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The α effect in rotating convection with sinusoidal shear
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ABSTRACT
Using three-dimensional convection simulations, it is shown that a sinusoidal variation of
horizontal shear leads to a kinematic α effect with a similar sinusoidal variation. The effect
exists even for weak stratification and arises owing to the inhomogeneity of turbulence and
the presence of impenetrable vertical boundaries. This system produces large-scale magnetic
fields that also show a sinusoidal variation in the cross-stream direction. It is argued that
earlier investigations overlooked these phenomena partly because of the use of horizontal
averaging and also because measurements of α using an imposed field combined with long
time averages give erroneous results. It is demonstrated that in such cases the actual horizontally
averaged mean field becomes non-uniform. The turbulent magnetic diffusion term resulting
from such non-uniform fields can then no longer be neglected and begins to balance the α

effect.
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1 IN T RO D U C T I O N

Shear can play an important role in hydromagnetic dynamos. This
is especially true of dynamos in astrophysical bodies that gener-
ate magnetic fields on scales larger than the scale of the turbulent
motions. Those types of dynamos are generally referred to as large-
scale dynamos. Simulations confirm that shear can be the sole driver
of dynamo action (Brandenburg 2005; Yousef et al. 2008a,b; Bran-
denburg et al. 2008a), but there is no consensus as to what is the
underlying mechanism for producing such large-scale fields. In ad-
dition to shear, there are also other possible mechanisms producing
large-scale magnetic fields. One important contender is the α effect
(Steenbeck, Krause & Rädler 1966), which quantifies the effect of
kinetic helicity on magnetic field generation. It can also be the sole
driver of large-scale dynamo action (Brandenburg 2001; Käpylä,
Korpi & Brandenburg 2009b).

When both shear and α effect act simultaneously, it becomes even
harder to identify the main drivers of large-scale dynamo action.
Although shear is generally believed to be advantageous for large-
scale dynamo action (e.g. Tobias 2009), it is conceivable that the two
effects (α effect and shear) suppress each other at least partially. This
is because, in the presence of stratification or other inhomogeneities,
shear itself can produce an α effect (Rogachevskii & Kleeorin 2003;
Rädler & Stepanov 2006; Käpylä, Korpi & Brandenburg 2009a). Its
sign depends on the relative orientation of shear and stratification.
The net α depends then on the pseudo-scalar (2� + W ) · g, where

�E-mail: petri.kapyla@helsinki.fi

2� and W are the vorticities associated with rotation and large-scale
shear flow, respectively.

The issue can be complicated even further if shear is not con-
stant but has a sinusoidal profile (e.g. Brandenburg, Bigazzi &
Subramanian 2001; Hughes & Proctor 2009). Sinusoidal shear pro-
files are commonly adopted in numerical simulations where all
boundaries are strictly periodic. This has obvious computational
advantages and is certainly easier to implement than the so-called
shearing-periodic boundary conditions where cross-stream period-
icity applies only to positions that follow the shear flow and are
thus changing with time (Wisdom & Tremaine 1988). In helical
turbulence with shear, there is the possibility of dynamo waves that
propagate perpendicular to the plane of the shear. This is clearly
borne out by simulations (Käpylä & Brandenburg 2009). The prop-
agation direction of the dynamo wave is proportional to the prod-
uct HKW , where HK is the kinetic helicity of the flow. When the
shear is sinusoidal, the sign of W changes in space, so one obtains
counter-propagating dynamo waves in the two halves of the domain
(Brandenburg et al. 2001). In the presence of helicity, there is also
a turbulent pumping effect, whose effective velocity is also in the
direction of HKW (Mitra et al. 2009).

In the cases discussed above, the turbulence is driven by a he-
lical body force, which is clearly artificial, but it allows contact
to be made with analytic theories of dynamo action in homoge-
neous media (Moffatt 1978). A more realistic case is one where
the turbulence is driven by natural convection in a slab with a tem-
perature gradient in the vertical direction. Many of the features of
dynamo action discussed above carry over to this case as well, but
an additional complication arises both from the fact that there are
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impenetrable walls and that the sign of kinetic helicity changes with
depth (e.g. Brandenburg et al. 1990; Cattaneo & Hughes 2006).

In the present paper, we deal with both aspects, but we focus in
particular on the effects of sinusoidal shear, where we expect at least
partial cancellation of the α effect when averaged over horizontal
planes. We contrast our work with earlier results that used linear
shear, implemented via the shearing-box approximation (Käpylä,
Korpi & Brandenburg 2008), as well as the case with no shear
(Käpylä et al. 2009b), where only the α effect can operate. The
conclusion from these studies is that in the simulation domain there
is an α effect of the strength expected from kinematic mean-field
theory (Käpylä et al. 2009a,b). There is also a back-reaction of the
magnetic field through the Lorentz force, and its strength varies
depending on whether or not magnetic helicity is allowed to escape
from the domain (Käpylä et al. 2009c). Again, these aspects are
now well understood using mean-field theory. The new aspect here
is the sinusoidal shear. In a recent paper, Hughes & Proctor (2009)
present results from convection simulations with rotation and large-
scale shear and report the emergence of a large-scale magnetic field
whose growth rate is proportional to the shear rate, similar to the
earlier results of Käpylä et al. (2008). They also determine the
α effect from their simulations using the so-called imposed-field
method and find that α is small and unaffected by the presence of
shear. From these results, the authors conclude that the dynamo
cannot be explained by a classical α2 or α� dynamo.

The interpretation of the results of Hughes & Proctor (2009) is
potentially in conflict with that of Käpylä et al. (2008). In both cases,
convection together with shear was found to produce large-scale
fields, but in Käpylä et al. (2008) they are interpreted as being the
result of a conventional α effect while in Hughes & Proctor (2009)
it is argued that they are due to another mechanism similar to the
incoherent α–shear effect (Sokolov 1997; Vishniac & Brandenburg
1997; Silant’ev 2000; Proctor 2007), or perhaps the shear–current
effect (Rogachevskii & Kleeorin 2003, 2004). Moreover, Hughes
& Proctor (2009) argue that the α effect is ruled out.

At this point, we cannot be sure that there is really a difference
in interpretations, because the systems considered by Käpylä et al.
(2008) and Hughes & Proctor (2009) are different in at least two
important aspects. First, in Hughes & Proctor (2009) there is no
density stratification, and since α is supposed to be proportional to
the logarithmic density gradient (Steenbeck et al. 1966) the resulting
α may indeed vanish. However, due to the impenetrable vertical
boundaries, the turbulence is inhomogeneous so that ∇ ln urms �= 0,
which can also lead to an α effect (e.g. Giesecke, Ziegler & Rüdiger
2005). Here, urms is the rms velocity of the turbulence. Secondly,
the shear profile changes sign in the horizontal direction. Together
with the vertical inhomogeneity, this also produces an α effect
(Rogachevskii & Kleeorin 2003; Rädler & Stepanov 2006), but its
contribution is not captured by horizontal averaging and it partially
cancels the α effect from rotation. This should be a measurable
effect which was not quantified in Hughes & Proctor (2009). Doing
this is one of the main motivations behind our present paper.

There is yet another important issue relevant to determining α in
a system where the magnetic Reynolds number is large enough to
result in dynamo action (Hubbard et al. 2009). Obviously, any suc-
cessful α effect should produce large-scale magnetic fields. Given
enough time, this field should reach saturation. By employing a
weak external field, one might therefore measure α at a saturated
level. Depending on boundary conditions, which were unfortunately
not specified in Hughes & Proctor (2009), the saturation can result
in a catastrophically quenched α effect. Furthermore, here we show
that even in the absence of a dynamo the electromotive force from

long time averages reflects not only α due to the uniform imposed
field as assumed by Hughes & Proctor (2009), but also picks up
contributions from the additionally generated non-uniform fields
of comparable magnitude. These caveats in determining α with an
externally imposed field were known for sometime (Ossendrijver
et al. 2002; Käpylä et al. 2006), but they have only recently been
examined in detail (Hubbard et al. 2009) and were therefore not ad-
dressed by Hughes & Proctor (2009). This gives another motivation
to our study.

Here, we use a similar simulation setup as Hughes & Proctor
(2009) and derive the α effect with the imposed-field method. We
show that the value of α determined by the method of resetting
the magnetic field after regular time intervals yields a substantially
higher value than that reported by Hughes & Proctor (2009). Fur-
thermore, we show that for a sinusoidally varying shear, also the
α effect will have a sinusoidal variation in the horizontal direction,
hence explaining why Hughes & Proctor (2009) did not see the
contribution of shear in their horizontally averaged results.

2 TH E MO D EL

In an effort to compare with the study of Hughes & Proctor (2009),
we use a Cartesian domain with Lx = Ly = 5d and Lz = d with
0 < z < d , where d is the depth of the convectively unstable layer.
We solve the usual set of hydromagnetic equations:

∂A
∂t

= U × B − ημ0 J, (1)

D ln ρ

Dt
= −∇ · U, (2)

DU
Dt

= − 1

ρ
∇p + g − 2� × U + 1

ρ
J × B

+ 1

ρ
∇ · 2νρS + 1

τ
(U − U

(0)
), (3)

De

Dt
= −p

ρ
∇ · U + 1

ρ
∇ · K∇T + 2νS2 + μ0η

ρ
J2, (4)

where D/Dt = ∂/∂t +U · ∇ is the advective time derivative, A is
the magnetic vector potential, B = ∇ × A the magnetic field, J =
μ−1

0 ∇ ×B is the current density, μ0 is the vacuum permeability, η

and ν are the magnetic diffusivity and kinematic viscosity, respec-
tively, K is the heat conductivity, ρ is the density, U is the velocity,
g = −g ẑ the gravitational acceleration, and � = �0(0, 0, 1) the
rotation vector. The fluid obeys an ideal gas law p =ρe (γ − 1),
where p and e are the pressure and internal energy, respectively, and
γ = cP/cV = 5/3 is the ratio of specific heats at constant pressure
and volume, respectively. The specific internal energy per unit mass
is related to the temperature via e = cVT . The rate of strain tensor
S is given by

Sij = 1

2
(Ui,j + Uj,i) − 1

3
δij∇ · U . (5)

The last term of equation (3) maintains a shear flow of the form

U
(0) = U0 cos

[
2π(x − x0)

Lx

]
êy, (6)

where U0 is the amplitude of the shear flow, x0 = −Lx/2 is the
position of the left-hand boundary of the domain and τ is a relaxation
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1460 P. J. Käpylä, M. J. Korpi and A. Brandenburg

time. Here, we use a τ = 20
√

d/g which corresponds to roughly
3.5 convective turnover times.

In their study, Hughes & Proctor (2009) use the Boussinesq ap-
proximation and thus neglect density stratification. Here, we use
the PENCIL CODE1 which is fully compressible. However, in order to
stay close to the setup of Hughes & Proctor (2009), we employ a
weak stratification: the density difference between the top and the
bottom of the domain is only 10 per cent and the average Mach
number is always less than 0.1. Hence, the effects of compressibil-
ity are small. The stratification in the associated hydrostatic initial
state can be described by a polytrope with index m = 1. Unlike our
previous studies (e.g. Käpylä et al. 2008), no stably stratified layers
are present.

The horizontal boundaries are periodic. We keep the temperature
fixed at the top and bottom boundaries. For the velocity, we apply
impenetrable, stress-free conditions according to

∂zUx = ∂zUy = Uz = 0. (7)

For the magnetic field, we use vertical field conditions

Bx = By = 0 (8)

that allow magnetic helicity to escape from the domain.

2.1 Units, non-dimensional quantities and parameters

Dimensionless quantities are obtained by setting

d = g = ρ0 = cP = μ0 = 1, (9)

where ρ0 is the density at zm = 1
2 d . The units of length, time,

velocity, density, specific entropy and magnetic field are then

[x] = d, [t] =
√

d/g, [U ] =
√

dg,

[ρ] = ρ0, [s] = cP, [B] =
√

dgρ0μ0. (10)

The simulations are controlled by the following dimensionless pa-
rameters: thermal and magnetic diffusions in comparison to viscos-
ity are measured by the Prandtl numbers:

Pr = ν

χ0
, Pm = ν

η
, (11)

where χ 0 = K/(cP ρ0) is the reference value of the thermal diffusion
coefficient, measured in the middle of the layer, zm, in the non-
convecting initial state. We use Pr = 0.6 and Pm = 2 in most
models. Note that Hughes & Proctor (2009) use Pr = 1 and Pm =
5, but based on earlier parameter studies (Käpylä et al. 2009a,c)
we do not expect this difference to be significant. The efficiency of
convection is measured by the Rayleigh number

Ra = gd4

νχ0

(
− 1

cP

ds

dz

)
zm

, (12)

again determined from the initial non-convecting state at zm. The en-
tropy gradient can be presented in terms of logarithmic temperature
gradients(

− 1

cP

ds

dz

)
zm

= ∇ − ∇ad

HP
, (13)

with ∇ = (∂ ln T /∂ ln p)zm , ∇ad = 1 − 1/γ and HP being the
pressure scaleheight at z = zm.

1http://pencil-code.googlecode.com

The effects of viscosity and magnetic diffusion are quantified,
respectively, by the fluid and magnetic Reynolds numbers:

Re = urms

νkf
, Rm = urms

ηkf
= Pm Re, (14)

where urms is the rms value of the velocity taken from a run where

U
(0) = 0 and kf = 2π/d is the wavenumber corresponding to the

depth of the convectively unstable layer. The strengths of rotation
and shear are measured by the Coriolis and shear numbers:

Co = 2�

urmskf
, Sh = S

urmskf
, (15)

where S = 2πU 0/Lx.
The size of error bars is estimated by dividing the time series into

three equally long parts. The largest deviation of the average for
each of the three parts from that over the full time series is taken to
represent the error.

3 R ESULTS

3.1 Dynamo excitation

We first set out to reproduce the results of Hughes & Proctor (2009).
To achieve this, we take a run with parameters close to theirs which
does not act as a dynamo in the absence of shear (Sh = 0). For
this baseline simulation, we choose the parameters Rm ≈ 18 and
Co ≈ 2.3. We then follow the same procedure as Hughes & Proctor
(2009) and gradually increase Sh whilst keeping all other parameters
constant (Table 1) and determine the growth rate λ of the magnetic
field.

The time evolution of the rms value of the total magnetic field
from our set of runs is presented in Fig. 1. We find no dynamo
for Sh = 0 and for weak shear with Sh = 0.07, the growth rate
of the field remains virtually the same as in the absence of shear.
This can be understood as follows: imposing large-scale shear via
a relaxation term effectively introduces a friction term for Uy in

places where U − U
(0) �= 0, hence lowering the Reynolds number

somewhat. However, as the same relaxation time τurmskf ≈ 3.5 is
used in all runs with shear, we are confident that these runs can be
compared with each other. As the shear is increased beyond Sh =
0.07, the growth rate first increases roughly directly proportional to
the shear rate S (Fig. 2). However, for Sh > 0.72, the increase of
the growth rate slows down similarly as in several previous studies
(Yousef et al. 2008b; Käpylä et al. 2008; Hughes & Proctor 2009).

3.2 Field structure

In earlier studies where a homogeneous shear flow was used, the
large-scale magnetic field in the saturated state was non-oscillating,

Table 1. Summary of the runs.

Run Ma Ma/Ma0 Sh B̃rms Dynamo

A0 0.028 1.00 0.00 – No
A1 0.027 0.98 0.07 – No
A2 0.028 1.01 0.14 0.70 Yes
A3 0.039 1.42 0.36 1.15 Yes
A4 0.063 2.28 0.72 1.97 Yes
A5 0.096 3.47 1.45 3.99 Yes

Note. Here, Ma = Urms/
√

dg, where Urms is the total rms velocity including
the shear flow, Ma0 = urms/

√
dg and B̃rms = Brms/Beq, where Beq =√

μ0ρu2
rms. We use Rm ≈ 18, Co ≈ 2.3 and Ra = 105 in all runs.
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Figure 1. Root mean square value of the total magnetic field as a function
of time for the runs listed in Table 1.

Figure 2. Growth rate λ of the total magnetic field, divided by the shear
rate S as a function of Sh.

showed little dependence on horizontal coordinates, and could
hence be well represented by a horizontal average (Käpylä et al.
2008). However, in the present case with sinusoidal shear, the field
structure and temporal behaviour can in principle be more com-
plicated. Furthermore, Hughes & Proctor (2009) do not comment
on the field structure in their study. In fact, the only evidence of a
large-scale field in their paper is given in the form of spectra of the
magnetic field.

We find that in our simulations the large-scale field is non-
oscillating. It turns out that the magnetic field shows an interesting

Figure 4. Magnetic field component By averaged over the saturated state
in time and over the y-dimension from Runs A2–A5.

spatial dependence. In Fig. 3, we show visualizations of the struc-
ture of the By component from the runs with the weakest (Sh ≈ 0.14)
and the strongest (Sh ≈ 1.45) shear in which dynamo action was
detected. In both cases, it is clear that the strong large-scale fields
are concentrated to one side of the computational domain whereas
the other side of the box is almost devoid of strong coherent fields.
This behaviour is even more striking when the field is averaged over
y and t (see Fig. 4). In the next section, we show that the region
of strong large-scale fields coincides with the region where the α

effect is the strongest.

3.3 α effect

The origin of large-scale magnetic fields in helical turbulence is
commonly attributed to the α effect in turbulent dynamo theory
(e.g. Moffatt 1978; Krause & Rädler 1980; Rüdiger & Hollerbach
2004). Results for convection simulations, making use of the test-
field method (Käpylä et al. 2009b), suggest that the α effect does
indeed contribute to large-scale dynamo action in simulations pre-
sented by Käpylä et al. (2008). However, it was also shown that, in
order to fully explain the simulation results, additional contributions
from the shear–current and � × J effects (Rädler 1969) appear to
be needed.

Figure 3. Magnetic field component By in the saturated state from two runs with weak (left-hand panel, Sh ≈ 0.14, turmskf ≈ 700) and strong shear (right-hand
panel, Sh ≈ 1.45, turmskf ≈ 350). The sides of the boxes show the field at the periphery of the domain whereas the bottom (top) panel depicts By from z =
0.05d (z = 0.95d).
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On the other hand, Hughes & Proctor (2009) claim that in their
setup the α effect is small, unaffected by shear and thus incapable of
driving a large-scale dynamo. The setup of Hughes & Proctor (2009)
is based on the Boussinesq approximation whereby stratification
is not present in their system. However, the impenetrable vertical
boundaries also generate an inhomogeneity, which, in a rotating
system, leads to an α effect of the form (Steenbeck et al. 1966)

α
(�)
ij = α1(G · �)δij + α2(Gi�j + Gj�i), (16)

where Gi denotes the inhomogeneity and � is the rotation vector. In
Boussinesq convection with rotation, the kinetic helicity and thus
the α effect are antisymmetric around the midplane of the layer.
In such cases, it can be useful to average over one vertical half
of the layer to obtain an estimate of α. We note that mean-field
dynamo models have shown that the details of the α profile can
also play a significant role (e.g. Baryshnikova & Shukurov 1987;
Stefani & Gerbeth 2003). In what follows, we show in most cases
the full profile of α and present averages over the upper half of the
domain only when comparing directly to Hughes & Proctor (2009).
Since the simulations in the present paper are weakly stratified,
only minor deviations from a perfectly symmetric profile can be
expected to occur.

Adding a shear flow of the form presented in equation (6) pro-
duces large-scale vorticity Wz ∝ sin x̃, where x̃ is a shifted and
rescaled x coordinate with x̃ = 2π(x −x0)/Lx . Such vorticity leads
to an α effect (see e.g. Rogachevskii & Kleeorin 2003; Rädler &
Stepanov 2006):

α
(W )
ij = α1(G · W )δij + α2(GiWj + GjWi), (17)

which, in the present case, leads to αyy ∝ sin x̃. Thus, when both
rotation and shear are present, α = α(x, z) is a function of both x
and z.

In order to measure the α effect, we impose a weak uniform
magnetic field B0 êy , with B0 ≈ 4 · 10−5Beq, and measure the
response of the relevant (y) component of the electromotive force.
Our α is then obtained from

α ≡ αyy = εy/B0. (18)

In contrast to the study of Hughes & Proctor (2009), we do not
usually allow the field that is generated in addition to B0 to saturate,
but reset it after a time interval �t ≈ 10 turmskf . Such a procedure
was first introduced by Ossendrijver et al. (2002) and it was used
also in Käpylä et al. (2006) to circumvent the complications that
arise due to the additionally generated fields. A more systematic
study of Hubbard et al. (2009) showed that only if �t is not too
long, the kinematic value of α can be obtained if there is a successful
large-scale dynamo present in the system. However, in the present
study and also in that of Hughes & Proctor (2009), there is no
dynamo in the runs from which α is computed. We find that it
is still necessary to use resetting to obtain the correct value of α

even in the absence of a dynamo. However, we postpone detailed
discussion of this issue to Section 3.4.

Our results for α from runs with constant rotation and varying
shear are shown in Fig. 5. We find that in the absence of shear, α

is a function only of z and has a magnitude of about 0.6α0, where
α0 = 1

3 urms is a reference value and urms is taken from a run with
Sh = 0. When shear is introduced, α increases (decreases) in the
regions of the domain where sin x̃ > 0 (sin x̃ < 0). However, for
strong shear, the contribution to α from shear no longer appears to
be symmetric around x = 0. This can be understood in terms of the

Figure 5. The coefficient α, averaged over the y-direction and time for Runs
A0–A5.

shear parameter

q = −∂U
(0)

∂x
/�, (19)

where

∂U
(0)

∂x
= S sin x̃. (20)

The flow is linearly unstable for q > 2 (Rayleigh instability crite-
rion). Although the maximum value of q in our simulations is about
1.25, it is clear that for Sh � 0.36 (with |q| � 0.31), the profile
and the magnitude of α are no longer significantly affected by the
increasing shear. In order to illustrate this, we compute the contri-
bution of α due to shear from runs with Sh �= 0 by subtracting the
α that was found in the absence of shear using

α(W ) = α − α(�), (21)

where α(�) is the α obtained from Run A0 with no shear but only
rotation. The results are shown in Fig. 6 and clearly show that for
small Sh (�0.14), the shear-induced α shows a sinusoidal variation
as a function of x. For larger shear the profile of α(W ) is no longer
antisymmetric around x = 0. This could reflect the asymmetry of
the results for q > 0 (−Lx/2 < x < 0) and q < 0 (0 < x < Lx/2),
that was found earlier by Snellman et al. (2009) in a somewhat dif-
ferent context of forced turbulence under the influence of rotation
and shear. They found that the Reynolds stresses were significantly
different in setups with different sign of Sh or q, and that this asym-
metry became more pronounced when the magnitude of shear was
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Figure 6. The contribution of shear to the α effect according to equa-
tion (21), averaged over the y-coordinate and time for Runs A1–A5.

Figure 7. The coefficient α averaged over the upper half (0.5d < z < d) of
the domain from the left (x < 0, solid line) and right (x > 0, dashed line)
sides of the box.

increased. Similar behaviour has been seen in the magnetohydrody-
namic regime by Korpi, Käpylä & Väisälä (2009) in the Reynolds
and Maxwell stresses.

We also observe that the magnitude of α(W ) does not significantly
change for Sh � 0.36. This could indicate that the α effect due to
shear saturates and that a simple relation like equation (17) is no
longer valid. This is apparent from Fig. 7 which shows α volume
averaged over the upper half of the domain separately for the left and
right sides of the box. For weak shear (Sh � 0.2), we find that α is
linearly proportional to shear. For Sh � 0.4, the values of α on both
sides appear to saturate to constant values. The results thus imply
that the coefficients α1 and α2 in equation (17) should depend on
W when shear is strong. We note that in Hughes & Proctor (2009)

also larger values of shear were used. The large vortex seen in the
velocity field in their Fig. 3 indicates that some of their runs with
strong shear could indeed be in the Rayleigh-unstable regime.

With the present data, we cannot ascribe the appearance of the
large-scale dynamo solely to the α effect. However, the coincidence
of regions of strong magnetic fields and large α suggest that the α

effect is indeed an important ingredient in generating the large-scale
fields.

3.4 Importance of resetting

It has previously been demonstrated that the imposed-field method
can yield misleading results if a successful large-scale dynamo
is operating in the system and long time averages are employed
(Hubbard et al. 2009). In this case, unexpectedly low values of
α could be explained by the fact that the system is already in a
saturated state. However, many papers have reported small values
of α also for systems that do not act as dynamos (e.g. Cattaneo &
Hughes 2006; Hughes & Cattaneo 2008; Hughes & Proctor 2009).
These results in apparent contradiction with those of Ossendrijver
et al. (2002) and Käpylä et al. (2006, 2009a) who use either the
imposed-field method with resetting or the test-field method. In
these cases, the systems must be in a truly kinematic state. Thus,
the explanation of Hubbard et al. (2009) does not apply. The purpose
of this section is therefore to resolve this puzzle.

We begin the investigation of this issue by performing two sets of
simulations where we study the dependence of α, as measured using
equation (18), on B0 with runs where the field is being periodically
reset or left to evolve unimpeded (Sets B and C, see Table 2). We
take Run A0 with Rm ≈ 18 and no shear as our baseline and vary
B0/Beq in the range 4 · 10−5 . . . 4 . Our results for α, defined as the
volume average over the upper half of the box,

α = 2

Lz

∫ Lz

1
2 Lz

εy(z)

B0
dz, (22)

are shown in Fig. 8. We see that, with the exception of the strongest
B0 case in Set C, the results for both sets are in accordance with a

Table 2. Summary of runs with and without resetting with varying B0.

Run Rm B̃0 α/α0 Resetting

B1 18 4 × 10−5 0.39 ± 0.05 Yes
B2 18 0.04 0.36 ± 0.03 Yes
B3 18 0.11 0.37 ± 0.05 Yes
B4 18 0.39 0.63 ± 0.21 Yes
B5 18 1.25 0.25 ± 0.10 Yes
B6 18 4.47 0.06 ± 0.05 Yes

C1 18 4 × 10−5 0.09 ± 0.06 No
C2 18 0.04 0.12 ± 0.09 No
C3 18 0.12 0.09 ± 0.02 No
C4 18 0.37 0.12 ± 0.05 No
C5 18 1.27 0.08 ± 0.03 No
C6 18 2.22 0.06 ± 0.01 No
C7 18 4.10 (1.10 ± 0.34) · 10−3 No

D1 30 4 × 10−5 0.36 ± 0.03 Yes
D2 30 4 × 10−5 −0.03 ± 0.23 No

Note. Run B1 corresponds to Run A0 in Table 1. Co ≈ 2.3, Sh = 0 and
Ra = 105 in all runs and the imposed field in normalized form is given by
B̃0 = B0/Beq.
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Figure 8. Coefficient α according to equation (22) as a function of B0 from
runs where the field is either being reset (Set B, solid line) or left to evolve
on its own (Set C, dashed line). The dotted lines show fits to a quenching
formula given in the legend where we use the coefficients q1 = 0.4 (0.1)
and q2 = 0.5 (0.2) in the upper (lower) curve. The diamonds on the left of
the vertical axis indicate the values of α for B0/Beq ≈ 4 · 10−5.

simple quenching formula

α = q1α0

1 + q2(B0/Beq)2
, (23)

where q1 and q2 are constants which we use as free parameters in
the fitting. We find that the value of α for weak fields is consistently
four times smaller in the cases where no resetting is performed. The
values of α in the range B0/Beq ≈ 0.04. . .1 are essentially the same
as those made for our standard imposed-field strength B0/Beq ≈
4 · 10−5 (see also Table 2). This suggests that the values of α in
this range represent the kinematic stage and that the factor of four
between the results in the different sets arises from the additional
inhomogeneous mean magnetic fields generated in the cases where
no resetting is performed.

This is demonstrated in the uppermost panel of Fig. 9 where the
additionally generated horizontal magnetic fields, averaged over
time and horizontal directions, are shown from Run C1. The origin
of these fields can be understood as follows: the imposed field B0 êy

induces a z-dependent electromotive force in the y direction, i.e.
εy(z). This leads to the generation of an x component of mean

magnetic field via Ḃx(z) = . . . − εy,z which, on the other hand,

induces a z dependent electromotive force εy(z) and hence Ḃy(z) =
. . . + εx,z. Since these additional fields are functions of z, mean
currents J x(z) = −By,z and J y(z) = Bx,z are also present. We
emphasize that these fields arise due to the presence of an imposed
field and decay if the imposed field is removed.

It is now clear that α cannot be determined using equation (18) in
this situation because the electromotive force picks up contributions
from the generated fields according to

εy(z) = α(z)[By(z) + B0] − ηt(z)J y(z). (24)

Here, we omit the off-diagonal components of αij and ηijk whose
influence on the final result is marginal. Since the magnetic fields
are weak, α and ηt can be considered as the kinematic values.
We use here α as determined from Run B1 (imposed field with
resetting) and ηt obtained from a corresponding test-field simulation
(see the middle panel of Fig. 9) where the test fields have a sin kz

dependence on z with k/k1 = 1 and k1 = 2π/d . For more details
about the test-field method in the context of convection simulations,
see Käpylä et al. (2009a). We normalize the turbulent diffusion

Figure 9. Top panel: horizontally averaged horizontal components of the
magnetic field from Run C1. Middle panel: vertical profiles of α(z) from
the imposed-field method (solid line) and test-field calculation with k =
k1 (dash–dotted line), and ηt(z) (dashed line). Bottom panel: y-component
of the electromotive force (solid line) compared with αBy − ηtJ y (dashed
line), and αBy (dash–dotted line).

with a reference value ηt0 = 1
3 urmsk

−1
f . The bottom panel of Fig. 9

shows that equation (24) with these z-dependent coefficients gives
a good fit to the simulation data of εy from Run C1 when the actual
mean magnetic fields are used. The diffusion term in equation (24)
has a notable effect only near the boundaries where the current is
also largest. These results demonstrate that the interpretation of the
electromotive force in terms of equation (18) is insufficient if long
time averages are used.

A general comment is here in order. Near boundaries, as well as
elsewhere in the domain where the scale of variation of the mean
field becomes comparable with the scale of the turbulent eddies, a
simple multiplication with turbulent transport coefficients becomes
inaccurate and one needs to resort to a convolution with integral
kernels. The kernels can be obtained via Fourier transformation
using the test-field results for different wavenumbers (Brandenburg,
Rädler & Schrinner 2008b). In the present paper, we have only
considered the result for the wavenumber k = 2π/Lz. This is also
the case for the ηt shown in the middle panel of Fig. 9. The α

obtained from the test-field method has a more nearly sinusoidal
shape, but with similar amplitude than the profile shown in Fig. 9.
This confirms the internal consistency of our result.

Another facet of the issue is highlighted when the magnetic
Reynolds number is increased from 18 to 30 (Runs D1 and D2,
see Fig. 10). The larger Rm value is very close to marginal for
dynamo action whereas the smaller value is clearly subcritical. We
find that, if resetting is used, the kinematic value of α is indepen-
dent of Rm in accordance with mean-field theory. The situation
changes dramatically if we let the field evolve without resetting; see
the two lower panels of Fig. 10. For Run C1 with Rm ≈ 18, we
can still extract a statistically significant mean value of α although
the scatter of the data is considerable. For Run D2 with Rm ≈ 30,
the fluctuations of α increase even further so that a very long time
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Figure 10. Time series of the coefficient α for Runs B1 and D1 (uppermost
panel), C1 (middle) and D2 (bottom).

average would be needed to obtain a statistically meaningful value.
A similar convergence issue has been encountered in the studies by
Cattaneo & Hughes (2006), Hughes & Cattaneo (2008) and Hughes
& Proctor (2009). However, as we have shown above, the interpre-
tation of such values cannot be done without taking into account the
additionally generated fields and the effects of turbulent diffusion.

4 C O N C L U S I O N S

We use three-dimensional simulations of weakly stratified turbu-
lent convection with sinusoidal shear to study dynamo action. The
parameters of the simulations are chosen so that in the absence of
shear no dynamo is present. For weak shear, the growth rate of the
magnetic field is roughly proportional to the shear rate. This is in ac-
cordance with earlier studies. A large-scale magnetic field is found
in all cases where a dynamo is excited. The strongest large-scale
fields are concentrated in one-half of the domain (x < 0), with a
sign change close to x = 0 and weaker field of opposite sign in the
other half (x > 0) of the box.

In an earlier study, Hughes & Proctor (2009) investigated a similar
system and came to the conclusion that the dynamo cannot be
explained by α� or α2 dynamos due to a low value of α determined
using the imposed-field method. However, we demonstrate that their
method where long time averages are used yields the kinematic
value α only if additionally generated inhomogeneous mean fields
are taken into account. Hence, this analysis becomes meaningless
without the knowledge of turbulent diffusion. The situation has now
changed through the widespread usage of the test-field method to
obtain values of ηt at the same time (see, e.g. Gressel et al. 2008).
Furthermore, we show that, if the magnetic field is reset before, the
additionally generated fields become comparable to the imposed
field, the kinematic value of α can be obtained by much shorter

simulations and without the complications related to gradients of
B or statistical convergence. These issues were already known for
some time (Ossendrijver et al. 2002; Käpylä et al. 2006), but they
have generally not been taken into consideration.

Another new aspect is the sinusoidal shear that is expected to
lead to a sinusoidal α profile (e.g. Rädler & Stepanov 2006). In
the study of Hughes & Proctor (2009), a volume average of α

over one vertical half of the domain is used, which averages out the
contribution of α due to shear. We find that, in the absence of shear, α
is approximately antisymmetric with respect to the midplane of the
convectively unstable layer suggesting that the main contribution to
α comes from the inhomogeneity due to the boundaries rather than
due to density stratification. When sinusoidal shear is introduced
into the system, an additional sinusoidal variation of α in the x
direction is indeed present. When the shear is strong enough, the α

profile is highly anisotropic. The maximum value of α is close to
the expected one, α0 = 1

3 urms, which is significantly higher than the
α in Hughes & Proctor (2009).

We also note that the regions of strong large-scale magnetic fields
coincide with the regions where the α effect is the strongest. This
supports the idea that the α effect does indeed play a significant role
in generating the large-scale field.
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