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In mean-field magnetohydrodynamics the mean electromotive force due to velocity and magnetic-field fluctuations plays a
crucial role. In general it consists of two parts, one independent of and another one proportional to the mean magnetic field.
The first part may be nonzero only in the presence of mhd turbulence, maintained, e.g., by small-scale dynamo action. It
corresponds to a battery, which lets a mean magnetic field grow from zero to a finite value. The second part, which covers,
e.g., the α effect, is important for large-scale dynamos. Only a few examples of the aforementioned first part of the mean
electromotive force have been discussed so far. It is shown that a mean electromotive force proportional to the mean fluid
velocity, but independent of the mean magnetic field, may occur in an originally homogeneous isotropic mhd turbulence if
there are nonzero correlations of velocity and electric current fluctuations or, what is equivalent, of vorticity and magnetic
field fluctuations. This goes beyond the Yoshizawa effect, which consists in the occurrence of mean electromotive forces
proportional to the mean vorticity or to the angular velocity defining the Coriolis force in a rotating frame and depends on
the cross-helicity defined by the velocity and magnetic field fluctuations. Contributions to the mean electromotive force
due to inhomogeneity of the turbulence are also considered. Possible consequences of the above findings for the generation
of magnetic fields in cosmic bodies are discussed.
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1 Introduction

Mean-field magnetohydrodynamics has proved to be a use-
ful tool for studying the behavior of mean magnetic fields in
turbulently moving electrically conducting fluids (see, e.g.,
Moffatt 1979; Krause & Rädler 1980; Brandenburg & Sub-
ramanian 2005). Within this framework both the magnetic
fieldB and the fluid velocityU are split into mean parts,B
and U , and fluctuating parts, b and u. Starting from the in-
duction equation governingB it is concluded that the mean
magnetic fieldB has to obey

∂tB = η∇2B + ∇ × (U ×B + E) , ∇ ·B = 0 . (1)

Here, η means the magnetic diffusivity of the fluid, for sim-
plicity considered as independent of position, and E the
mean electromotive force caused by the velocity and mag-
netic fluctuations,

E = 〈u × b〉 . (2)

Mean fields are defined by some kind of averaging satisfy-
ing the Reynolds rules. They are denoted either by overbars
or synonymously by angle brackets.

The induction equation governingB also implies

∂tb = η∇2b+ ∇ × [U × b+ u×B + (u× b)′],
∇ · b = 0 , (3)

� Corresponding author: khraedler@arcor.de

where (u×b)′ = u×b−〈u×b〉. With this in mind we may
conclude that E can be represented as a sum of two parts,

E = E(0) + E(B) , (4)

where E(0) is a functional ofu andU , and E(B) a functional
of u, U and B, which is linear in B but vanishes if B is
zero everywhere and at all past times (see, e.g., Rädler 1976,
2000; Rädler & Rheinhardt 2007). These statements apply
irrespectively of whether or not u or U depend on B. If
they depend on B and the total variation of E with B is

considered, E(0) may well vary with B, and E(B) need not
be linear inB.

A non-zero E(0) corresponds to a battery. Assume for a
moment that equation (1) for B with E = 0 has no grow-

ing solutions. If then E(0) takes non-zero values, but E(B)

remains equal to zero, B grows, even if initially equal to
zero, to a finite magnitude determined by E(0). If, on the

other hand, E(0) remains equal to zero a non-zero E(B) may
allow (if it has a suitable structure) a dynamo, that is, let
an arbitrarily small seed magnetic field B grow exponen-
tially (in the absence of back-reaction on the fluid motion
even endlessly). A small non-zero E(0) may deliver a seed
field for such a dynamo. This possibility has been already
discussed in the context of young galaxies (Brandenburg &
Urpin 1998).

In most of the general representations and applications
of mean-field magnetohydrodynamics the part E(0) of the
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electromotive force E has been ignored. Indeed, if it occurs
at all, it decays to zero in the course of time except in cases
in which an independent magnetohydrodynamic turbulence
exists, e.g., as a result of a small-scale dynamo.

The possibility of a non-zero E(0) due to local, that is,
small-scale dynamos in the solar convection zone has been
discussed by Rädler (1976). We express his statements here
by

E(0) = cγγ + cΩΩ + cγΩγ × Ω . (5)

The vector γ was interpreted as a gradient, e.g., of the turbu-
lence intensity. Ω is the angular velocity responsible for the
Coriolis force, and cγ , cΩ and cγΩ are some coefficients.
More precisely, cγ and cγΩ are scalars and cΩ is a pseu-
doscalar.

Another interesting result has been derived by
Yoshizawa (1990, see also Yoshizawa 1993 or Yoshizawa,
Itoh & Itoh 2003). Considering originally homogeneous
isotropic magnetohydrodynamic turbulence under the influ-
ence of a mean flow or a rigid-body rotation, or both, he
found

E(0) = cWW + cΩΩ , (6)

whereW = ∇×U is the mean vorticity, Ω again the angu-
lar velocity responsible for the Coriolis force, and cW and
cΩ are pseudoscalars coefficients which are, roughly speak-
ing, proportional to the cross-helicity 〈u ·b〉. This result has
recently been used for an interpretation of the Archontis dy-
namo (Sur & Brandenburg 2009).

The main purpose of this paper is to demonstrate that
a mean electromotive force E(0) proportional to the mean
fluid velocity U may occur in originally homogeneous
isotropic magnetohydrodynamic turbulence. Of course, an
electromotive force of that kind is only possible if the cor-
relation properties of the turbulence in a given frame of ref-
erence differ from those in another frame moving uniformly
relative to that, in other words, if no Galilean invariance of
these properties exists. In this case this electromotive force
occurs as soon as there is a non-zero correlation between
the fluctuating parts of velocity and electric current, u and
j = μ−1

0 ∇×b, or, what is equivalent, between the fluctuat-
ing parts of vorticity and magnetic field, ω = ∇×u and b.
Here, μ0 is the magnetic permeability of free space. We ex-
press this condition roughly by saying that 〈u · j〉 or 〈ω · b〉
have to be unequal to zero. Unlike 〈u · b〉, which charac-
terizes the linkage between vortex tubes and magnetic flux
tubes, 〈u · j〉 quantifies the linkage between vortex tubes
and current tubes.

In Sect. 2 we explain the basis of our calculations and
provide general relations for the determination of the mean
electromotive force E(0). In Sect. 3 we derive results for
homogeneous isotropic turbulence, in particular the last-
mentioned one, and we also reproduce that given by (6).
Proceeding then in Sect. 4 to inhomogeneous turbulence we
report on results related to those indicated in (5). The rele-
vance of the results obtained in this paper and the need of
further work are discussed in Sect. 5.

2 General concept

2.1 Basic equations

We consider a magnetic field B in a homogeneous incom-
pressible electrically conducting turbulent fluid in a rotating
frame. It is assumed that B and the fluid velocity U are
governed by

∂tB = η∇2B + ∇ × (U ×B +H) ,

∇ ·B = 0 (7)

∂tU +U · ∇U = −�−1∇P + ν∇2U

− 2Ω×U + F , ∇ ·U = 0 , (8)

where η is again the magnetic diffusivity, ν the kinematic
viscosity and � the mass density of the fluid. P is the sum
of hydrostatic and centrifugal pressure, and Ω the angular
velocity defining the Coriolis force. The external electromo-
tive force H and the external ponderomotive force F will
allow us to mimic magnetohydrodynamic turbulence. For
the sake of simplicity we have ignored the back-reaction of
the magnetic field on the fluid motion.

Adopting the mean-field concept and taking averages of
Eqs. (7) and (8) we arrive at equations for the mean fields
B andU . The equations forB differ from (1) only in so far
as instead of U ×B the sum U ×B +H occurs. For the
magnetic and velocity fluctuations b and u we further may
derive

∂tb = η∇2b+ ∇ × [U × b+ u×B
+ (u× b)′ + h] , ∇ · b = 0 (9)

∂tu = −�−1∇p + ν∇2u−U · ∇u− u · ∇U
− 2Ω× u− (u · ∇u)′ + f , ∇ · u = 0, (10)

where again (u×b)′ stands foru×b−〈u×b〉, analogously
(u · ∇u)′ for u · ∇u − 〈u · ∇u〉, and h, p and f are
the fluctuating parts of H , P and F . The Eqs. (9) for b
differ from (3) only by the additional electromotive force h.
In view of a later discussion we give Eqs. (10) also in the
slightly different but equivalent form

∂tu = −�−1∇(p + �(U · u)) + ν∇2u

− (2Ω +W ) × u+U × (∇ × u)
+ (u× (∇ × u))′ + f , ∇ · u = 0 , (11)

whereW stands again for ∇ ×U .
We strive to calculate the part E(0) of the mean elec-

tromotive force. So we put simply B = 0 in (9). This is
not germane to the following considerations and could al-
ways be justified by choosing a suitable H . Basically, the
so modified Eqs. (9) and (10) with a givenU imply the pos-
sibility of a small-scale dynamo, that is, of non-decaying
b, even if h is equal to zero. In what follows we introduce
however some further simplifying assumptions which un-
dermine this possibility, and we mimic a small-scale dy-
namo with a proper non-zero h.

Let us assume that u and b depend only weakly on U
and Ω so that E(0) is linear in these quantities. We further
assume that U varies only weakly in space and time so that
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E(0) in a given point depend only on U and its first spatial
derivatives in this point. Thus we have

E(0)
i = E(00)

i + aipUp + bipq∂Up/∂xq + cipΩp , (12)

where E(00)
i as well as the coefficients aip, bipq and cip are

independent of U and Ω.
We now split b and u according to

b = b(0) + b(1) + · · · , u = u(0) + u(1) + · · · (13)

into parts b(0) and u(0) independent of U and Ω, parts b(1)

and u(1) of first order in U or Ω, and higher-order contri-
butions, which are however not considered in what follows.
The assumption of the linearity of E(0) in U and Ω implies

E(0) = 〈u(0) × b(0)〉+ 〈u(0) × b(1)〉+ 〈u(1) × b(0)〉 . (14)

Returning to Eqs. (9) and (10) and considering h and f
as independent of U and Ω, we find for b(0) and u(0)

∂tb
(0) = η∇2b(0) + ∇ × [(u(0) × b(0))′ + h] ,

∇ · b(0) = 0 , (15)

∂tu
(0) = −�−1∇p(0) + ν∇2u(0)

− (u(0) · ∇u(0))′ + f ,

∇ · u(0) = 0 . (16)

In the following we denote the turbulence defined by b(0)

and u(0) as “background turbulence”. In the equations re-
sulting for b(1) and u(1) we introduce some generalized
second-order correlation approximation, that is, neglect all
terms originating from (u × b)′ and (u · ∇u)′. Hence we
have

∂tb
(1) = η∇2b(1) + ∇ × (U × b(0)) ,

∇ · b(1) = 0 , (17)

∂tu
(1) = −1

�
∇p(1) + ν∇2u(1)

− 2Ω× u(0) −U · ∇u(0) − u(0) · ∇U ,

∇ · u(1) = 0 . (18)

2.2 Relation for E(0)

In the following derivations we use a Fourier transformation
of the form

F (x, t) =
∫∫

F̂ (k, ω) exp[i(k · x− ωt)] d3k dω, (19)

with integrations over all k and ω.
In view of the determination of E(0) we first note

〈u(x, t) × b(x, t)〉i = εijk

∫∫
Q̂jk(x, t;k, ω) d3k dω ,

(20)

where Q̂jk(x, t;k, ω) is the Fourier transform of

Qjk(x, t; ξ, τ) =
〈uj(x+ ξ/2, t + τ/2) bk(x− ξ/2, t − τ/2)〉 (21)

with respect to ξ and τ . Adopting the formalism of Roberts
& Soward (1975) we find that

Q̂jk(x, t;k, ω) =∫∫
〈ûj(k + k′/2, ω + ω′/2) b̂k(−k + k′/2,−ω + ω′/2)〉

× exp[i(k′ · x− ω′t)] d3k′ dω′ ; (22)

see Appendix A. As a consequence of ∇ · u = ∇ · b = 0
the conditions

(∇j + 2 ikj)Q̂jk = 0 , (∇k − 2 ikk)Q̂jk = 0 (23)

have to be satisfied. Note that for the determination of E(0)

only the antisymmetric part of Q̂jk is needed.

Considering E(0) we restrict our attention for a moment
to the point x = 0. In that sense we put

U i = Ui + Uijxj (24)

with two constant quantities Ui and Uij satisfying Uii = 0.
We consider Eqs. (15) and (16) as solved, that is, b(0) and
u(0) as known. Subjecting then Eqs. (17) and (18) for b(1)

and u(1) with U specified according to (24) to a Fourier
transformation, eliminating the pressure term in the usual
way and taking into account relation (B2) of Appendix B,
we find

b̂
(1)
i = −E

[
ikmUmb̂

(0)
i − Uimb̂(0)

m − kmUmn∂b̂
(0)
i /∂kn

]
,

E = (ηk2 − iω)−1 , b̂
(1)
i ki = 0 , (25)

û
(1)
i = −N

[
ikmUmû

(0)
i + Uimû(0)

m

− kmUmn(2kiû
(0)
n /k2 + ∂û

(0)
i /∂kn)

+ 2εimnkm(k · Ω)û(0)
n /k2

]
,

N = (νk2 − iω)−1 , û
(1)
i ki = 0 . (26)

Calculating now Q̂jk on the basis of (22), (25) and (26)
we neglect again all contributions of higher than first or-
der in U and Ω. We further discard terms with more than
one spatial derivative, in particular products of Uij with any
other spatial derivative. Since Q̂jk should only weakly vary
with x we expand 〈ûj b̂k〉 in (22) for small k′ and arrive so
at

Q̂jk = Q̂
(0)
jk + i(E∗ − N) (k ·U) Q̂

(0)
jk

+ E∗Ukm Q̂
(0)
jm − NUjm Q̂

(0)
mk + 2NUmnkjkmQ̂

(0)
nk /k2

+ 1
2 (E∗′ + N ′)UmnkmknQ̂

(0)
jk /k2

+ 1
2 (E∗ + N)Umnkm∂Q̂

(0)
jk /∂kn

− 2N εjmnkm(k · Ω)Q̂(0)
nk /k2

− 1
2 (E∗ + N) (U · ∇)Q̂(0)

jk (27)

− 1
2 (E∗′ + N ′) (k ·U) (k · ∇)Q̂(0)

jk /k2

+ iεjmn

[
N((k · Ω)∇m + km(Ω · ∇))Q̂(0)

nk /k2

− (2N − N ′)km(k ·Ω)(k · ∇)Q̂(0)
nk /k4

]
.
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Here Q̂
(0)
jk means Q̂jk for the background turbulence, that

is, with û and b̂ replaced by û(0) and b̂
(0)

. Relation (27),
derived under the restriction x = 0, applies for arbitrary
x if only Ui and Uij are interpreted as the values of U i

and ∂U i/∂xj at the point x. In that sense the arguments

of Q̂jk and Q̂
(0)
jk , which were dropped for simplicity, are

(x, t;k, ω). Those of E, N , etc. are (k, ω). The asterisk
means complex conjugation and F ′ = k∂F/∂k.

Returning now to the representation (12) of E(0) we find

E(00)
i = εijk

∫∫
Q̂

(0)
jk d3kdω , (28)

aip = εijk

∫∫ [
i(E∗ − N)kp − 1

2 (E∗ + N)∇p

− 1
2 (E∗′ + N ′)(kp/k2)(k · ∇)

]
Q̂

(0)
jk d3k dω , (29)

bipq = εijk

∫∫ [
E∗δkpQ̂

(0)
jq − N(δjp − 2kjkp/k2)Q̂(0)

qk

+ 1
2 (E∗ + N)kp∂Q̂jk/∂kq

+ 1
2 (E∗′ + N ′)kpkqQ̂jk/k2

]
d3k dω , (30)

cip =
∫∫ [

(N/k2)
(
2kikp − i(ki∇p + kp∇i)

)
Q̂

(0)
ll

+ i(N/k2)(2kp∇k + kk∇p)Q̂
(0)
ik

− i(2N − N ′)(kp/k4)(k · ∇)(
kkQ̂

(0)
ik − kiQ̂

(0)
ll

)]
d3k dω , (31)

where again the above remarks on arguments apply.

3 Homogeneous isotropic turbulence

3.1 General results

Consider now the simple case in which the background tur-
bulence is homogeneous and isotropic and return first to
(12). Since there is no isotropic vector we have E(00)

i = 0.
As a consequence of isotropy we further put aip = cUδip,
bipq = −cW εipq and cip = cΩδip. Hence we obtain

E(0) = cU U + cW ∇ ×U + cΩ Ω (32)

with a scalar cU and pseudoscalars cW and cΩ.
Employing homogeneity and isotropy of the turbulence

with the conditions (23) we have

Q̂
(0)
jk (k, ω) =

1
2
(
δjk − kjkk

k2

)
Φ̂(0)(k, ω) − i

2k2
εjklklΨ̂(0)(k, ω) . (33)

Φ̂(0) and Ψ̂(0) turn out to be the Fourier transforms of

Φ(0)(ξ, τ) = (34)

〈u(0)(x+ ξ/2, t + τ/2) · b(0)(x− ξ/2, t − τ/2)〉 ,

Ψ(0)(ξ, τ) = (35)

μ0〈u(0)(x+ ξ/2, t + τ/2) · j(0)(x− ξ/2, t− τ/2)〉
with respect to ξ and τ , where μ0j

(0) stands for ∇ × b(0).
Clearly Φ(0) and Φ̂(0) are pseudoscalars but Ψ(0) and Ψ̂(0)

scalars. Of course, Φ(0) and Ψ(0) as well as Φ̂(0) and Ψ̂(0)

are independent of x, and consequently (35) is equivalent to

Ψ(0)(ξ, τ) = (36)

〈ω(0)(x+ ξ/2, t + τ/2) · b(0)(x− ξ/2, t − τ/2)〉 ,

where ω(0) is the vorticity of the velocity field u(0), that
is ω(0) = ∇ × u(0). Furthermore, both Φ(0) and Ψ(0) are
even in ξ, and Φ̂(0) and Ψ̂(0) even in k. In general Q̂jk ,
Φ(0), Ψ(0) as well as Φ̂(0) and Ψ̂(0) may depend on t. If we
however assume that the turbulence shows, in addition to
its homogeneity, also statistical steadiness this dependence
vanishes. In addition the arguments (x+ ξ/2, t + τ/2) and
(x− ξ/2, t− τ/2) in (34)–(36) may then be replaced, e.g.,
by (x, t) and (x− ξ, t− τ) or by (x+ ξ, t + τ) and (x, t),
respectively.

With Eqs. (29)–(31) and (33) we find

cU =
1
3

∫∫
(E∗ − N) Ψ̂(0) k d3k dω , (37)

cW =
1
3

∫∫
E∗ Φ̂(0) d3k dω , (38)

cΩ =
2
3

∫∫
N Φ̂(0) d3k dω . (39)

We point out that E = (2π)4 ˆG(η) and N = (2π)4 ˆG(ν)

where the G(γ) are the well-known Green’s functions de-
fined by

G(γ)(ξ, τ) = (4πγτ)−3/2 exp(−ξ2/4γτ) for τ > 0 ,

G(γ)(ξ, τ) = 0 for τ ≤ 0 . (40)

Considering this and applying the convolution theorem to
Eqs. (37)–(39) we obtain

cU =
μ0

3

∫∫ (
G(η)(ξ, τ) − G(ν)(ξ, τ)

)

〈u(0)(x, t) · j(0)(x− ξ, t − τ)〉 d3ξ dτ , (41)

cW =
1
3

∫∫
G(η)(ξ, τ)

〈u(0)(x, t) · b(0)(x− ξ, t − τ)〉 d3ξ dτ , (42)

cΩ =
2
3

∫∫
G(ν)(ξ, τ)

〈u(0)(x, t) · b(0)(x− ξ, t − τ)〉 d3ξ dτ . (43)

Here the integrations are over all ξ and primarily also over
all τ . However, since the G(η) = G(ν) = 0 for τ ≤ 0, they
involve in fact only positive τ .

The most remarkable result of our derivations is that a
contribution to E(0) proportional to U , that is, a term cUU
in (32), may occur. This possibility has not previously been
considered in the literature. According to (41), as long as
〈u(0)(x, t)·j(0)(x−ξ, t−τ)〉 does not vanish and η �= ν, the
coefficient cU may well be different from zero. In the special
case η = ν, however, it is equal to zero. In what follows the
occurrence of that contribution to E(0) proportional to U is
labeled as “〈u · j〉 effect”.

For non-vanishing 〈u(0)(x, t) · b(0)(x − ξ, t − τ)〉 the
pseudoscalars cW and cΩ will in general be different from
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zero. Then, as already found by Yoshizawa (1990), contri-
butions to E(0) proportional to the mean vorticity ∇ × U
and to the angular velocity Ω will occur. We refer to them
as “〈u · b〉 effects” or “Yoshizawa effects”.

We stress that the 〈u · j〉 effect is well possible under
circumstances in which 〈u(0)(x, t) · b(0)(x − ξ, t − τ)〉 is
equal to zero, that is, in which there are no 〈u · b〉 effects.

The fact that Eqs. (11) foru(1) contain Ω andW only in
the combination 2Ω +W might suggest that cΩ is equal to
2cW . Of course, the term (2Ω+W )×u in (11) contributes
to both cΩ and cW . If there were no other influences on
these coefficients this equality was indeed to be expected.
However, also ∇× (U × b) in (9) as well asU × (∇×u)
in (11) may contribute to cW without influencing cΩ. This
disturbs the equality of cΩ and 2cW . Remarkably, cΩ and
cW differ even in their dependence on ν and η. As (38) and
(39) and also (42) and (43) show, cΩ depends on ν but not
on η, and cW on η but not on ν.

3.2 Special cases

Let us first consider E(0) in some limiting cases with respect
to η and ν. We use the fact that

G(γ)(ξ, τ) → δ3(ξ) as γ → 0 . (44)

In the limit defined by η → 0 and ν → ∞ we obtain

cU = 1
3A , cW = 1

3C , cΩ = 0 ,

in the limit η → ∞ and ν → 0

cU = − 1
3A , cW = 0 , cΩ = 2

3C , (45)

and in the limit η, ν → 0

cU = 0 , cW = 1
3C , cΩ = 2

3C , (46)

where

A = μ0

∫ ∞

0

〈u(0)(x, t) · j(0)(x, t − τ)〉 dτ ,

C =
∫ ∞

0

〈u(0)(x, t) · b(0)(x, t − τ))〉 dτ . (47)

Instead of the last relations we may also write

A = μ0〈u(0)(x, t) · j(0)(x, t)〉 τA ,

C = 〈u(0)(x, t) · b(0)(x, t))〉 τC (48)

with correlation times τA and τC defined by equating the
respective right-hand sides of (47) and (48).

In view of a numerical test we also consider the case
in which 〈u(0)(x, t) · j(0)(x − ξ, t − τ)〉 and 〈u(0)(x, t) ·
b(0)(x− ξ, t − τ)〉, as far as they enter into the integrals in
(41)–(43), do not markedly vary with τ . Ignoring the depen-
dence on τ completely and using
∫ ∞

0

G(γ)(ξ, τ) dτ =
1

4πγξ
(49)

we find

cU =
1
3

(
1
η
− 1

ν

)
A† ,

cW =
1
3η

C† , cΩ =
2
3ν

C† , (50)

with

A† =
1
4π

∫
∞
〈u(0)(x, t) · (∇ × b(0)(x− ξ, t))〉 d3ξ

ξ
,

C† =
1
4π

∫
∞
〈u(0)(x, t) · b(0)(x− ξ, t)〉 d3ξ

ξ
. (51)

We may introduce vector potentialsψ(0) and a(0) such that

∇ ×ψ(0) = u(0) , ∇ · ψ(0) = 0 ,

∇ × a(0) = b(0) , ∇ · a(0) = 0 , (52)

and therefore

ψ(0)(x) =
1
4π

∫
∞

∇ × u(0)(x− ξ) d3ξ

ξ
,

a(0)(x) =
1
4π

∫
∞

∇ × b(0)(x− ξ) d3ξ

ξ
. (53)

For simplicity the argument t is omitted everywhere. With
(51) and (53) we obtain

A† = 〈u(0) · a(0)〉 = 〈ψ(0) · b(0)〉 ,

C† = 〈ψ(0) · a(0)〉 . (54)

The arguments of the quantities in the angle brackets are, of
course, always (x, t).

3.3 A numerical test

As a check of the above derivations, the electromotive force
E(0) and so the coefficient cU have been determined with
numerical solutions of Eqs. (9) and (10). For these calcu-
lations B has been put equal to zero. U was specified via
the initial condition to be constant in space, and it turned
out to remain nearly constant in time, too. The forcing
fields h and f were taken as periodic in the space co-
ordinates x, y and z, and steady. More precisely, h and
f differed only by constant factors from the vector field
e(kx) ≡ (sin kz, sinkx, sin ky), with a constant k. The
flow which would result from f is the no-cosine ABC flow
of Archontis (2000, see also Dorch & Archontis 2004 and
Cameron & Galloway 2006). Flows of this type are non-
helical. There are good reasons to expect an 〈u·j〉 effect but
no 〈u · b〉 effects. Corresponding to the steadiness of h and
f only steady b and u were considered. The average which
defines mean fields was taken over all x, y and z or, equiva-
lent to this, over a periodic box. No approximation such as,
e.g., the second-order correlation approximation was used.

Let us specify the result for cU given by (50) and (54),
which has been derived in the second-order correlation ap-
proximation, to the described situation. Relying on (15) and
(16) we assume that u(0) and b(0) are dominated by contri-
butions proportional to e(kx). So we find

cU = c0Rm

(
1 − 1

Pm

)
, c0 =

μ0〈u(0) · j(0)〉
3u

(0)
rmsk

, (55)
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Table 1 Numerically calculated values of cU/c0 for several Rm

and Pm, to be compared with the values derived in the second-
order correlation approximation, Rm(1 − 1/Pm).

Rm Pm cU/c0 Rm(1 − 1/Pm)

0.2 4 0.15 0.15
2 0.10 0.10
1 2.6×10−6 0

0.2 −0.80 −0.80
0.04 −4.80 −4.80
0.01 −15.5 −19.8

1 5 0.80 0.80
1 1.2×10−6 0

0.2 −4.0 −4.0
0.05 −17.7 −19.0

10 50 9.8 9.8
10 9.0 9.0
2 4.8 5.0

0.5 −9.05 −10.0

with the magnetic Reynolds number Rm and the magnetic
Prandtl number Pm defined by

Rm = u(0)
rms/ηk , Pm = ν/η , (56)

and u
(0)
rms = 〈u(0) 2〉1/2.

In Table 1 and Fig. 1 the numerically determined val-
ues of cU/c0 are given in dependence of Rm and Pm. In
agreement with what we have found in our analytical calcu-
lations in the second-order correlation approximation their
signs change with growing Pm at Pm = 1. Moreover, in
most cases the numerically determined values completely
agree with those obtained in this approximation, that is, with
Rm(1−1/Pm). Deviations occur only if the fluid Reynolds

number Re = u
(0)
rms/νk, that is Re = Rm/Pm, exceeds a

value of about 5. We should emphasize that all our numer-
ical solutions are laminar and perfectly regular, just as in
Fig. 2 (upper row) of Sur & Brandenburg (2009).

4 Inhomogeneous turbulence

Let us add some results for the case in which the turbulence
is no longer homogeneous and so also no longer isotropic.
We admit now that correlation functions as they occur on
the right-hand sides of (34)–(36) may depend on x so that
their gradients with respect to x do not generally vanish.
Then in addition to the contributions to E(0) given in (32)
other contributions are possible. Symmetry considerations
suggest

E(0) = cU U + cW ∇ ×U + cΩ Ω

+ g + gU ×U + gΩ × Ω . (57)

For the sake of simplicity only terms up to first order in
the spatial derivatives are included. The coefficients cU , cW

and cΩ may now vary in space. Further g and gΩ are vectors

Fig. 1 Numerically obtained values of |cU |/c0, indicated by ◦
for Pm < 1 (where cU < 0) but by • for Pm > 1 (where cU >
0), and curves representing Rm|1 − 1/Pm| for Rm = 10 (solid),
Rm = 1 (dotted), and Rm = 0.2 (dashed).

and gU is a pseudovector, all determined by the anisotropy
of the turbulence.

We may determine the contributions to E(0) mentioned
in (57) again on the basis of (20) and (27). However, rela-
tion (33) for Q̂

(0)
jk , which applies to homogeneous isotropic

turbulence only, has to be modified. Taking into account the
aforementioned gradients of correlation functions, but con-
sidering them as small, we may generalize (33) by adding,
on its right-hand side, terms that are linear in these gradients
and applying again the conditions (23). Without claiming to
full generality, in order to arrive at a typical result, we use
in what follows

Q̂
(0)
jk (x;k, ω) =

1
2

[(
δjk − kjkk

k2

)
+

i
2k2

(
kj∇k − kk∇j

)]
Φ̂(0)(x; k, ω)

− 1
2k2

[
iεjklkl (58)

− 1
2k2

(kjεklm + kkεjlm)kl∇m

]
Ψ̂(0)(x; k, ω) .

Here, Φ̂(0) is again the Fourier transform of

Φ(0)(x; ξ, τ) =

〈u(0)(x+ ξ/2, t + τ/2) · b(0)(x− ξ/2, t − τ/2) (59)

with respect to ξ and τ , and Ψ̂(0) that of

Ψ(0)(x; ξ, τ) =
1
2 〈(∇ × u(0)(x+ ξ/2, t + τ/2))

· b(0)(x− ξ/2, t− τ/2)〉
+ 1

2 〈u(0)(x+ ξ/2, t + τ/2) (60)

· (∇ × b(0)(x− ξ/2, t− τ/2))〉 .

In contrast to the case of homogeneous turbulence, Φ(0) and
Ψ(0) as well as Φ̂(0) and Ψ̂(0) may now depend on x. Fur-
thermore, Φ(0) and Ψ(0) are no longer necessarily even in
ξ, and Φ̂(0) and Ψ̂(0) no longer even in k. Again, Q̂jk , Φ(0),
Ψ(0), Φ̂(0) and Ψ̂(0) may depend on t, but this is of minor
importance in this context and therefore not explicitly indi-
cated.
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A straightforward calculation confirms then (57). As ex-
pected, we find again the relations (37)–(39) for cU , cW and
cΩ, now with Φ̂(0) and Ψ̂(0) according to (59) and (60).
While the expression (41) for cU has to be modified, (42)
and (43) for cW and cΩ retain their validity. As for g, gU

and gΩ, the calculation yields

g = −i
∫∫

(k/k2) Ψ̂(0) d3k dω , (61)

gU =
1
6
∇

∫∫
(E∗ − N) Φ̂(0) d3k dω , (62)

gΩ =
1
3
∇

∫∫
(N/k2) Ψ̂(0) d3k dω . (63)

Using again the convolution theorem in combination with

above-mentioned connection between N and ˆG(ν) and be-
tween E and ˆG(η) we arrive at the equivalent relations

g =
1

12π

∫
∇ξΨ(0)(x; ξ, 0)

d3ξ

ξ
, (64)

gU =
1
6
∇

∫∫ (
G(η)(ξ, τ) − G(ν)(ξ, τ)

)

Φ(0)(x; ξ, τ) d3ξdτ , (65)

gΩ =
1

12π
∇

∫∫∫
G(ν)(ξ + ξ′,−τ)

d3ξ′

ξ′

Ψ(0)(x; ξ, τ) d3ξ dτ , (66)

where ∇ξ stands for a gradient in ξ space. Note that for
homogeneous turbulence, in addition to gU and gΩ, also g
vanishes since then Ψ̂(0) is even in k and Ψ(0) even in ξ.

These results confirm in some sense the statements
made in the paper by Rädler (1976), formulated above in
(5). They show however that the vectors cγγ and cγΩγ
should not, as suggested there, be understood in the sense
of ∇〈u2〉. These vectors rather correspond to g or gΩ as
given in (61) and (64) and in (63) and (66). They should be
interpreted in terms of correlations between u and ∇ × b
and between ∇ × u and b.

5 Discussion

The most remarkable result of our calculations is that the
mean electromotive force E(0) in a homogeneous isotropic
magnetohydrodynamic turbulence may have a contribution
proportional to the mean fluid velocity U , that is, E(0) =
cU U + · · · . We have labeled the occurrence of this con-
tribution as 〈u · j〉 effect. The coefficient cU turned out to
be in general unequal to zero if only a non-zero correlation
exists between the fluctuating parts of the fluid velocity and
the electric current density, u and j = μ−1

0 ∇ × b, or be-
tween the fluctuating parts of the vorticity and the magnetic
field, ω = ∇ × u and b. As far as the second-order corre-
lation approximation applies, cU vanishes for η = ν, and it
changes its sign if ν/η varies and passes through ν/η = 1.

When applying our result on the 〈u · j〉 effect on a spe-
cific situation we have to check carefully whether this sit-
uation corresponds to the assumptions used in our calcu-
lations. We have determined E(0) in frame of reference in

which a mean flow, U , exists together with magnetohydro-
dynamic turbulence, and assumed that the turbulence is ho-
mogeneous and isotropic in the limit U → 0. It is the devi-
ation of the turbulence from isotropy, caused byU , which is
crucial for the 〈u · j〉 effect. We could, of course, carry out
the calculation also in a frame in which U vanishes. Under
the assumptions adopted so far the turbulence there has to be
anisotropic. In this way a non-vanishing term E(00) would
occur instead of cUU in (32), which has to be considered as
another description of the 〈u · j〉 effect.

Our assumptions differ basically from that of “Galilean
invariance” of the turbulence, which has been adopted in
various investigations (e.g., Sridhar & Subramanian 2009).
Galilean invariance means independence of the turbulence
of the homogeneous part of U and excludes the 〈u · j〉 ef-
fect. Galilean invariance is violated if the forcing is inde-
pendent of U , that is, if the functions h and f in (9) and
(10) are independent of U . This was the case in the nu-
merical example considered in Sect. 3.3. On the other hand,
turbulence driven by an instability of a flow, for example by
thermal convection or by the magneto-rotational instability,
should correspond to a forcing effectively advected with the
flow and therefore be Galilean invariant. Astrophysical ex-
amples where Galilean invariance may be violated include
turbulence driven by supernova explosions (assuming the
stellar component to be decoupled from the gas) or by in-
flection point instabilities on solid surfaces such as that of
neutron stars. However, more work is needed in order to
clarify whether the 〈u · j〉 effect can be expected to operate
in any of those environments. Furthermore, in general the
〈u · j〉 effect is accompanied by the 〈u · b〉 effects. It has
then also to be investigated which of these effects dominate.

We point out that magnetohydrodynamic turbulence
does not automatically imply non-zero correlations ofu and
b, and of u and j, or ω and b. It depends on the special
circumstances whether, e.g., 〈u · b〉, 〈u · j〉 or 〈ω · b〉 are
different from zero and what their signs are. Exploring the
importance of the 〈u · b〉 and 〈u · j〉 effects in specific set-
tings requires investigations on this topic, too.
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A Derivation of relation (22) for Q̂jk

Start from Qjk(x, t; ξ, τ ) as given in (21) and introduce there the
Fourier representations of ûj and b̂k so that

Qjk(x, t; ξ, τ ) =ZZ ZZ
〈ûj(k

†, ω†) b̂k(k‡, ω‡)〉

exp
`
i
`
(k† + k‡) · x + (k† − k‡) · ξ/2
−(ω† + ω‡)t − (ω† − ω‡)τ/2

´´
(A1)

d3k† dω† d3k‡ dω‡ .

Change then the integration variables according to

k† = k + k′/2 , k‡ = −k + k′/2 ,

ω† = ω + ω′/2 , ω‡ = −ω + ω′/2 , (A2)

and find so

Qjk(x, t; ξ, τ ) =ZZ ZZ
〈ûj(k + k′/2, ω + ω′/2)

b̂k(−k + k′/2,−ω + ω′/2)〉
exp

`
i(k′ · x − ω′t)

´
d3k′ dω′ (A3)

exp
`
i(k · ξ − ωτ )

´
d3k dω .

This shows that Q̂jk given by (22) is indeed the Fourier transform
of Qjk(x, t; ξ, τ ) with respect to ξ and τ .

B Concerning the derivations of (26) and (27)

For the derivation of (26) it is useful to know the relation1

εijkΩk − (εiklkj − εjklki)
kkΩl

k2
= εijkkk

(k · Ω)

k2
, (B1)

which applies for arbitrary vectors k and Ω. From this we have

εijkΩj ûk − kiεjklûj
kkΩl

k2
= εijkûjkk

(k · Ω)

k2
(B2)

for any vector û satisfying û · k = 0.
In view of (27) it is of interest that

∂û(k + k′/2)
∂ki

b̂(−k + k′/2)

=
“1

2

∂

∂ki
+

∂

∂k′
i

” `
û(k + k′/2) b̂(−k + k′/2)

´
,

û(k + k′/2)
∂b̂(−k + k′/2)

∂ki
(B3)

=
“1

2

∂

∂ki
− ∂

∂k′
i

” `
û(k + k′/2) b̂(−k + k′/2)

´
.

1 The corresponding relation (A1) in Rädler et al. (2003) contains a sign
error.
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