerrero &
Brandenburg 2010b).

This paper is organized as follows: in Section 2 we describe the
basic mathematical formalism of the α� dynamo, give the formu-
lation of the equation for αM and also justify the fluxes included. In
Section 3 we describe the numerical method and then, we present
our results in Section 4 starting from a dynamo model with algebraic
quenching to models with dynamical α quenching and different
fluxes. Finally, we provide a summary of this work in Section 5.

2 TH E α� DY NA M O M O D E L

In mean-field dynamo theory, the evolution of the magnetic field is
described by the mean-field induction equation,

∂B
∂t

= ∇ × (
U × B + E − ηm∇ × B

)
, (1)

where B and U represent the mean magnetic and velocity fields,
respectively; ηm is the molecular diffusivity; E = αB − ηtμ0 J
is the mean electromotive force obtained under the assumption of
homogeneity and isotropy using a closure theory like the first-order
smoothing approximation (FOSA), where E gives the contribution
of the small-scale components on the large-scale field; α is the non-
diffusive contribution of the turbulence; ηt is the turbulent magnetic
diffusivity; J = ∇ × B/μ0 is the mean current density; and μ0 is
the vacuum permeability.

In spherical coordinates and under the assumption of axisym-
metry, it is possible to split magnetic and velocity fields into their
azimuthal and poloidal components, B = B êφ + ∇ × (Aêφ) and
U = r sin θ�êφ + Up, respectively. For the sake of simplicity we
shall not consider the meridional component of the flow, i.e. Up = 0.
Then, the toroidal and poloidal components of equation (1) may be
written as

∂B

∂t
= s Bp · ∇� − [∇η × (∇ × B êφ)]φ + ηD2B, (2)

∂A

∂t
= αB + ηD2A, (3)

where D2 = ∇2 − s−2 is the diffusion operator, η = ηm + ηt, s =
r sin θ is the distance from the axis and Bp = ∇ × (Aêφ) is the
poloidal field.

The two source terms in equations (2) and (3), sBp · ∇� and αB,
express the inductive effects of shear and turbulence, respectively.
The relative importance of these two effects may be quantified
through the non-dimensional dynamo numbers: C� = ��L2/η and
Cα = α0L/η, where �� is the angular velocity different between
top and bottom of the domain. Note that equations (2) and (3) are
valid only in the limit C� � Cα , known as α� dynamo.

The inductive effects of shear may be understood as the stretching
of the magnetic field lines due to the change in the angular velocity
between two adjacent points. On the other hand, the kinetic α-
effect is the consequence of helical motions of the plasma which
produce screw-like motions in the rising blobs of the magnetic field.
Using the first-order smoothing approximation in the high Rm limit,
together with the assumption of isotropy, it may be expressed as

αK = −1

3
τω · u, (4)

where τ is the correlation time of the turbulent motions and ω = ∇ ×
u is the small-scale vorticity. The saturation value of the magnetic
field may be obtained by multiplying αK by the quenching func-
tion fq = (1 + B2/B2

eq)−1, which stops the exponential growth of
the magnetic field at values close to the equipartition field strength
given by Beq = (μ0ρu2)1/2. This form of algebraic quenching was
introduced heuristically (see e.g. Stix 1972) and has often been used
as the standard quenching mechanism in many dynamo simulations.
However, it does not give information about the back-reaction pro-
cess and is independent of any other parameter of the system like
the magnetic Reynolds number. A consistent description of the
quenching mechanism will be presented in the following section.

2.1 Dynamical α effect

It has been demonstrated that, when the amplitude of the magnetic
field reaches values near the equipartition, the α-effect is modified
by a magnetic contribution, the so-called magnetic α effect, denoted
by αM. It is usually the case that αM has a sign opposite to αK

resulting thus in the saturation of the magnetic field. Pouquet, Frisch
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& Léorat (1976) have shown that αM is proportional to the small-
scale current helicity of the system, hence it is possible to write α as
a sum of two contributions, one from the fluid turbulence and other
from the magnetic field, as follows:

α = αK + αM = −1

3
τω · u + 1

3
τ j · b/ρ , (5)

where ρ is the mean density of the medium, assumed here as a
constant, and j = ∇ × b/μ0 is the current density of the fluctuating
field. In general αM is a tensor, but for the sake of simplicity we
will assume here that it is a scalar. The mathematical expression
that describes the evolution of αM may be obtained by taking into
account the magnetic helicity evolution (Blackman & Brandenburg
2002), which leads to

∂αM

∂t
= −2ηtk

2
f

(
E · B
B2

eq

+ αM

Rm

)
− ∇ · Fα, (6)

where kf = 2π/(L0 − rc) with rc = 0.7L0 is a suitable choice for the
wavenumber of the forcing scale; the magnetic Reynolds number is
here defined as Rm = ηt/ηm; and1 Fα is the flux of the magnetic α

effect related to the flux of the mean small-scale magnetic helicity,
Ff , through

Fα = μ0ρηtk
2
f

B2
eq

Ff . (7)

According to previous authors αM has a large value in the interior
of the domain in absence of fluxes (Fα = 0), and its sign is usually
opposite to the sign of αK in such a way that the final amplitude of
the total α-effect decreases to a value close to the critical value for
dynamo action. As a consequence, the final value of the magnetic
energy decreases proportional to R−1

m . An exception is the case with
triply periodic boundaries where a super-equipartition field can be
reached, albeit on a resistive time-scale (Brandenburg 2001).

2.2 Magnetic helicity fluxes

The mean-field magnetic helicity, h has two contributions, hm =
A· B, corresponding to the helicity built by the large-scale magnetic
fields, and hf = a · b, being the helicity due to the small-scale fields.
The time evolution of hm depends on the evolution of the vectors
B and A, which are obtained by solving equations (2) and (3).
Then, the evolution of hm is implicitly considered in the system
and its fluxes depend on the physics incorporated in the induction
equation (in our case, for instance, shear and turbulent diffusion).
On the other hand, the evolution of hf depends on both mean and
fluctuating fields. We do not solve here the evolution equation for
the small-scale magnetic fields, but instead we solve the equation for
αM and capture with it the built-up of small-scale magnetic helicity
in the system.

Recently it has been noticed that, although the saturation of the
dynamo depends on the amount of magnetic helicity generated,
catastrophic quenching is alleviated when there is a flux of small-
scale magnetic helicity out of the domain, so that the total magnetic
helicity inside need not be conserved any longer. We may introduce
an ansatz (justified below) for these fluxes in the equation for αM

using equation (7), which, in turn, is solved together with equations
(2) and (3), giving a consistent evolution of the magnetic fields and
the magnetic helicity.

1 Note that with the FOSA result ηt = τu2
rms/3 ≈ urms/3kf this definition of

Rm implies Rm = urms/3ηmkf .

Several contributions for the helicity flux have been derived in
the past (Kleeorin & Rogachevskii 1999; Vishniac & Cho 2001;
Subramanian & Brandenburg 2004). Amongst them are the flux
of magnetic helicity across the isorotation surfaces, advective and
diffusive fluxes and also the explicit removal of magnetic helicity
in processes like solar coronal mass ejections or galactic fountain
flows, for the case of the galactic dynamo (Shukurov et al. 2006).

From the mathematical point of view, the nature of the flux terms
in the equation for αM has not been demonstrated with sufficient
rigor. However, several DNS have pointed to their existence. First,
the shearing box convection simulations of Käpylä et al. (2008)
showed that in the presence of open boundaries, the large-scale
magnetic field grows on temporal scales much shorter than the dis-
sipative time-scale. They concluded from this that open boundaries
may allow the magnetic helicity to escape out of the system. These
experiments seem to be compatible with the helicity flux proposed
by Vishniac & Cho (2001), whose functional form may be expressed
as (see Subramanian & Brandenburg 2004; Brandenburg & Subra-
manian 2005b, for further details and underlying assumptions):

F
VC
i = CVCεij lSlkBjBk, (8)

where Slk = 1
2 (Ul,k + Uk,l) is the mean rate of strain tensor and

CVC is a non-dimensional scaling factor. As we assume Up = 0, this
flux has the following three components:

F
VC
r = CVC

[
SφrBθBr + Sθφ

(
B2

θ − B2
φ

)]
, (9)

F
VC
θ = CVC

[−SφθBrBθ + Srφ

(
B2

φ − B2
r

)]
, (10)

F
VC
φ = CVC

[
SθφBrBφ − Srφ

(
B2

θ − B2
φ

)]
, (11)

with Sφr = Srφ = 1
2 r sin θ ∂�/∂r and Sθφ = Sφθ =

1
2 sin θ ∂�/∂θ .

Secondly, Mitra et al. (2010a) performed α2 dynamo simulations
driven by forced turbulence in a box with kinetic helicity changing
sign about the equator. They found that the diffusive flux of αM

across the equator can be fitted to a Fickian diffusion law given by

FD = −κα(r)∇αM. (12)

They also computed the numerical value of this diffusion coeffi-
cient, and found it to be of the order of the turbulent diffusion
coefficient. They also found that the time-averaged flux is gauge
independent. Both results were later corroborated by simulations
without equator and instead a prescribed decline of kinetic helicity
toward the boundaries (Hubbard & Brandenburg 2010a).

Additionally, magnetic helicity may be advected by a mean ve-
locity with a flux given by F ad = αMU and expelled from stellar
interiors by coronal mass ejections (CMEs), by stellar wind or by
galactic fountain flows if applied to the galactic dynamo (Shukurov
et al. 2006; Sur et al. 2007). In the Sun this advective flux, FCME,
may account for ∼10 per cent of the total helicity generated by
the solar differential rotation, as estimated by Berger & Ruzmaikin
(2000). It can be modelled by artificially removing a small amount
of αM every τ time (Brandenburg et al. 2009), or also by a radial
velocity field that mimics the solar wind.

The total flux of magnetic helicity may be written as the sum of
these contributions,

F = FVC + FD + F ad + FCME. (13)

Since in our dynamo model we do not include any component of the
velocity field other than the differential rotation, we will consider
only the first two terms on the right-hand side of equation (13).
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In general, fluxes of large-scale magnetic helicity are also present,
but they would only be of diagnostic and not of prognostic use.
Furthermore, such fluxes are cumbersome to evaluate, because only
a gauge-independent computation is physically meaningful.

3 TH E MO D EL

We solve equations (2), (3) and (6) for A, B and αM in the meridional
plane in the range 0.6L0 ≤ r ≤ L0 and 0 ≤ θ ≤ π . We consider
two different layers inside the spherical shell. In the inner one
the dynamo production terms are zero and go smoothly to a finite
value in the external layer. The magnetic diffusivity changes from
a molecular to a turbulent value from the bottom to the top of the
domain. This is achieved by considering error function profiles for
the magnetic diffusivity, the differential rotation and the kinetic α

effect, respectively (see Fig. 1):

η(r) = ηm + ηt�(r, r1, w1), (14)

∂�

∂r
(r) = C�

(
ηt

L3
0

)
�(r, r2, w1), (15)

αK(r, θ ) = Cα

(
ηt

L0

)
�(r, r1, w1) cos θ, (16)

where �(r, r1,2, w) = 1
2 {1 + erf[(r − r1,2)/w1]}, with r1 = 0.7L0,

r2 = 0.72L0 and w1 = 0.025L0. We fix C� = −104 and vary Cα .
The boundary conditions are chosen as follows: at the poles, θ =

0, π , we impose A = B = 0; at the base of the domain, we impose
a perfect conductor boundary condition, i.e. A = ∂(rB)/∂r = 0.

Figure 1. Profiles of the dynamo ingredients, αK (solid line), ∂�/∂r
(dashed line) and ηt (dot-dashed line). All quantities are normalized to
their maximum value.

Unless noted otherwise, we use at the top a vacuum condition by
coupling the magnetic field inside with an external potential field
(PF), i.e. (∇2 − s−2)A = 0. A good description of the numerical
implementation of this boundary condition may be found in Dikpati
& Choudhuri (1994).

The equations for A and B are solved using a second-order Lax–
Wendroff scheme for the first derivatives, and centred finite differ-
ences for the second-order derivatives. The temporal evolution is
computed by using a modified version of the ADI method of Peace-
man & Rachford (1955) as explained in Dikpati & Charbonneau
(1999). This numerical scheme has been used previously in several
works on the flux-transport dynamo and the results were found to
be in good agreement with those using other numerical techniques
(Guerrero & de Gouveia Dal Pino 2007, 2008; Guerrero et al. 2009).

In the absence of magnetic helicity fluxes, equation (6) for αM

corresponds to an initial value problem that can be solved explicitly.
However, as we are going to include a diffusive flux, we use for αM

the same numerical technique used for A and B and in this case
we consider αM = 0 on all boundaries. All the source terms on the
right-hand side of equation (6) are computed explicitly. When con-
sidering magnetic helicity and its fluxes, one must worry about the
gauge dependence of the solutions. Here we invoke the idea of scale
separation, in particular, Subramanian & Brandenburg (2006) have
shown that it is possible to write a gauge-independent equation for
the local magnetic helicity density. Their expressions correspond to
our equation (6).

Furthermore, we have tested the convergence of the solution for
642, 1282 and 2562 grid points. For cases with small Rm, there
are no significant differences between different resolutions, but for
high Rm, 642 grid points is insufficient to properly resolve the sharp
diffusivity gradient. A resolution of 1282 grid points is a good
compromise between accuracy and speed.

4 R ESULTS

4.1 α� dynamos with algebraic quenching

In order to characterize our α� dynamo model we start by exploring
the properties of the system when the saturation is controlled by
algebraic quenching with fq = (1 + B2/B2

eq)−1. We find that, with
the profiles given by equations (14)–(16), Fig. 1, the critical dynamo
number is around −2 × 104 (i.e. CC

α = 1.975). The solution for the
model is a dynamo wave traveling towards the equator since it obeys
the Parker (1955)–Yoshimura (1975) sign rule (see Fig. 2). In this

Figure 2. Time–latitude butterfly diagram for the toroidal component of the
magnetic field at r = 0.72L0, for an α� dynamo model with C� = −104

and Cα = 2.5 and algebraic quenching.
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Figure 3. Magnetic field strength averaged over volume and time as a
function of Cα using an algebraic quenching function that is independent of
Rm.

case, the saturated value of the magnetic field strength depends
only on the dynamo number of the system, CαC�, as can be seen
in the bifurcation diagram in Fig. 3. The quenching formula is here
independent of Rm, so the saturation amplitude is also independent
on Rm.

4.2 Dynamical quenching with Fα = 0

In this section we consider dynamo saturation through the dynam-
ical equation for αM described in Section 2.1. In this models we
distinguish three different stages in the time evolution of the mag-
netic field: a linear growth phase, a saturation phase and a final
relaxation stage (see Fig. 4 and panels a–c of Fig. 5). The mag-
netic field is amplified from its initial value, 5 × 10−4Beq, following
an exponential growth. From the earliest stages of the evolution
we notice the growth of αM with values that are predominantly
negative in the Northern hemisphere and positive in the Southern
hemisphere. The latitudinal distribution of αM is fairly uniform in
the active dynamo region, spanning from the equator to ∼±60◦

latitude. The radial distribution exhibits two narrow layers where
the sign of αM is opposite to its dominant one developing at each
hemisphere. These are located at the base of the dynamo region
(r ∼ 0.7L0) and near the surface (r > 0.95). In the equation for the
magnetic α effect, equation (6), the production term is proportional

to E · B = αB
2 − ηtμ0 J · B. Since the value of αK is larger than

Figure 4. Time evolution of the averaged mean magnetic field for different
values of Rm. No helicity fluxes have been considered for these models.
Note that for Rm > 103, we have allowed the simulations to evolve for more
than four diffusion times, as indicated in Table 1.

Figure 5. Meridional snapshots of three different phases of evolution of
the dynamo model with dynamical quenching, (a) t = 0.25 (L2

0/ηt), (b) t =
0.5 (L2

0/ηt) and (c) t = 2.0 (L2
0/ηt). The left-hand panels show the contours

of toroidal magnetic field in colour scale, and clockwise (anticlockwise)
poloidal magnetic field lines are shown in solid (dashed) lines. The central
panels show the distribution of αM, and the right-hand panel shows the
distribution of the total α. All values are in non-dimensional units (i.e.
B/Beq), so that the colour scale is different for each figure as indicated in
colour bars.

the value of αM in the bulk of the domain, the first component of
this term has the same sign as αK, which in general is positive in
the northern and negative in the southern part of the domain. The
minus sign in front of the right-hand side of equation (6) defines
then the sign of αM. However, at the base and at the top of the
dynamo region, αK → 0 and B → 0, respectively. The term ηt J · B
is here the only source of αM and leads to the formation of these
two thin layers.

In Fig. 5 we present the meridional distribution of the magnetic
field (left-hand panel), αM (middle panel) and the total α (right-
hand panel), in normalized units, for the three different stages of
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Table 1. Summary of main parameters and results of the numerical simulations. Brms is the value of the magnetic
field averaged over volume and time, T is the dynamo cycle period. For all the simulations C� = −104 except for
the last five entries (with subscript θ ) where C� = 5 × 104.

Run Cα Rm κα(ηt) CVC Brms/Beq T (L2
0/ηt) t (L2

0/ηt)

CaC 1.975 10 - - 0.0008 0.0486 1.0
Ca2.0 2.0 10 - - 0.15 0.0484 1.0
Ca2.1 2.1 10 - - 0.33 0.0477 3.0
Ca2.2 2.2 10 - - 0.45 0.0471 3.0
Ca2.3 2.3 10 - - 0.56 0.0464 3.0
Ca2.4 2.4 10 - - 0.64 0.0460 3.0
Ca2.5 2.5 10 - - 0.69 0.0455 3.0

Rm10 2.5 10 - - 0.21 0.0422 4.0
Rm50 2.5 50 - - 0.25 0.0446 4.0
Rm1e2 2.5 100 - - 0.2 0.0455 4.0
Rm1e3 2.5 103 - - 0.07 0.0464 4.0
Rm2e3 2.5 2 × 103 - - 0.05 0.0464 6.0
Rm5e3 2.5 5 × 103 - - 0.03 0.0468 15.0
Rm1e4 2.5 104 - - 0.02 0.048 15.0

DRm10 2.5 10 0.005 - 0.22 0.0422 4.0
DRm50 2.5 50 0.005 - 0.26 0.0446 4.0
DRm1e2 2.5 100 0.005 - 0.20 0.0455 4.0
DRm1e3 2.5 103 0.005 - 0.09 0.0460 4.0
DRm1e4 2.5 104 0.005 - 0.06 0.0457 5.0
DRm1e5 2.5 105 0.005 - 0.05 0.0460 7.0
DRm1e6 2.5 106 0.005 - 0.05 0.0457 8.0
DRm1e7a 2.5 107 0.001 - 0.026 0.0457 20.0
DRm1e7b 2.5 107 0.005 - 0.05 0.0460 10.0
DRm1e7c 2.5 107 0.01 - 0.073 0.0460 10.0
DRm1e7d 2.5 107 0.03 - 0.12 0.0460 8.0
DRm1e7e 2.5 107 0.05 - 0.15 0.0457 4.0
DRm1e7f 2.5 107 0.1 - 0.20 0.0460 4.0
DRm1e7g 2.5 107 1.0 - 0.54 0.0458 4.0
DRm1e7h 2.5 107 5.0 - 1.23 0.060 4.0
DRm1e7i 2.5 107 10.0 - 1.76 0.0457 4.0

VCa 2.5 103 - 0.002 0.032 0.0449 4.0
VCb 2.5 103 - 0.01 0.02 0.0442 4.0
VCc 2.5 103 - −0.002 0.02 0.0447 4.0
VCd 2.5 104 - −0.002 - - 4.0
VCD 2.5 103 0.1 0.001 0.11 0.0446 4.0

Re1e3θ 2.5 103 - - 0.023 0.0282 8.0
VCθ a 2.5 103 - 0.004 0.04 0.033 4.0
VCDθ 2.5 103 0.1 0.004 0.062 0.0266 4.0
Re1e3θ vf 2.5 103 - - 0.036 0.032 6.0
VCθ vf 2.5 103 - 0.004 0.075 0.033 6.0

evolution corresponding to the early kinematic phase, the late kine-
matic phase and the saturated phase. These snapshots correspond
to the simulation with Rm = 103 (Run Rm1e3 in Table 1).

The morphology of toroidal magnetic field, represented by filled
contours, corresponds to a multilobed pattern of alternating polarity
(left-hand panels of Fig. 5). These lobes are uniformly distributed
in radius in the whole dynamo region with maximum amplitude at
the base of this layer. The poloidal magnetic field, shown by contin-
uous (clockwise) and dashed (anticlockwise) streamlines, follows
a similar pattern with lines that are open at the top of the domain
due to the PF boundary condition. This multilobed pattern remains
unchanged during the evolution even though its amplitude changes.
There is a phase shift between toroidal and poloidal components
which we have estimated to be ∼0.4π. The model preserves the
initial dipolar parity during the entire evolution.

The magnetic α effect (middle panels) is formed first at latitudes
between ±30◦ and then it amplifies and expands to latitudes up to

∼±60◦. This makes the total α effect, initially similar to αK (Fig. 1
and top panel of Fig. 5a), smaller at lower latitudes in the central
area of the dynamo region. At the bottom and at the top of the
domain αM and αK have the same sign, making the total α larger.
However, the global effect is a decrease of the dynamo efficiency.

The space–time evolution of αM depends on the value of the
magnetic Reynolds number. For small Rm, the decay term in equa-
tion (6) (i.e. the second term in the parenthesis) becomes important,
so that there is a competition between the production and decay
terms resulting in an oscillatory behaviour in the amplitude of the
magnetic α effect. The period of these oscillations is half the period
of the magnetic cycle. With increasing Rm, the amplitude of the
oscillations decreases such that for Rm ≤ 103, αM is almost steady.

The evolution of αM traces the growth of the magnetic field, but
its final value depends on the magnetic Reynolds number. For small
Rm, αM reaches a steady state after saturation, but for large Rm, its
relaxation is modulated by damped oscillations. The relaxation time
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Shear-driven and diffusive helicity fluxes 7

is proportional to Rm, which means that for Rm � 1 the simulation
must run for many diffusion time units. The differences in the re-
laxation time observed for αM reflects the evolution of the magnetic
field, as is shown in Fig. 4.

We observe that the rms value of the magnetic field remains steady
during the saturation phase for Rm < 102. For 102 < Rm < 103, a
bump appears in the curve of magnetic field evolution, followed by
the relaxation to a steady value, whereas for Rm > 103, the magnetic
energy shows damped relaxations with a final energy proportional
to Rm −1 as has been previously reported (Brandenburg et al. 2007).
These oscillations in the time evolution of the averaged magnetic
field have been reported in mean-field dynamo simulations includ-
ing the dynamical α-effect (Brandenburg & Subramanian 2005b).

Not many DNS of α� dynamos exist so far in the literature
with Rm ≥ 100 that could be compared with our results. However,
in the local α� dynamo simulations of Käpylä et al. (2008), a
rapid decay of the magnetic field seems to occur after the initial
saturation for moderate values of Rm (≤250). This decay forms a
bump in the curve of the averaged magnetic field (see their fig. 14),
similar to the bump that we obtain for 102 < Rm < 103. A similar
bump is also seen in simulations with forced turbulence (Hubbard
& Brandenburg 2010a).

For reasons of clarity in Fig. 4 we do not show the entire time
evolution of each simulation with Rm > 103. The total evolution time
as well as the final value of the magnetic field of each simulation
are shown in Table 1. For magnetic Reynolds numbers above 2 ×
104, the initial kinematic phase is followed by a decay phase during
which the total α effect goes through subcritical values and then the
dynamo fails to start again.

One may think that, as the magnetic field is decaying to very small
values, the value of αM should also be small, so that the magnetic
field would not be quenched any longer. However, the decay rate
of αM varies as R−1

m (equation 6) which makes this quantity have a
long memory that makes the recovery of the mean magnetic field
from very low values occur only after several turbulent diffusion
times.

4.3 Diffusive flux for αM(Fα = F D)

In this section we consider the Fickian diffusion term in equa-
tion (12) for αM. We consider a diffusion coefficient, κα , varying
from 5 × 10−3ηt to 10ηt in the dynamo region and with κα = ηm in
the bottom layer. In these cases, the initial evolution of αM is similar
to the cases presented in the previous section: negative (positive)
values for αM in the Northern (Southern) hemisphere, with narrow
regions of opposite values near the regions where αK = 0 or B = 0.
However, at the later stages, αM is much more diffuse in the entire
domain and has only one sign in each hemisphere. This is the result
of a cancellation of αM with opposite signs occurring in each hemi-
sphere due to radial diffusion. Contrary to the cases without fluxes,
we now obtain finite values of Bsat for large values of Rm, as can be
seen in Fig. 6. All the cases depicted in this figure correspond to
κα = 0.005ηt. We notice that the final value of the magnetic field
still remains small compared to the equipartition (≤0.1Beq), but it
is clear that even this very modest diffusion prevents the α effect
from being catastrophically quenched. This is also evident from
the top panel of Fig. 7, where we plot the final strength of B as a
function of Rm, for the cases with and without diffusive flux. In the
middle and bottom panels of Fig. 7 we compare the behaviour of
the normalized αM, at a given point inside the dynamo region, and
also the cycle period, T , of the dynamo for models with and without

Figure 6. Same as Fig. 4 but for simulations including a diffusive flux of
αM. All the simulations correspond to κα = 0.005ηt. Note that the dynamo
solutions are oscillatory. However, the oscillations have small amplitude and
are almost invisible from the plot.

fluxes. In both panels it is clear that for Rm above ∼103, αM and T
reach a saturated value.

Besides its dependence on Rm, the evolution of αM depends also
on κα . For models with κα � ηt, the evolution of αM relies on Rm,
but for κα ≥ 0.1ηt, the dissipation time of αM becomes comparable
to, or even shorter, than the period of the dynamo cycle. This results
in αM becoming oscillatory, as shown in the bottom panel of Fig. 8.
The amplitude and the period of these oscillations depend on the
value of κα .

In the top panel of Fig. 8 we show the final value of the averaged
mean magnetic field as a function of κα . We observe that for κα

in the range (0.1–1) ηt, the value of B rms remains between 20 and
60 per cent of the equipartition, a value similar to the one obtained
in the simulations using algebraic α quenching (Section 4.1, Fig. 3).
For κα > ηt, superequipartition values of the magnetic field may
be reached. This is because larger values of κα result in oscillations
of αM with larger amplitude, such αM may locally change its sign,
increasing the value of the total α in each hemisphere and thereby
enhancing the dynamo action. Such high values of the diffusion
of the magnetic helicity are unlikely in nature. The meridional
distribution of the variables for a model with κα = ηt is shown in
Fig. 9

4.4 The Vishniac–Cho flux

Our next step is to explore the magnetic helicity flux proposed by
Vishniac & Cho (2001) in the form given by equation (8). For the
moment we set κα = 0. In a previous study on the effects of the
VC flux in a MFD model in Cartesian coordinates, Brandenburg
& Subramanian (2005b) found that there exists a critical value for
the parameter CVC above which there is a runaway growth of the
magnetic field that can only be stopped using an additional algebraic
quenching similar to the one used in Section 4.1 applied now to the
total α. They found that this critical value, CVC∗, diminishes upon
increasing the amount of shear. Since we have used a strong shear
(C� = −104) we use nominal values of CVC = 10−3, but without
any algebraic quenching.

The term ∇ · FVC develops a multilobed pattern which travels
in the same direction as the dynamo wave, confirming that the VC
flux follows the surfaces of isorotation. From equation (8), we see
that the VC flux is proportional to the magnetic energy density.
In the present case, with |C�| � |Cα|, the spatial distribution of
∇ · FVC/B2

eq is dominated by the terms involving B2
φ in equations
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Figure 7. Rm dependence of the averaged mean magnetic field (top), the
temporal mean value of αM at r = 0.8L0, θ = 45◦ (middle) and the dynamo
cycle period, T in diffusion time units (bottom). The continuous lines present
the result for simulations without diffusive flux of αM(κα = 0) and the dashed
lines show the results for κα = 0.005ηt. The error bars in the middle panel
indicate the maximum and minimum values in the oscillations of αM at that
point.

(9)–(11) (this may be inferred from the two left-hand panels of
Fig. 10a). This results in a new distribution of αM, with concentrated
regions of positive (negative) sign at low latitudes in the Northern
(Southern) hemisphere, and a broad region of negative (positive)
sign in latitudes between 20◦ and 60◦ (see middle panels of Fig. 10).
Surprisingly we find that the general effect of this flux is to decrease
the final amplitude of the magnetic field with respect to the case
without any fluxes as can be seen in Fig. 11. Note that we have until
now used only the potential field boundary condition for the poloidal
field. When we consider both diffusive as well as VC fluxes, with
κα = 0.1ηt and CVC = 10−3, we obtain a magnetic field of slightly
larger amplitude compared to the case with only the diffusive flux
(compare the value of B rms in Runs DRm1e3 and VCD in Table 1).

Figure 8. Top: final amplitude of the rms mean magnetic field for different
values of κα and Rm = 107. Bottom: final amplitude of αM at r = 0.8L0 and
θ = 45◦. The error bars indicate the maximum and minimum values in the
oscillations of αM at this point.

Figure 9. The same as Fig. 5 but for a diffusive flux with κ = η. The
snapshot corresponds to t = 3.0 (L0/ηt).

However, we may say from the butterfly diagram of Fig. 12 that the
toroidal magnetic field appears to be more concentrated at lower
latitudes, where the sign of αM is the same as that of αK.

With negative values of CVC, it was found that the resulting profile
of αM is only weakly modified from cases without fluxes, though its
value is reduced marginally such that the final amplitude of B rms is
slightly larger. But even this contribution does not help in alleviating
catastrophic quenching in models with large Rm (see Fig. 11).

Since VC fluxes transport helicity along surfaces of constant
shear, it may be expected that they are more important in mod-
els with latitudinal shear, since in this case the magnetic helicity
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Shear-driven and diffusive helicity fluxes 9

Figure 10. Meridional snapshots of the different models in Table 1: (a) VCa, (b) VCθ a, (c) VCDθ and (d) VCθ vf. The contours (colours and lines) for the
magnetic field have the same meaning as in Fig. 5. In this plot we have included a new column with the value of the divergence of the VC flux term in the αM

equation, i.e. ∇ · FVC/B2
eq. All the snapshots correspond to the relaxed state of evolution.
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10 G. Guerrero, P. Chatterjee and A. Brandenburg

Figure 11. Time evolution of the averaged mean magnetic field for different
values of CVC and: (a) Radial shear, (b) latitudinal shear with potential field
boundary conditions and (c) latitudinal shear with vertical field boundary
conditions. The width of the different bands reflects the range over which
the magnetic field varies during one cycle. Note that the cycle period is short
compared with the resistive time-scale on which the magnetic field reaches
its final saturation. If not indicated, in all models Rm = 103. The two dashed
lines in panel (a) corresponds to CVC = −0.002 for Rm = 103 and Rm =
104.

flux can travel either towards the bottom or the top of the dynamo
region, from where magnetic helicity can be expelled. For testing
this possibility, we turn off the radial shear profile and consider a
purely latitudinal solar-like differential rotation:

�(θ ) = C�

(
ηt

�eqL
2
0

)
[�s(θ ) − �c], (17)

where �eq/2π = 460.7 nHz is the angular velocity at the equator,
and �s(θ ) = �eq + a2 cos2 θ + a4 cos4 θ gives the latitudinal profile,

Figure 12. Butterfly diagrams of toroidal field for runs without the magnetic
helicity flux (a) and with the VC flux (b) for Rm = 103. Note the stronger
concentration of magnetic field at lower latitudes in the presence of the VC
flux.

with a2/2π = −62.9 nHz and a4/2π = −67.13 nHz. We then
multiply � by a function �(r, r2, w1) in order to confine the shear
to our dynamo region.

In order for the dynamo to be slightly supercritical, as in the pre-
vious cases, we consider C� = 5 × 104. This dynamo solution cor-
responds now to a dynamo wave produced at mid-latitudes (∼45◦)
that travels radially upwards (since C� now is positive). As in the
previous cases with radial shear, the distribution of ∇ · FVC/B2

eq is
similar to that of the radial derivative of magnetic energy density
(left-hand panels of Figs 10b–d). If no fluxes are considered, the
final amplitude of the mean magnetic field is ∼0.03 per cent of the
equipartition value. In presence of VC flux, starting with CVC =
10−3 for a model with Rm = 103, we notice that the final magnetic
field is twice as large as in the case with CVC = 0.

Our model becomes numerically unstable beyond CVC = 10−2

due to the appearance of concentrated regions of strong αM. When
VC and diffusive fluxes are considered simultaneously, with CVC =
4 × 10−3 and κα = 0.1ηt, the relaxed value of B rms is only slightly
below the value reached at the end of the kinematic phase (Fig. 11b).
In this case αM spreads out in the convection zone, as shown in
Fig. 10c, indicating that the effects of the VC flux are not important
when compared with the diffusive flux.

We repeated the calculation by considering the vertical field (VF)
boundary condition, ∂(rBθ )/∂θ = 0, for the top boundary, instead
of the potential field (PF) condition used throughout the rest of this
work. Furthermore, in the models with VF conditions the presence
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of the VC flux leads to an increase of the saturated value of Brms by
a factor of ∼2 compared to the case without VC flux (see Fig. 11c).
It may be noted that αM shows regions of both positive and negative
signs in each hemisphere (see Fig. 10d). Thus, the total α effect is
increased locally to values well above the kinetic one. This implies
that in the region around ±45◦ the dynamo action is driven by
the magnetic α effect. A similar secondary dynamo is found to be
working for a different distribution of shear and αK (Chatterjee et al.
2010b). As with PF boundary condition, large values of CVC result
in a numerical instability of the magnetic field in the simulation
with VF.

The main result of this section is that the VC flux does not
alleviate catastrophic quenching of the dynamo for large values of
Rm (see the dashed lines in Figs 11a and c). The reason for this may
be related to the fact that the radial flux has constituents that are
either proportional to Bθ or to Bφ (equation 9). As Bφ vanishes on
the top boundary, and Bθ is small, the VC flux is not able to dispose
of αM across the boundary. This might change if diffusive fluxes
became important near the top or if a different boundary condition
on B were applied.

It should also be noted that the theoretical foundations of the
VC flux have been called into question (Hubbard & Brandenburg
2010b). The criticism is connected with the fact that a shear produces
spurious divergences of magnetic helicity flux that can only be
removed in a gauge where the scalar potential is equal to the dot
product of velocity and vector potential. In that gauge, magnetic
helicity evolves merely like a passive scalar. Numerical experiments
confirm that, within error bars, there is no magnetic helicity flux in
situations where the formula for the VC flux would have predicted
one (Hubbard & Brandenburg 2010b).

5 C O N C L U S I O N S

We have developed α� dynamo models in spherical geometry with
relatively simple profiles of αK and shear (∂�/∂r and ∂�/∂θ ).
We choose potential field (in some cases vertical field) and perfect
conductor boundary conditions for the top and bottom boundaries,
respectively. We find the critical dynamo number by fixing C� =
−104 and varying Cα while using algebraic quenching.

Using a dynamo number, C�Cα , that is slightly supercritical,
we solve the induction equations for B and A together with an
equation for the dynamical evolution of the magnetic α effect, αM.
We find that for positive (negative) values of Cα in the Northern
(Southern) hemisphere, αM is mainly negative (positive), with nar-
row fractions of opposite sign in regions where αK or B are equal
to zero.

The kinematic phase is, of course, independent of Rm. However,
for Rm > 102 there exists a phase of post-saturation relaxation in
which the averaged magnetic field oscillates about a certain mean.
The larger the Rm, the more pronounced are the damped oscillations
and the longer is the relaxation time (Fig. 4). The final value of the
magnetic energy obeys an R−1

m dependency (R−0.5
m for magnetic field

modulus, Fig. 7), which is in agreement with earlier work in Carte-
sian coordinates (Brandenburg & Subramanian 2005b; Brandenburg
et al. 2009).

We argue that including equation (6) in MFD models is appropri-
ate for describing the saturation of the magnetic field in the dynamo
process. Since we observe large-scale magnetic fields at high mag-
netic Reynolds numbers in astrophysical objects, there must exist
a mechanism to prevent the mean magnetic field from catastrophic
quenching.

We have studied the role that diffusive and VC helicity fluxes
may play in this sense. Their contribution may be summarized as
follows.

(i) In the presence of diffusive fluxes, αM has only one sign in
each hemisphere (negative in the Northern hemisphere and positive
in Southern) and is evenly distributed across the dynamo region
(Fig. 9).

(ii) For Rm < 102 the mean values of αM are similar to models
without diffusive fluxes, whereas for Rm ≥ 102, αM has smaller
values that seem to be independent of Rm (see Fig. 7, middle).

(iii) Even a very low diffusion coefficient, e.g. κα = 0.001ηt,
causes B rms to depart from the R−0.5

m tendency and to converge to a
constant value which is then around 5 per cent of the equipartition
value for large values of Rm, up to Rm = 107 which is the largest
value used in this study (dashed line in Fig. 7, top).

(iv) Larger values of κα result in larger final field strengths.
(v) In models with only radial shear the Vishniac–Cho flux con-

tributes to αM with a component that travels in the same direction
as the dynamo wave. This produces a different radial and latitudinal
distribution of the magnetic α effect that also affects the distribu-
tion of the magnetic fields. However, it does not help in alleviating
the strong quenching at high Rm. On the contrary, the larger the
coefficient CVC, the smaller is the resultant magnetic field.

(vi) In models with only latitudinal shear the VC flux goes radi-
ally outward but it remains concentrated at the centre of the dynamo
region. In a given hemisphere the resultant distribution of αM has
both positive and negative signs. The part of αM that has the same
sign as αK enhances dynamo action. This effect is more evident in
models with vertical field boundary conditions (Figs 10b–d).

(vii) In models with vacuum and vertical field boundary condi-
tions and Rm = 103, the VC flux increases the final value of the
magnetic field by a factor of 2 compared to the case without any
fluxes.

(viii) The magnetic field in models with Rm ≥ 104 and with non-
zero VC flux decays after the kinematic phase since the total α effect
becomes subcritical (see dashed lines in Figs 11a and c). This is the
result of the long decay time (long memory) for αM, which makes
the dynamo recover only after several turbulent diffusion time units.

(ix) Larger values of CVC produce narrow bands of αM which
drives intense dynamo action in these regions. This positive feed-
back between the magnetic field and αM causes the simulation to
become numerically unstable in the absence of any other quenching
effect.

From the above results it is clear that diffusive helicity fluxes are
much more important in alleviating catastrophic quenching when
compared to the VC fluxes (in the form of equation 8) for a large
range of Rm. This is somehow intriguing since it is known from
DNS that shear in domains with open boundaries does indeed help
in alleviating the catastrophic quenching. It may be understood as a
result of the large value of C� compared with Cα and also to the top
boundary condition for the azimuthal magnetic field (Brandenburg
2005; Käpylä et al. 2008).

The results presented above indicate that considerable work is
still necessary in order to understand the role of larger-scale shear
in transporting and shedding small-scale magnetic helicity from the
domain. Furthermore, the significance of the bump and the relax-
ation oscillations in models without magnetic helicity flux (Fig. 4)
need to be understood. The current results may suggest that the
first peak could already be sufficient to explain the strength of the
large-scale magnetic field in stars and galaxies. However, the mean-
field models overlook the fact that there may be several modes all
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belonging to a large-scale field. It is therefore possible that one re-
ally has to wait until the end of the long relaxation period before a
clear large-scale field pattern can be discerned.

In snapshots of the meridional plane as well as in butterfly dia-
grams, we notice that the diffusive fluxes do not significantly mod-
ify the morphology and the distribution of the magnetic field when
compared with cases without fluxes or even with simulations with
algebraic α quenching. On the other hand, for models with VC flux
the distribution of αM becomes different and so does the magnetic
field. This is clear from the butterfly diagram shown in Fig. 12b,
which exhibits a magnetic field confined to equatorial latitudes rem-
iniscent of the observed butterfly diagram of the solar cycle. Even
though this result corresponds to a simplified model, it illustrates the
importance of considering the dynamical α quenching mechanism
for modelling the solar dynamo. Similar changes in the distribution
of αM and B are expected to happen when advection terms (merid-
ional circulation or a stellar wind) are included in the governing
equations.

In the simulations presented here, � and α effects are present
in the same layer in each case. An interesting question is whether
the quenching of the dynamo is catastrophic when both layers are
segregated, as in the Parker’s interface dynamo or the flux-transport
dynamo models. We address this question in detail in two compan-
ion papers (Chatterjee et al. 2010a,b).

We should notice that the back-reaction of the magnetic field af-
fects not only the α effect, but also the other dynamo coefficients,
including the turbulent diffusivity. Contrary to the quenching of α,
the quenching of ηt may be considered through an algebraic quench-
ing function (see e.g. Yousef et al. 2003; Käpylä & Brandenburg
2009). Guerrero et al. (2009) have shown that in a flux-transport
model these effects could change the outcome of the models such
as the final magnetic field strength and its distribution in radius and
latitude. Solar-like profiles of differential rotation and meridional
circulation along with dynamical α quenching will be considered
in a forthcoming paper.
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