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Dissipation in dynamos at low and high magnetic Prandtl numbers
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Using simulations of helically driven turbulence, it is shown that the ratio of kinetic to magnetic energy dissipation scales
with the magnetic Prandtl number in power law fashion with anexponent of approximately 0.6. Over six orders of mag-
nitude in the magnetic Prandtl number the magnetic field is found to be sustained by large-scale dynamo action of alpha-
squared type. This work extends a similar finding for small magnetic Prandtl numbers to the regime of large magnetic
Prandtl numbers. At large magnetic Prandtl numbers, most ofthe energy is dissipated viscously, lowering thus the amount
of magnetic energy dissipation, which means that simulations can be performed at magnetic Reynolds numbers that are
large compared to the usual limits imposed by a given resolution. This is analogous to an earlier finding that at small
magnetic Prandtl numbers, most of the energy is dissipated resistively, lowering the amount of kinetic energy dissipation,
so simulations can then be performed at much larger fluid Reynolds numbers than otherwise. The decrease in magnetic
energy dissipation at large magnetic Prandtl numbers is discussed in the context of underluminous accretion found in some
quasars.
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1 Introduction

The magnetic fields in astrophysical bodies often have a
pronounced large-scale component that is associated with
large-scale dynamo action. Examples are the cyclic mag-
netic fields in late-type stars such as the Sun and the mag-
netic spirals in many galaxies, including even irregular
galaxies; see Beck et al. (1996) for a review. In addition,
all observed magnetic fields also have a significant small-
scale component that may either be the result of turbulent
motions distorting the large-scale field, or, alternatively, it
could be the result of what is known as small-scale dynamo
action (Cattaneo 1999).

Much of our knowledge about large-scale and small-
scale dynamos has come from numerical simulations; see
Brandenburg & Subramanian (2005) for a review. It is clear
that, in order for simulations to approach an astrophysically
interesting regime, one wants to make both the magnetic
diffusivity and the kinematic viscosity as small as possible.
This means that the magnetic and fluid Reynolds numbers
should be as large as possible for a given numerical reso-
lution, N3. The relevant criterion for sufficient numerical
resolution is that the kinetic and magnetic energy spectra
should develop an exponentially decaying dissipative sub-
range at a wavenumber that is at least a factor of 10 be-
low the Nyquist frequency,kNy = πN/L. In practice, for
example, with a simulation at a resolution of5123 mesh
points, one can hardly exceed values of the magnetic and
fluid Reynolds number of about 500–700 (e.g. Brandenburg
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2009). However, as will be discussed in more detail in this
paper, this empirical constraint on the resolution really only
applies if the ratio of magnetic and fluid Reynolds numbers
is about unity. This ratio is also referred to as the magnetic
Prandtl number, PrM, and there is hardly any system where
this number is unity. In galaxies and galaxy clusters this
number tends to be very large, while in stars and stellar ac-
cretion discs it is quite small. Also liquid metals used in
laboratory experiments have small PrM. Therefore, much of
what has been learnt from numerical simulations at PrM ≈ 1
has to be re-examined in cases of low and high values of
PrM.

The purpose of this paper is to focus on the relative
importance of viscous and ohmic dissipation rates at dif-
ferent values of PrM. Often, viscous and ohmic dissipation
are only treated “numerically” by making sure the code is
stable. In such cases, viscosity and magnetic diffusivity are
usually not even stated explicitly in the equations, suggest-
ing that these terms are negligible and not important. This
is of course not the case, as can be illustrated by consid-
ering the case of quasars that belong to the most luminous
objects in the sky. The discovery of the first quasar, 3C 273,
is nicely explained by Rhodes (1978) in a popular maga-
zine. Indeed, 3C 273, has about2×1012 times the luminos-
ity of the Sun and is indeed the brightest one in the sky.
This quasar would not shine at all if it was not for the ef-
fect of microphysical viscosity that leads to viscous dissi-
pation. But how important is viscous dissipation compared
with ohmic dissipation? In order to address this problem we
need to understand the effects of both viscosity and mag-
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52 A. Brandenburg: Dissipation in dynamos at low and high magnetic Prandtl numbers

netic diffusivity in a turbulent system where the magnetic
field is self-sustained by dynamo action. In this paper we
review briefly some recent work on dynamos in the regime
of small PrM and turn then to the investigation of large PrM.

2 Small magnetic Prandtl number dynamos

In the last 6 years the issue of low magnetic Prandtl num-
bers, PrM = ν/η, has become a frequently discussed topic
in the dynamo community. This is the regime where the
magnetic diffusivityη is large compared with the kinematic
viscosity ν. Already over a decade ago, Rogachevskii &
Kleeorin (1997) noticed that for small-scale dynamos the
critical value of the magnetic Reynolds number, ReM, for
the onset of dynamo action should rise from a value around
35 at PrM = 1 to values around 400 for small values of
PrM. Here, ReM = urms/ηkf is defined with respect to the
wavenumberkf of the energy-carrying eddies and the rms
velocity,urms. However, the result of Rogachevskii & Klee-
orin was not widely recognized at the time. In 2004, simu-
lation began to address this point systematically. Simula-
tions of Schekochihin et al. (2004) and Haugen et al. (2004)
provided clear indications that Recrit

M rises, and the results
of Schekochihin et al. (2005) might have even suggested
that the critical value of ReM for small-scale dynamo action
might have become infinite for PrM ≈ 0.1.

Meanwhile, Boldyrev & Cattaneo (2004) provided an
attractive framework for understanding this behavior. Given
that the energy spectrum of the small-scale dynamo peaks
at the resistive scale, which is the smallest possible scaleat
which the motions can still overcome resistive damping, one
must ask what are the properties of the flow at this scale.

In the original scenario of Kazantsev (1968), the small-
scale dynamo works through a velocity field that is random,
but essentially laminar and of large scale. In a simulation
this can be realized by choosing a large magnetic Prandtl
number, so the magnetic Reynolds number is much larger
than the fluid Reynolds number. However, subsequent stud-
ies show that small-scale dynamo action can also occur for
PrM of order unity. Both for PrM = 1 and for PrM ≫ 1
one finds that the spectral magnetic energy increases with
wavenumber proportional tok3/2.

A qualitatively new feature emerges when PrM is small.
In that case the wavenumber corresponding to the resistive
scale decreases and lies in the inertial range of the turbu-
lence. This property is crucial because in the inertial range
the velocity field is “rough”, i.e. over a spatial intervalδx
the velocity differenceδu = u(x + δx) − u(x) scales like
δu ∼ δxζ whereζ < 1. Thus, the finite difference quotient
of the velocity,δu/δx, diverges with decreasingδx, pro-
videdδx is still bigger than the viscous cutoff scale. Accord-
ing to Boldyrev & Cattaneo (2004), the critical magnetic
Reynolds number increases with increasing roughness.

In all situations that have been simulated, the wavenum-
ber range of the spectra has been too limited so that they
are affected by cutoff effects both at large and small scales.

In particular, only in simulations beyond10243 meshpoints
the spectra are shallower thank−5/3. This is referred to as
the bottleneck effect and is believed to be a physical effect
(Falkovich 1994; Dobler et al. 2003; Frisch et al. 2008). One
reason, however, why it is not usually seen in wind tunnel or
atmospheric boundary layer turbulence is the fact that one
measures in these cases only one-dimensional spectra. In
order to obtain three-dimensional spectra, one has to differ-
entiate those data, i.e. (Dobler et al. 2003)

E3D = −dE1D/d lnk . (1)

Accepting thus the physical reality of the bottleneck effect,
it becomes plausible that the critical magnetic Reynolds
number for the onset of small-scale dynamo action reaches
a maximum around PrM = 0.1, and that it decreases some-
what for smaller values of PrM. This is indeed what the sim-
ulations of Iskakov et al. (2007) suggest.

Let us now switch to large-scale dynamos. Their exci-
tation conditions are characterized by the dynamo number
which, for helical turbulence and in the absence of shear, is
just

Cα =
α

ηTk1
≈ ǫfι

kf

k1
. (2)

Here,k1 = 2π/L is the minimal wavenumber in the domain
of sizeL and we have inserted standard approximations for
theα effect,α = 1

3τw · u, and the turbulent magnetic dif-
fusivity, ηt = 1

3τu2. Here,u = U−U is the fluctuating ve-
locity, i.e. the difference between the actual velocityU and
the mean velocityU , τ ≈ (urmskf)

−1 is the turnover time,
w = ∇ × u is the fluctuating vorticity,ǫf = w · u/kfu2

is a measure for the relative helicity, andι = 1 + 3/ReM
is a correction factor of order unity for sufficiently large
values of ReM. It turns out that in all cases the spectra of
magnetic energy are at the largest scale approximately in-
dependent of ReM for PrM between 1 and10−3. This was
shown in Brandenburg (2009) and will here be extended to
10 ≤ PrM ≤ 103.

At larger wavenumbers there is a striking difference in
the magnetic energy spectra between PrM = 1 and≪ 1 in
that the resistive cutoff wavenumber moves toward smaller
values. At the same time, the kinetic energy spectrum be-
comes progressively steeper, leaving less kinetic energy to
dissipate. This has two important consequences. First of all,
the fractional kinetic energy dissipation decreases with de-
creasing PrM proportional to Pr1/2

M (Brandenburg 2009). On
the other hand, the decrease ofǫK implies that the demand
for numerical resolution becomes less stringent. This, in
turn, means that one can increase the value of Re beyond the
normally established empirical limits. An important goal of
the present paper is the demonstration that the same is also
true in the opposite limit of PrM ≫ 1.

3 The model

Our model is similar to that presented in Brandenburg
(2001, 2009), where we solve the hydromagnetic equations
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Table 1 Summary of import input and output parameters for the
runs reported in this paper.

PrM Re ReM ǫ̃K ǫ̃M kK kM Res.

10−3 4400 4 0.01 0.99 426 8 5123

10−2 2325 23 0.04 0.96 344 25 5123

10−1 1175 118 0.13 0.87 286 81 5123

100 455 455 0.39 0.61 179 201 5123

101 20 200 0.76 0.24 24 99 2563

102 9 850 0.90 0.10 14 263 2563

103 0 425 0.99 0.01 3 129 2563

103 1 1175 0.99 0.01 5 234 2563

for velocityU , logarithmic densityln ρ, and magnetic vec-
tor potentialA for an isothermal gas in the presence of an
externally imposed helical forcing functionf ,
∂U

∂t
= −U ·∇U−c2

s∇ ln ρ+f+(J×B+∇·2ρνS)/ρ, (3)

∂ ln ρ

∂t
= −U · ∇ ln ρ − ∇ · U , (4)

∂A

∂t
= U × B − µ0ηJ . (5)

Here,B = ∇ × A is the magnetic field,J = ∇ × B/µ0

is the current density,µ0 is the vacuum permeability,cs is
the isothermal speed of sound, andSij = 1

2 (Ui,j + Uj,i) −
1
3δij∇ · U is the traceless rate of strain tensor. We con-
sider a triply periodic domain of sizeL3, so the small-
est wavenumber in the domain isk1 = 2π/L. The forc-
ing function consists of eigenfunctions of the curl operator
with positive eigenvalues and is therefore fully helical with
f · ∇ × f = kf2, where3.5 ≤ k/k1 ≤ 4.5 is the chosen
wavenumber interval of the forcing function, whose average
value is referred to askf ≈ 4 k1. The amplitude off is such
that the Mach number isurms/cs ≈ 0.1, so compressive ef-
fects are negligible (Dobler et al. 2003). As in Brandenburg
(2009), we choose as initial conditions a Beltrami field of
low amplitude. The initial velocity is zero and the initial
density is uniform withρ = ρ0 = const, so the volume-
averaged density remains constant, i.e.,〈ρ〉 = ρ0.

In our simulations we change the values of magnetic and
fluid Reynolds numbers,

ReM = urms/ηkf , Re= urms/νkf , (6)

such that the ratio ReM/Re = PrM has the desired value
between10−3 and103, and we monitor the resulting kinetic
and magnetic energy dissipation rates per unit volume,

ǫK = 〈2νρS2〉, ǫM = 〈ηµ0J
2〉, (7)

whose sum,ǫT = ǫK + ǫM, will be used to define the frac-
tional dissipation rates,̃ǫK = ǫK/ǫT andǫ̃M = ǫM/ǫT. We
use the fully compressible PENCIL CODE 1 for all our calcu-
lations. We recall that, for the periodic boundary conditions
under consideration,〈2S2〉 = 〈W 2〉 + 4

3 〈(∇ · U)2〉, high-
lighting thus the analogy betweenW = ∇ × U andJ in
the incompressible case.

1 http://www.pencil-code.googlecode.com

Fig. 1 (online colour at: www.an-journal.org) Visualization of
Uy andBy on the periphery of the computational domain for PrM

ranging from 10 to 1000 at a resolution of2563 mesh points.

4 Results

In Table 1 we summarize the parameters of runs with PrM

between10−3 and103. The runs with10−3 ≤ PrM ≤ 1 are
those presented already in Brandenburg (2009) using5123

mesh points, while those with10 ≤ PrM ≤ 1000 are new
ones and have been performed using2563 mesh points. In
all cases, either Re or ReM were close to the maximum pos-
sible limit at a given resolution. Indeed, for PrM = 10−3 we
were able to reach Re= 4400 (for 5123 mesh points) while
for PrM = 103 we could go to ReM = 1200 (for 2563 mesh
points).

We note that in all cases the total energy dissipation is
approximately the same. This is perhaps not so surprising,
because we keep the amplitude of the forcing function the
same. However, the constancy of the energy dissipation rate
implies that the rate of energy injection must also be always
the same and thus independent of PrM. This means that the
flow properties of the eddies at the energy-carrying scale
must be essentially independent of PrM.

In Fig. 1 we present visualizations of they component
of velocity and magnetic field at the periphery of the com-
putational domain for the new results with PrM ≥ 10 and
in Fig. 2 we show spectra of kinetic and magnetic ener-
gies,E(k) and M(k), respectively, for all values of PrM
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Fig. 2 Compensated kinetic and magnetic energy spectra in the
saturated regime for PrM = 10−3 to 103. The spectra are com-
pensated byǫ−2/3

T
k5/3, whereǫT is the sum of kinetic and mag-

netic energy dissipation rates. The ohmic dissipation wavenumber,
kη = (ǫM/η3)1/4, is indicated by an arrow.

between10−3 and 103. In the velocity pattern one can
clearly make out the typical scale of the dominant eddies,
whose wave length is about 1/4 of the size of the box.
The magnetic field also shows a turbulent component, but
there is a much stronger large-scale component superposed.
This is essentially the Beltrami field which is of the form
B = (cos k1z, sin k1z, 0), although its wavevector could

have pointed in any of the other two coordinate directions,
(0, cos k1x, sin k1x) and(sin k1y, 0, cos k1y) would have
been equally probably alternatives. We recall that all these
fields are indeed the eigenfunctions of anα2 dynamo prob-
lem (e.g., Brandenburg & Subramanian 2005), and they also
emerge as the dominant field in helically driven turbulence.
It is clear that in a triply periodic domain such as that con-
sidered here, these fields require a resistive time to reach
full saturation. For all further details we refer to Branden-
burg (2001), where such a system was studied in full detail.

Next, we consider the spectra of kinetic and mag-
netic energies in Fig. 2 which are normalized such that
∫

E(k) dk = 1
2 〈ρU2〉 and

∫

M(k) dk = 1
2 〈B

2/µ0〉. It is
evident from the spectra that with increasing values of PrM,
the viscous dissipation wavenumber,kν = (ǫK/ν3)1/4,
moves to smaller and smaller values. Analogously to the
case of PrM ≪ 1, this implies that most of the injected en-
ergy gets dissipated by the shorter of the two cascades –
leaving only a reduced amount of energy for the other cas-
cade. This means that the corresponding diffusion coeffi-
cient can be decreased further, without creating numerical
difficulties.

It appears that it is not only the energy input at the small
wavenumber end of the relevant cascade that is decreased,
but that there is possibly a continuous removal of energy
along the cascade, making the spectral index slightly steeper
than−5/3. For example, for PrM = 10−3 the spectral slope
of E(k) is about−2.2, while for PrM = 103 the spectral
slope ofM(k) is about−2.0.

It is quite extraordinary that in all these cases the na-
ture of the large-scale dynamo is virtually unchanged, even
though PrM is varied by 6 orders of magnitude. The rea-
son is that in all cases the dynamo number,Cα, exceeds
the critical value for dynamo action,Ccrit

α = 1. Looking at
Eq. (2), we see thatCα is dominated by the scale separa-
tion ratio, which is herekf/k1 ≈ 4. Furthermore, because
the turbulence is nearly fully helical, we haveǫf ≈ 1, and
since ReM ≫ 1, we haveι ≈ 1. Thus, we haveCα > 1 for
all runs. We recall also that the saturation amplitude of the
field is essential given by the square root of the scale sepa-
ration ratio (Brandenburg 2001), which is about 2 in units of
the equipartition field strength. This is in reasonable agree-
ment with the simulation results; see Fig. 2, where we show
the resulting spectra for all the runs.

Next, we plot in Fig. 3 the ratio of kinetic to mag-
netic energy dissipation rates. In agreement with Branden-
burg (2009), we find that the ratio is approximately pro-
portional to Pr1/2

M , although a better fit is now provided by
ǫK/ǫM ≈ 0.6 Pr0.6

M . The reason for such a scaling is unclear.
However, from Eq. (7) one can see that in the ratioǫK/ǫM
there is an implicit proportionality with respect to PrM. As-
suming, for simplicity,〈2S2〉 ≈ 〈W 2〉 ≈ W 2

rms, we see
that

ǫK
ǫM

≈ ρ
ν

η

W 2
rms

J2
rms

∝ PrnM, (8)
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Fig. 3 Dependence of the ratio of the dissipation rates on PrM.

so
Wrms

Jrms
∝ Pr(n−1)/2

M ≈ Pr−1/4
M . . . Pr−1/6

M , (9)

where we have assumed thatn lies between 1/2 and 2/3,
which bracket the results seen here and in Brandenburg
(2009). These scalings are surprising in view of the usu-
ally expected individual scalings, namelyWrms ∝ ν−1/2

andJrms ∝ η−1/2 (cf. Brandenburg & Subramanian 2005).
In order to illuminate the issue further, we ask whether

not only the ratioǫK/ǫM scales with PrM, but whetherǫK
andǫM are individually proportional to Re and ReM, respec-
tively. In Fig. 4 we plotǫK versus Re (blue, solid symbols)
andǫM versus ReM (red, open symbols). The scatter is now
much larger than in Fig. 3, and it seems that the scaling ex-
ponent might even be as large asn = 2/3.

We mentioned earlier that the total dissipation rate,ǫT,
is nearly independent of PrM. However, this is only true
when we look the the dimensional value ofǫT. It is cus-
tomary to consider the normalized dissipation rate,

Cǫ =
ǫT

u3
1D/L

, (10)

whereu1D = urms/
√

3 is the one-dimensional rms velocity
andL = 3π/4kf is conventionally used as the integral scale
(Pearson et al. 2004). In the second and third panels of Fig. 4
we compareCǫ with Cǫ0, which is based on the maximum
value ofu1D in all the runs. The difference is caused by the
fact thaturms drops to rather low values in the large-PrM

regime. Part of this goes into magnetic energy, but it is not
enough to make up for this difference.

It is important to realize that, on average,ǫM is just the
same as the rate of work done against the Lorentz force,
−〈U · (J × B)〉. This becomes evident when considering
the flow of energy in our system:

〈ρU · f〉 →
{

→ 〈2ρνS2〉
−〈U · (J × B)〉 → 〈ηµ0J

2〉. (11)

Here,〈ρU · f 〉 ≈ ǫT is the rate of energy injection into the
system by the forcing term. Normally, in the hydrodynamic
case,〈2ρνS2〉, or 〈νW 2〉 in the incompressible case, stay

Fig. 4 (online colour at: www.an-journal.org)Top: dependence
of ǫK on Re (blue, solid symbols) andǫM on ReM (red, open sym-
bols). The solid line has the slope 2/3, while the dotted and dashed
lines have slopes 0.6 and 0.5, respectively.Middle and bottom:
scalings ofCǫ0 andCǫ versus PrM.

constant asν is decreased. In the case with dynamo action,
however, a decrease inν allows the dynamo to tap more
energy, so−〈U · (J × B)〉 andǫM increase at the expense
of ǫK. This is indicated by the factǫK/ǫM is found to be
proportional to(ν/η)n, soǫK decreases asν decreases. This
decease is weak in the sense thatn ≈ 1/2 ... 2/3 is less than
unity, but it is certainly no longer independent ofν as it
would be in the purely hydrodynamic case.

In view of the application to quasars, i.e. accretion discs
in active galactic nuclei, it is relevant to consider the frac-
tion of energy that goes into the heating of electrons. In-
deed, such discs are known to be underluminous, which led
to the standard paradigm of advection-dominated accretion
(Narayan & Yi 1994; Abramowicz et al. 1995). Alterna-
tively, this might be associated with the small value of the
ratio ǫM/ǫT, for which we find

ǫM
ǫT

=
ǫM

ǫM + ǫK
∝ 1

1 + PrnM
. (12)
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Using standard accretion disc theory, Balbus & Henri
(2008) find that PrM depends on the distanceR from the
black hole and is proportional toR−9/8. In particular, they
find that PrM exceeds unity within about 50 Schwarzschild
radii. This would dramatically decreaseǫM in the inner parts
and might be sufficient to explain underluminous accretion.
However, this proposal hinges on several assumptions: (i)
that the viscous heating heats the ions and not the electrons,
(ii) that the resistive dissipation energizes electrons rather
than ions, (iii) that the discs are essentially collisionless and,
finally, (iv) that the magnetohydrodynamicapproximation is
then still applicable.

5 Conclusions

The present work has shown that the ratio of kinetic to mag-
netic energy dissipation follows one and the same relation-
ship with PrM both for small and large values. An impor-
tant additional condition obeyed by all our runs is, however,
that the magnetic Reynolds number is large enough for dy-
namo action to occur. This constitutes an important differ-
ence between our current results for large-scale dynamos
and those mentioned in the first section for small-scale dy-
namos. An important consequence of such scaling is the
fact that at extreme values of the magnetic Prandtl number,
larger Reynolds numbers can be tolerated by the numeri-
cal scheme at a resolution that would be insufficient if the
magnetic Prandtl number were unity. This was shown previ-
ously for PrM = 10−3, in which case fluid Reynolds num-
bers of 4500 were possible at a resolution of5123 mesh-
points, while for PrM = 1 it was only possible to reach
Reynolds numbers of less that 700. Both cases obeyed the
empirical constraint that the spectralkinetic energy has de-
veloped a clear dissipative subrange with an exponential de-
cay shortly before the Nyquist frequency. In the opposite
case of large PrM, here PrM = 103, it was possible to reach
magnetic Reynolds numbers of 1000 at2563 mesh points.
In this case themagnetic energy spectrum has developed a
dissipative subrange shortly before the Nyquist frequency,
although it was less convincing for PrM = 102.

The reason for the value of the exponentn in the power
law relation between the energy dissipation ratioǫK/ǫM
and PrM remains unclear. At this point we cannot be cer-
tain that it isn = 0.6 and not, for example, 1/2 or 2/3. One
source of error might come from the fact that at extreme
values of PrM the effects of numerical viscosity associated
with the advection operator are no longer negligible. For
the third-order time step used in the PENCIL CODE, the nu-
merical viscosity operator takes the form−νCFL

2 ∇4 where
νCFL
2 = urmsδx

3C3
CFL/24 is a numerical hyperviscosity2

that depends on the mesh sizeδx and the Courant-Friedrich-
Levy numberCCFL, whose default value is 0.4, but the code
would still be numerically stable forCCFL = 0.9. If such
numerical effects do begin to play a role, we must expect

2 See page 118 of the PENCIL CODE manual, http://www.nordita.org/
software/pencil-code/doc/manual.pdf.

that the effective values of PrM are less extreme, which
means that then would have been underestimated and that
n might be 2/3 or even larger.

While earlier work focussed on the dependence ofǫM
on PrM (Blackman & Field 2008), no clear conclusion about
the dissipation ratioǫK/ǫM seems to have emerged. For ex-
ample, ifǫK andǫM were independent of viscosity and mag-
netic diffusivity, the ratioǫK/ǫM would have been constant.
Instead, we find thatǫK decreases when Re decreases, and
likewise,ǫM decreases when ReM decreases. On the other
hand, one must be cautious when applying results regarding
the dependence on ReM/Re (= PrM) for large values of Re
and ReM, because we may still not be in an asymptotic pa-
rameter regime. It is therefore important to extend this work
to larger values of Re and ReM and to go to larger numerical
resolution.
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