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Abstract
The role of turbulence in various astrophysical settings is reviewed. Among the differences to laboratory and
atmospheric turbulence we highlight the ubiquitous presence of magnetic fields that are generally produced and
maintained by dynamo action. The extreme temperature and density contrasts and stratifications are
emphasized in connection with turbulence in the interstellar medium and in stars with outer convection zones,
respectively. In many cases turbulence plays an essential role in facilitating enhanced transport of mass,
momentum, energy and magnetic fields in terms of the corresponding coarse-grained mean fields. Those
transport properties are usually strongly modified by anisotropies and often completely new effects emerge in
such a description that have no correspondence in terms of the original (non-coarse-grained) fields.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Astrophysical flows tend to be turbulent in the sense of being
highly irregular. The study of astrophysical turbulence is
important for several reasons. Firstly, turbulence needs to be
taken into account when modeling most astrophysical systems.
It can provide enhanced turbulent viscosity, turbulent heating,
turbulent pressure, and leads to other effects, some of which
can be non-diffusive in nature. Secondly, turbulence needs
to be taken into account when interpreting observations of
such systems. This is particularly evident in modeling line
broadening and line asymmetries. Thirdly, astrophysical
turbulence often spans an enormous range of length scales,
allowing unique insights into the scaling properties of
turbulence.

In many text books various definitions of turbulence are
suggested. However, none of them is quite without problems.
Throughout this review, turbulence will remain a loosely
defined property of flows that are highly irregular in space
and time.

Astrophysical turbulence as such is in principle no
different from ordinary turbulence. What is characteristic
about it is the extremes in some parameters, e.g. huge Reynolds
numbers, Prandtl numbers very different from unity, and, in
some cases, strong density stratification and/or very high Mach
numbers. Also, of course, the gas is often ionized and hence
electrically conducting, so the interaction with magnetic fields
cannot be neglected. As a rule, astrophysical flows tend to be
magnetized spontaneously by self-excited dynamo action.

In contrast to laboratory and technical realizations of
turbulence, where the driving often comes from the interaction
with boundaries, astrophysical turbulence tends to be largely
independent of explicit boundaries and is facilitated by intrinsic
instabilities. Another difference between astrophysical and
laboratory turbulence is the fact that, with very few exceptions,
in situ observations are impossible and one has to rely on the
radiative properties of the gas to infer velocity, temperature
and magnetic fields, for example. Yet another difference is
that in some astrophysical flows the gas is extremely tenuous
and close to collisionless, so the fluid approximation may
actually break down. In some cases, multi-fluid descriptions
are possible, for example when charged and neutral species
move at different speeds, have different temperatures, or when
positive and negative charge carriers, as well as dust particles
need to be considered. However, quite often the multi-fluid
description is then also not sufficient and it is better to employ
more accurate techniques using, for example, particle-in-cell
(PIC) methods or to solve the underlying Vlasov equations.
This can be made more feasible by making use of the guide-
field or gyrokinetic approximations, where one averages out
the azimuthal particle position around magnetic field lines.

Astrophysical turbulence has been discussed in many
excellent text books and reviews [1–10]. In recent years,
however, high-resolution numerical simulations have become
feasible and have added significantly to our understanding.
Furthermore, the availability of three-dimensional codes has
helped us to make astrophysical turbulence a natural ingredient
in many astrophysical investigations. The purpose of this

review is to highlight recent progress in the field. We will focus
on hydrodynamic and magnetohydrodynamic (MHD) aspects,
but will try to keep the level of repetition with earlier reviews at
a minimum. In particular, we shall not go in depth into aspects
of dynamo theory, but refer instead to the recent review of
Brandenburg and Subramanian [11] on recent progress and in
particular on the nonlinear saturation of dynamos.

2. Commonly used tools and conventions

Throughout this review we assume some basic level of
familiarity with commonly used tools and techniques in
turbulence research. Here we only review the essentials in
simplistic terms.

2.1. Spectra

Common tools include energy and helicity spectra, as well
as structure functions and structure function exponents. These
concepts become particularly useful if spatial homogeneity can
be assumed. In simulations this usually means that one deals
with triply periodic boundary conditions. Alternatively, one
can apply these tools to just one or two periodic directions
(for example convection in a domain with periodic boundary
conditions in the horizontal directions).

In incompressible (or nearly incompressible) isotropic
turbulence one usually defines the spectral energy per unit
mass,

E(k, t) =
∑

k−<|k|�k+

|û(k, t)|2, (1)

where k± = k ± δk/2 mark a constant linear interval around
wavenumber k, and the hat on u denotes the three-dimensional
Fourier transformation in space. The spectral kinetic energy is
normalized such that∫ ∞

0
E(k) dk = 1

2
〈u2〉, (2)

where angular brackets denote volume averaging. This
equation shows that the dimension of E(k, t) is cm3 s−2, and
E(k) can be interpreted as the kinetic energy per unit mass and
wavenumber.

In turbulent flows spectra remain in general time-
dependent, so one is interested in spectra that are averaged over
a sufficiently long time span. Such spectra can then also be
compared with analytic predictions where statistical averaging
is adopted instead.

In strongly compressible flows one can also define the
spectrum of kinetic energy per unit volume as

E2(k, t) =
∑

k−<|k|�k+

|ρ̂1/2u|2, (3)

and the spectrum

E3(k, t) =
∑

k−<|k|�k+

|ρ̂1/3u|2, (4)

which does not have a simple physical interpretation, except
that E3(k, t)3/2, integrated over k, has the dimension of an
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energy flux [12]. In strongly compressible (e.g. supersonic)
flows these various spectra can become quite distinct. The
closest agreement between spectra for subsonic and supersonic
turbulence is achieved when using the quantity E3(k, t) [13].

In anisotropic turbulence it is useful to consider the
spectral energy dependence along and perpendicular to
the preferred direction of the turbulence, i.e. E(k⊥, k‖, t).
Examples where this is important include rotating turbulence
and turbulence in the presence of a strong magnetic field, but
also inhomogeneous turbulence such as stratified turbulence
and convection where one usually considers the spectral
dependence on the horizontal wavenumber only.

The kinetic helicity spectrum is defined as

F(k) =
∑

k−<|k|�k+

(ω̂∗ · û + ω̂ · û∗), (5)

where ω = ∇×u is the vorticity, and asterisks denote complex
conjugation. The kinetic helicity spectrum is normalized such
that ∫ ∞

0
F(k) dk = 〈ω · u〉. (6)

This kinetic helicity spectrum obeys the realizability condition,

|F(k)| � 2kE(k), (7)

which is easily demonstrated by decomposing velocity
and vorticity into positively and negatively polarized
waves [11, 14]. Sometimes the helicity is defined with a
1/2 factor, just like the energy is. In that case the factor 2
in equation (7) would disappear.

Equivalent concepts and definitions also apply to the
magnetic field B, where one defines spectra of magnetic
energy M(k), magnetic helicity H(k) and current helicity
C(k), which are normalized such that

∫
M(k) dk = 〈B2〉/2µ0,

where µ0 is the vacuum permeability,
∫

H(k) dk = 〈A · B〉
and

∫
C(k) dk = 〈J · B〉. Here, A is the magnetic vector

potential with B = ∇ × A and J = ∇ × B/µ0 is the current
density. The magnetic helicity and its spectrum are gauge-
invariant because of the assumed periodicity of the underlying
domain. In that case the addition of a gradient term, ∇�, in
A has no effect, because 〈∇� · B〉 = 〈�∇ · B〉 = 0, where
we have used the condition that B is solenoidal. Additional
mathematical properties can be found in [15]. Magnetic
helicity is an important quantity, because it is conserved in
the limit of vanishing magnetic resistivity and in the absence
of boundary losses. Another similarly conserved quantity is
the cross helicity, 〈u · B〉. Its sign indicates whether Alfvén
waves travel preferentially parallel or antiparallel to the local
magnetic field.

2.2. Turbulent cascade

The energy-carrying scale is often defined as the scale �f =
2π/kf , where kf is the wavenumber where the energy spectrum
peaks. It is close to the integral scale �I = 2π/kI, where
k−1

I = ∫
k−1E(k) dk/

∫
E(k) dk.

Turbulence is driven either by some explicit stirring or
by some type of instability. Explicit stirring is frequently

used in direct numerical simulations (DNS) and large-eddy
simulations (LES). Here, DNS means that one considers the
original equations with the proper diffusion term, as opposed
to other schemes such as LES that are motivated by numerical
considerations and limited resolution. An astrophysical
example is the driving accomplished by supernova explosions
in the interstellar medium within each galaxy. Examples
of instability-driven turbulence include Rayleigh–Bénard
convection, the magneto-rotational instability (MRI) and shear
flow instabilities with inflection points resulting from rigid
surfaces such as the accretion disk near the surface of a neutron
star. In the latter case the domain is obviously no longer
periodic.

The driving usually occurs over a certain range of length
scales around the wavenumber kf . The nonlinearity of the
hydrodynamic equations produces power on progressively
smaller scales (larger wavenumbers). Qualitatively, this leads
to a cascade of energy from large to small scales until energy is
dissipated at scales corresponding to the wavenumber kd. The
range of wavenumbers between kf and kd is called the inertial
range. An important quantitative property of turbulence is the
approximate constancy of spectral energy flux ε throughout
the inertial range, where ε has dimensions cm2 s−3. Making
the ansatz

E(k) = CKεakb, (8)

where CK is the Kolmogorov constant, the values of the
exponents a and b are determined by matching the dimensions
for length (cm) and time (s) as follows: 3 = 2a − b and
2 = 3a, respectively. This yields a = 2/3 and b = −5/3,
so E(k) = CKε2/3k−5/3.

The length of the inertial range can be calculated by
assuming that E(k) is finite only in the range kf � k � kd.
Thus, urms and ε are given by the two integrals

1

2
u2

rms =
∫ kd

kf

E(k) dk ≈ 3

2
CKε2/3k

−2/3
f , (9)

ε =
∫ kd

kf

2νk2E(k) dk ≈ 3

2
νCKε2/3k

4/3
d , (10)

which are just the normalization condition of E(k) and the
definition of the energy dissipation, respectively. Here, ν is
the kinematic viscosity. Eliminating ε, and writing the result
in terms of the Reynolds number yields

Re = urms

νkf
≈ 3

2

√
3 C

3/2
K

(
kd

kf

)4/3

. (11)

Thus, the length of the inertial range scales with the Reynolds
number like kd/kf ≈ Re3/4; see, e.g., [16].

In astrophysics one often deals with extremely large
Reynolds numbers, and hence an extremely broad inertial
range. This is in practice not possible to simulate. However,
many aspects of interest are independent of the length of the
inertial range. Those that are not exhibit a well-understood
scaling with Reynolds number. This is the main reason why
it is at all possible to attempt simulating astrophysical systems
on the computer!
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2.3. Taylor hypothesis and one-dimensional spectra

In laboratory and atmospheric turbulence, for example,
one usually measures time series which allow only one-
dimensional spectra to be determined. This involves making
the Taylor hypothesis, i.e. the assumption that the temporal
power spectrum, ũ(ω), can be associated with a spatial one,
û(k), via ω = U0k. Here, U0 is the mean flow at the location
of the detector.

It is important to realize that one-dimensional spectra
can differ from the fully three-dimensional spectra that are
normally considered in numerical simulations of turbulent
flows. The two agree only in regions of the spectrum where
one has power law scaling, i.e. where E(k) ∼ kn with
some exponent n. This is evidently not the case near the
dissipation subrange and near the sub-inertial range at small
wavenumbers. This is probably the main reason why spectra
from high-resolution DNS show a significantly shallower
spectrum just before the dissipative subrange than the one-
dimensional spectra obtained using the Taylor hypothesis,
where a shallower part in the spectrum is essentially absent.
In the following we briefly explain this difference [17].

Consider the case of a one-dimensional spectrum obtained
by Fourier transformation over the z direction. To relate
this to the three-dimensional spectrum, we average over the
remaining x and y directions. Thus, we compute for kz > 0

E1D(kz) =
∫∫

|û(x, y, kz)|2 dx dy

LxLy

. (12)

Next, using Parseval’s relation for converting the averaging in
real space to an integration in spectral space, we can write

E1D(kz) =
∫∫

|û(kx, ky, kz)|2 dkx dky

= 2π

∫ ∞

0
|û(kr , kz)|2 kr dkr , (13)

where we have assumed that |û|2 is statistically axisymmetric,
i.e. independent of the azimuthal angle about the kz axis. Next,
we use k2

r = k2 − k2
z to replace the kr dkr integration by one

over k dk in the range from kz � k < ∞, i.e.

E1D(kz) = 2π

∫ ∞

kz

|û(k)|2 k dk =
∫ ∞

kz

E(k)

k
dk, (14)

where we have used the fact that the three-dimensional
spectrum can also be written as E(k) = 2πk2|û(k)|2, where
we have assumed averaging over full shells in wavenumber
space. Thus, we see that one-dimensional spectra, E1D(k),
are related to the fully three-dimensional spectra, E(k), via
integration, or via differentiation for the reverse operation, i.e.

E1D(k) =
∫ ∞

k

E(k′)
k′ dk′ and E(k) = −k

dE1D

dk
.

(15)

We reiterate that, if one of the two spectra were a pure power
law, the other one would also be a pure power law. However,
this assumption breaks down near kf and kd. We mention this
aspect here, because one of the unexpected results obtained

from a number of simulations over the last decade is a strong
departure from the Kolmogorov k−5/3 slope near kd, where
the spectrum can be substantially shallower [17–19]. This is
now known as the bottleneck effect [20] and was first noticed
in atmospheric turbulence [21]. It is by far not as marked in
one-dimensional spectra as in three-dimensional spectra from
recent high-resolution DNS [17].

2.4. Intermittency

The scaling of velocity differences over fixed distances is
different in different locations. The flow is therefore said to
be intermittent. A related property is that the scaling of the
structure functions,

Sp(r, t) ≡ 〈|u(x + r, t) − u(x, t)|p〉, (16)

with distance r = |r| deviates from the scaling rp/3 for
all moments p �= 3, for both parallel (r parallel to u) and
transverse (r perpendicular to u) structure functions. This
property is quantified by the structure function exponents, ζp,
which denote the slopes in graphs of ln Sp(r, t) with ln r . The
averaging, denoted by angular brackets, is here taken to be over
the full volume.

In practice, approximate scaling can only be identified in
a rather limited range of ln r . Analytic theory predicts ζ3 = 1;
see, e.g., [6, 8]. This property is often used to improve the
accuracy in the determination of ζp for p �= 3 from numerical
or experimental data by plotting ln Sp(r, t) versus ln S3(r, t).
This procedure is referred to as extended self-similarity or
ESS [22].

Intermittency is linked to the property that the ζp deviate
from a linear dependence on p. Completely non-intermittent
behavior would mean ζp = p/3. A phenomenological
relation that describes the behavior observed in experiments
and simulations is given by the She–Leveque relation [23]

ζp = p

9
+ C

[
1 −

(
1 − 2/3

C

)p/3
]

, (17)

where C is interpreted as the co-dimension of the dissipative
structures. For weakly compressible or incompressible
turbulence the dissipative structures are one-dimensional tube-
like structures, so the co-dimension is C = 2. Under
compressible conditions the dissipative structures tend to
become two-dimensional sheet-like structures, so C = 1 [24],
which is also borne out by simulations of highly supersonic
turbulence [25, 26]. Sheet-like dissipative structures are also
expected in hydromagnetic turbulence, where these structures
correspond to current sheets. In that case one expects the
same scaling as for supersonic turbulence [27]. However,
in incompressible hydromagnetic turbulence with constant
density ρ = ρ0, the relevant structure functions are based
on the so-called Elsasser variables z± = u ± B/

√
µ0ρ0. In

that case, analytic theory predicts that the mixed third-order
longitudinal structure functions of Politano and Pouquet [28],

S±
3‖(r) = 〈δz∓

‖ (r)[δz±(r)]2〉, (18)
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scale linearly with r = |r|. Here, δz±(r) = z±(x + r) −
z±(x), δz±

‖ (r) = δz± · r̂ and r̂ = r/r is the unit vector
of r.

Simulations tend to give slightly different scalings for the
longitudinal and transverse structure functions. This may be a
consequence of different cascade speeds for longitudinal and
transverse velocity increments [29], but it may also just be
an artifact of insufficient resolution and may go away at larger
resolution, as indicated by recent simulations at high numerical
resolution [13].

The assumption of the constancy of the spectral flux is well
confirmed, but the correlation between energy injection and
energy dissipation displays significant scatter. This is mostly
because the spectral flux fluctuates significantly in time and
there is some delay before the spectral energy has reached the
dissipation scale. By taking into account the appropriate delay
the scatter can be significantly reduced [30]. The energy flux
at large scales is characterized by

ε = Cεu
3
1D/L, (19)

where Cε ≈ 0.5. It is customary to define the length scale as
L = 3π/4kf , so in terms of kf and u2

rms = 3u2
1D we can then

write
ε ≈ 0.04 kfu

3
rms. (20)

This formula will be useful later in connection with turbulence
in interstellar and intergalactic media.

3. Sites of astrophysical turbulence

The following discussion is concerned mainly with obser-
vations and simulations covering a range of astrophysical
settings where turbulence occurs. In some cases strong
theoretical evidence is used to argue for the existence of
turbulence, as for example in accretion disks where turbulence
has not yet been observed explicitly [31].

3.1. Solar wind

The gas above the visible surface of the Sun is not in hydrostatic
equilibrium. Instead, because of geometrical constraints and
because of a gravitational potential inversely proportional to
the radial distance, there is the possibility of a critical point,
where the radial velocity equals the sound speed. The theory
of such flows was first understood by Parker [32] in 1967 and is
now explained in a number of text books on compressible flows
or on astrophysical fluid dynamics [33, 34]. Other transonic
flows of this type include those through a Laval nozzle, as
well as Roche-lobe overflow between binaries, astrophysical
jets from accretion disks and Bondi accretion. In the case
of the Sun the gas reaches speeds of around 400 km s−1 in
the equatorial plane and 800 km s−1 at higher latitudes [35].
The solar wind is turbulent and fluctuates between 300 and
800 km s−1 on time scales ranging from seconds to hundreds
of hours [7].

In the case of the solar wind, spectral information can
be obtained under the Taylor hypothesis that was discussed
in section 2.3. Using this hypothesis the following properties

have been inferred.

• An approximate k−5/3 energy spectrum both for velocity
and magnetic field [36].

• Below the ion Larmor radius a steeper spectrum (between
k−2 and k−4) is found for the magnetic field [37]. In
view of theoretical expectations the transition to a k−7/3

spectrum for the magnetic field together with a k−1/3

spectrum for the electric field is particularly interesting
[38, 39]; see figure 1.

• Finite magnetic helicity (negative in the northern
hemisphere and positive in the southern hemisphere),
possibly with a k−7/3 spectrum [40].

• Finite cross helicity of positive sign, indicating outward
traveling waves [41].

• Decay of turbulence with distance and evidence for
additional heating [7, 36, 42, 43].

A possible connection between a k−7/3 tail in the energy
spectrum at small scales (below the scale of the ion Larmor
radius) and so-called electron MHD as a model for collisionless
plasmas such as the solar corona and the Earth’s magnetosphere
has been discussed [44]. A similar slope has now also
been seen in simulations using the gyrokinetic equations
[38]. These equations emerge from the Vlasov equations
for a collisionless plasma by averaging over the azimuthal
angle of the gyrokinetic motions [45]. Let us also mention
here the possibility of obtaining spectra steeper than k−7/3

using electron MHD when equipartition between kinetic and
magnetic energies is not satisfied [46], or when compressible
effects are included [47].

In view of our discussion in section 2.3, it should be noted
that near the break point where the spectral index changes, the
spectra inferred using the Taylor hypothesis are not exactly
representative of the three-dimensional spectra obtained from
simulations. However, in view of other general uncertainties,
the changes in the spectral slopes are probably sufficiently
weak to be ignorable.

3.2. Solar convection

The visible surface of the Sun is the photosphere, from where
photons can reach the Earth in a direct path. Deeper inside
the Sun the gas is opaque and photons are continuously
absorbed and re-emitted, following approximately a diffusion-
like process. At the surface, the Sun exhibits a granular pattern
that can already be seen with small amateur telescopes. The
pattern is irregular and changes on a time scale of around 5 min.
The horizontal pattern size is 1–2 Mm. Here and elsewhere
we use 1 Mm = 1000 km as a convenient length scale. The
visible granulation is just a thin layer on top of a 200 Mm deep
convection zone. The convection zone covers the outer 30%
of the Sun by radius. The inner 70% is convectively stable.
This region is referred to as the radiative interior.

Its overall dynamics can be understood through
simulations and turbulence theory (i.e. mixing-length theory)
[5]. Excellent agreement between observed and simulated
granulation patterns has been obtained; see figure 2. By
calculating diagnostic spectra in the visible light and
comparing with observations one can determine the abundance

5
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Figure 1. Spectra of electric and magnetic fields from a gyrokinetic simulation [38] (left) compared with those obtained from the Cluster
spacecraft [39] (right). Note the approximate k−5/3 spectrum below the Doppler-shifted inverse proton Larmor radius and an approximate
k−7/3 spectrum for the magnetic field (solid/blue on the left and light shaded/green on the right) between the Doppler-shifted inverse proton
and electron Larmor radii (in the right-hand plot referred to as fρp and fρe, respectively), followed by a steeper dissipation subrange. Above
the inverse Doppler-shifted electron Larmor radius the electric field spectrum develops a shallower subrange consistent with k−1/3

(dashed/red on the left and black on the right). Courtesy of Gregory Howes [38], as well as Fouad Sahraoui and Melvyn Goldstein [39].

Figure 2. Comparison between a granulation pattern from a simulation with 12 km grid size (left), an observed granulation pattern from the
Swedish 1 m Solar Telescope at disk center (middle), and the simulated one after convolving with the theoretical point spread function of a
1 m telescope. The simulation images are for wavelength integrated light intensity while the observed image is for a wavelength band in the
near UV. The image was taken on 23 May 2010 at 12:42 GMT with image restoration by use of the multi-frame blind de-convolution
technique with multiple objects and phase diversity [48]. Courtesy of V M J Henriques and G B Scharmer.

of chemical elements [49–51]. The chemical element
abundances are important for determining the opacity of the
gas which, in turn, determines the radial structure of the Sun.
This will be discussed in more detail in section 6.10.

From the viewpoint of turbulence theory, this type of
convection is special—not so much because the Rayleigh
number is extremely large (∼1030), but mainly because the
density and temperature stratifications are extreme, covering
6 orders of magnitude of change in density and a factor of
300 in temperature. This huge stratification implies that the
turbulence characteristics become strongly depth-dependent.
It has long been anticipated that the energy-carrying scale
varies with depth in such a way that it is proportional to the
local pressure scale height, Hp. The pressure scale height is
proportional to the temperature and varies from about 200 km
at the top of the convection zone to about 60 Mm at the bottom.

The typical correlation time of the turbulence is expected to be
proportional to the local turnover time, Hp/urms, where urms is
the rms velocity of the turbulence. Estimating the convective
energy flux as Fconv ∼ ρu3

rms, we expect urms to vary by a factor
of 100 from about 4 km s−1 at the top of the convection zone
to about 40 m s−1 at the bottom. Thus, the turnover times vary
by more than 4 orders of magnitude, from minutes at the top
of the convection zone to about a month at the bottom.

A general difficulty in carrying out simulations of the deep
solar convection zone is the long Kelvin–Helmholtz time in
deeper layers. The Kelvin–Helmholtz time can be defined
as the ratio of thermal energy density to the divergence of
the energy flux or (operationally more convenient) as the
total thermal energy above a certain layer divided by the
solar luminosity. This time scale determines the thermal
adjustment time and can be rather long. However, by
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Figure 3. Vertical velocity near the surface from a solar convection
simulation. The right-hand panels show part of the domain at two
different times.

Figure 4. Same as figure 3, but for a deeper level, about 4 Mm away
from the surface.

preparing initial conditions such that the mean stratification
as well as the fluctuations are close to those in the final
state, the difficulty with long time adjustment times can be
alleviated.

Figure 3 shows an example from radiation hydrodynamics
simulations of the horizontal pattern of the vertical velocity
near the surface and figure 4 the same at a depth of about
4 Mm. One sees clearly that the number of cells has decreased
and that the horizontal scale of the cells changes from about
2 Mm near the top to about 10 Mm at a depth of about 3 Mm.
This illustrates two important properties: (i) The horizontal cell
size below the surface is typically a few times the distance from
the surface (which really reflects that it is several times the local
pressure and density scale heights) and (ii) the structure size
increases so rapidly with depth that even using the concept
of ‘cells’ may be misleading. One also sees that the typical
cell life time changes rapidly with depth. Near the surface the
cell pattern shows some clear changes after only 3 min, while
at 4 Mm depth the changes remain more limited even after
20 min. The scales of the patterns and their rates of change
are thus generally consistent, at a semi-quantitative level, with
the following assumptions that have generally been made in

simplified (mixing-length) models of convection.

• The energy-carrying scales of the turbulence are of the
order of the local vertical pressure scale height, Hp =
|∇ ln p|−1.

• The turbulence varies on time scales comparable to the
turnover time defined as Hp/urms.

One should, however, not conclude that the numerical results
‘confirm’ a scaling with the pressure scale height. Mass
conservation really involves the density scale height rather than
the pressure scale height, and the main reason that analytical
theories of convection have generally tended to avoid using the
density scale height is that, because of a rapid change of the
degree of hydrogen ionization there is a narrow layer close to
the surface of stars where the density scale height may tend to
infinity.

Many of the qualitative expectations from mixing-length
theory are borne out by simulations. This also includes
the scaling of velocity and the temperature fluctuations with
convective flux and hence with depth. Indeed, one finds
that the convective energy flux (or enthalpy flux), Fconv,
is proportional to the negative specific entropy gradient.
Velocity and temperature fluctuations scale likeF

1/3
conv andF

2/3
conv,

respectively; see figure 11 in [52].
Early ideas about distinctively different modes of

convection at different scales are mostly due to differences in
observational techniques rather than real physical differences
in the convection. Supergranulation, for example, refers to a
convection pattern with a horizontal scale of about 30 Mm,
which is seen in Dopplergrams measuring the line-of-sight
velocity. When plotting the horizontal velocity amplitude
as a function of horizontal size the supergranulation scales
appear to be just a part of a rather featureless power law
extending over many orders of magnitude in size [53]. Banana
cells, on the other hand, refer to a theoretically expected
pattern of convection in deeper layers This expectation is
based on the Taylor–Proudman theorem [54], rather than an
observationally established fact, but it remains a pronounced
feature of convection in rotating shells between ±30◦ latitude
[55, 56].

3.3. Other effects of solar turbulence

There are a number of properties that occur on scales that are
larger than the energy-carrying scale. These properties include
the following.

• The angular velocity varies by about 30% in latitude (slow
at the poles and fast at the equator) with approximate solid
body rotation below the convection zone and a general
deceleration in the outer 5% of the solar radius [57].

• There is a large-scale magnetic field exhibiting a 22 year
cycle (11 years for the sunspot number) and a statistical
antisymmetry of the radial field with respect to the equator
(figure 5).

• The solar surface exhibits a magnetic field that is strongest
inside sunspots, where it is seen through Zeeman splitting.
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Figure 5. Longitudinally averaged radial component of the
observed solar magnetic field as a function of cos(colatitude) and
time. Dark/blue shades denote negative values and light/yellow
shades denote positive values. Note the sign changes both in time
and across the equator. Courtesy of R Knaack.

• Magnetic and current helicity with strong fluctuations,
but well-defined averages: negative in the northern
hemisphere and positive in the southern hemisphere; see,
e.g., figure 1 in [58].

In addition to the convective motions of the Sun, there are
coherent wave patterns that correspond to discrete frequencies
in wavenumber and frequency space. Using a technique called
helioseismology [59–62], the information contained in these
modes can be used to infer the depth dependence of sound
speed and hence the radial dependence of the temperature of
the Sun.

Helioseismic constraints of the core temperature were
important in pinning down the origin of the low observed
neutrino flux from the Sun [63–65] in terms of neutrino
oscillations, i.e. the Mikheyev–Smirnov–Wolfenstein effect
[66, 67].

Solar rotation lifts the degeneracy of modes with different
azimuthal order and allows a determination of the dependence
of the internal angular velocity on radius and latitude [57].
Rotation also causes the convection pattern to propagate in a
prograde direction [68].

At the equator, the Sun rotates with a period of about
trot = 26 d, but at the poles it spins about 30% slower. This
is referred to as differential rotation. The angular velocity is
� = 2π/trot, but in helioseismology one often talks about the
rotation rate, �/2π , which is measured in nHz. The equatorial
value at the surface is 452 nHz. The radiative interior is found
to rotate rigidly [57]. The interface between the differentially
rotating convection zone and the rigidly rotating radiative
interior is referred to as the tachocline [69, 70].

3.4. Interstellar turbulence

The gas between the stars can be observed in absorption or
emission both at infrared and radio wavelengths. The line-of-
sight velocity component can be determined by Doppler shifts
of spectral lines; see, e.g., [71]. There is a general power law
scaling of velocity amplitudes and velocity differences with

geometrical scale [71–73]. Velocity dispersions scale with size
to a power of about 0.4 from sub-parsec scales to scales of the
order of about 1 kpc; see figure 1 of [72]. The velocity scaling
is practically the same in regions with varying intensities of
star formation, indicating that the velocity scaling is inertial,
and driven mostly by energy input at large scales, rather than
a result of direct, local driving by on-going star formation
[74–76]. Direct evidence of turbulence on small length
scales (∼1012 cm) in the ISM comes from radio scintillation
measurements [77, 78].

Galaxies such as our own have typical radii of R ≈ 15
kiloparsecs (kpc). Here, 1 kpc = 3 × 1021 cm is used as
a convenient length scale. The density decreases rapidly
away from the midplane with a typical density scale height
of H ≈ 70 pc. Near the midplane of a typical galaxy the 3D
rms turbulent velocities are around 15 km s−1. This implies a
typical turnover time, Hp/urms, of around 5 Myr (megayears).

An important aspect is the occurrence of supernovae,
which mark the death of massive stars and provide a significant
energy release into the interstellar medium through thermal
energy and momentum injection. Traces of supernovae are
seen as supernova remnants, which give a qualitative idea about
the nature of interstellar turbulence.

Supernova explosions contribute about ESN = 1051 erg
per explosion. With about 20 supernovae per million years per
kpc2 estimated for the solar neighborhood this corresponds to
an energy injection per unit area of∫

εSN dz ≈ 20 × 1051 erg/(3 × 1013 s × 9 × 1043 cm2)

≈ 7 × 10−5 erg cm−2 s−1. (21)

This is almost two orders of magnitude more that what is
required to sustain the turbulent energy dissipation per unit
area and time, which, from equation (19), may be estimated
to be∫

ε dz ≈ 0.5 ρu3
1D ≈ 10−24 g cm−3 (106 cm s−1)3

≈ 10−6 erg cm−2 s−1, (22)

where the mean density of the interstellar medium is ρ ≈
2 × 10−24 g cm−3 and the one-dimensional rms velocity is
u1D ≈ 10 km s−1 = 106 cm s−1. This is also in good
agreement with simulations [79]. A visualization of density
and magnetic field strength in such a simulation is shown in
figure 6.

The linear polarization properties of synchrotron radiation
can be used to infer the magnetic field both along the line of
sight via Faraday rotation and perpendicular to it through the
polarization plane projected onto the sky [80–82]. The field
strength is typically around 5 µG in the solar neighborhood
of our Galaxy, but it can be several mG in the galactic
center [83, 84]. For many spiral galaxies large-scale magnetic
fields have been found. In many of them the magnetic
field is approximately axisymmetric and symmetric about the
midplane [85].
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Figure 6. Two-dimensional slices through a three-dimensional simulation domain of supernova-driven turbulence in the interstellar medium
showing the vertical distribution of the density (left) and magnetic field (right). Note the appearance of supernova remnants in density and
magnetic fields as well as an overall concentration around the midplane at z = 0. Courtesy of Miguel de Avillez [79].

3.5. Accretion disks

Accretion disks are disk-like structures through which gas
gradually spirals toward a central massive object while
converting potential energy into kinetic and magnetic energies
that are dissipated and radiated away. This conversion is
believed to be of turbulent nature and may be driven by
the magneto-rotational instability [31, 86]. An alternative
mechanism for disk dissipation is that the disk functions as
a self-regulating buffer. As long as the disk accretion toward
the central object is smaller than the rate of mass in-fall onto the
disk from the surrounding nebula, the mass density of the disk
increases. When the surface density reaches a level sufficient
for gravitationally driven instabilities to develop, spiral waves
start to grow, develop into spiral shocks, and dissipation in the

shocks then enhances the disk accretion enough to balance the
rate of in-fall onto the disk [87].

In order to allow material to spiral inward at a mass
accretion rate Ṁ , half of the orbital potential energy must
be converted viscously and resistively into heat and radiation.
Therefore, the total (bolometric) luminosity of an accretion
disk is [88]

L = GMṀ

2Rin
, (23)

where M is the mass of the central object and Rin is the inner
radius of the accretion disk. Obviously, the further the disk
stretches toward the central object, i.e. the smaller the value
of Rin, the more efficient the energy conversion will be. Disks
around black holes are most efficient in this respect, because
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here the innermost stable orbit is 1–3 Schwarzschild radii,
i.e. (2–6)×GM/c2, where c is the speed of light. Thus,
L = 0.1 × Ṁc2, which constitutes a much more efficient
conversion than nuclear fusion, where the efficiency is only
0.007 × Ṁc2. Here we have used for Ṁ the rate of hydrogen
burning [88]. Note that the factor 0.007 comes from the relative
mass difference between a helium atom (4.0026) and four
hydrogen atoms (1.0078).

3.6. Turbulence in galaxy clusters

Galaxies themselves tend to cluster on Mpc scales. There are
typically around 104 galaxies in a cluster, but some clusters can
be substantially smaller. All clusters are generally strong x-ray
emitters, but some are also strong radio-emitters resulting from
synchrotron emission in the presence of magnetic fields.

Typical temperatures are around 108 K corresponding to
a sound speed of around 1000 km s−1. The implied velocity
dispersion is also of that order, as expected when the system is
in approximate virial equilibrium. With typical length scales
on the order of the density scale height, Hρ = 100 kpc, the
turnover time is 100 kpc/(1000 km s−1) = 0.1 Gyr. This
would also be the typical decay time of the turbulence in the
absence of mechanisms driving the turbulence.

Mechanisms for driving such turbulence include mutual
encounters of clusters [89, 90]. Given that only a fraction
of all galaxy clusters also have strong radio halos [91], one
may speculate that these clusters have undergone a recent
encounter or merger with another cluster within the last few
gigayears. Obviously, in this scenario one would just have
decaying turbulence between encounters. In the context of
galaxy clusters this subject has been studied by various groups
[92–94]. Another mechanism that has been discussed in
the literature is the driving by individual galaxies moving
through the cluster and producing a turbulent wake behind
them [95–97].

3.7. Decaying turbulence in the early universe

Various mechanisms for the generation of ‘primordial’ fields
have been proposed [98]. One problem is that the predicted
magnetic field strengths are extremely uncertain. Another
general problem is the small length scale of such fields.
For example, after the electroweak phase transition, about
10−10 s after the Big Bang, the horizon scale was around 3 cm.
Magnetic fields generated during such a phase transition may
possess magnetic helicity, but this is also rather uncertain
[99]. However, during the subsequent decay of a helical
field, energy is transformed to larger scale by an inverse
cascade of magnetic helicity [100, 101]. Figure 7 shows
the evolution of the resulting magnetic power spectrum at
different times from a direct numerical simulation of the
relevant hydromagnetic equations [102]. Simulations have
demonstrated that turbulence decays in power law fashion with
the total energy being proportional to t−n, where n = 0.5
for maximally helical fields and n = 1 for non-helical fields
[102]. By comparison, non-helical fluid turbulence leads to
n = 1.2 [103, 104]. As argued by Biskamp and Müller [105],
helical fields may be more typical than non-helical ones. Of

Figure 7. Magnetic energy spectra at different times (increasing
roughly by a factor of 2). The curve with the right-most location of
the peak corresponds to the initial time, while the other curves refer
to later times (increasing from right to left). Note the temporal
growth of spectral magnetic energy at wavenumbers to the left of the
peak and the associated propagation of spectral energy to
successively smaller wavenumbers, i.e. to successively larger scales.
Adapted from [101, 102].

course, the magnetic fields generated in rotating bodies (stars
and galaxies, although neither is relevant to the early Universe)
tend to be helical, but of opposite sign in the two hemispheres,
so the net magnetic helicity would cancel to zero. On the other
hand, the helical contribution of a field generated at an early
phase transition will decay more slowly than the non-helical
contribution, and so the relative importance of the helical fields
will grow with time.

The question of the decay law of helical MHD turbulence
is still not fully settled. It is generally believed that the
magnetic energy, EM, follows a power law decay, i.e. EM ∼
t−n, but proposals for the value of n range from 2/3 to 1/2,
depending essentially on the assumptions made about the
evolution of the typical length scale L of the energy-carrying
motions. If one assumes L to be controlled by a resistive
evolution of magnetic helicity, HM, i.e.

− dHM

dt
= 2η

L2
HM, (24)

then, for a power law evolution of HM we have L ∼ t1/2, and
with EM = HM/L and HM ≈ const we find [106],

EM ∼ t−1/2. (25)

On the other hand, if one discards resistive effects, and
assumes instead that the decay is controlled by inertial range
turbulence, i.e.

− dEM

dt
≡ ε ∼ U 3

L
∼ E

3/2
M

L
∼ E

5/2
M

HM
, (26)

then, after integration, we obtain [105]

EM ∼ t−2/3, (27)

together with L ∼ t2/3. Note that in either of the two proposals
one has assumed that HM ∼ LEM ≈ const. However, in the
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former approach HM is not assumed to be constant exactly,
but to decay resistively like HM ∼ t−2ηt/L2

, which implies
a corresponding speed-up of the decay of EM and hence an
increase in n from 1/2 to 1/2 + 2ηt/L2. This may explain why
simulations at finite η [105, 107] suggest exponents close to
n = 2/3. This question needs to be followed up again in future
at higher resolution, but simulations at moderate resolution
have confirmed the idea of a correction factor proportional to
t−2ηt/L2

in the decay of EM [106].
It is still unclear whether such primordial magnetic

fields would have a detectable effect on the polarization
signal of the cosmic background radiation and whether
significant fields may have been present when the first stars
or galaxies were formed. These questions are subject to
current investigations [108, 109]. Another subject under active
investigation concerns the production of gravitational waves
from the Maxwell stress associated with primordial magnetic
fields [110–113].

4. Theoretical studies of turbulence

4.1. Incompressible turbulence

Most turbulence research is restricted to incompressible
turbulence, in which case the Navier–Stokes equations take
the form

Du

Dt
= −∇p̃ + f + ν∇2u, ∇ · u = 0. (28)

Here, D/Dt = ∂/∂t + u · ∇ denotes the advective derivative.
It is this term that constitutes the important nonlinearity of the
Navier–Stokes equations. In order to understand the nature of
the nonlinearity it is useful to make use of the vector identity
u · ∇u = ω × u + 1

2∇u2, with ω = ∇ × u. Thus, we have

∂u

∂t
= u × ω − ∇p̃ + f + ν∇2u. (29)

Owing to incompressibility, we have ρ = const, and only the
reduced pressure, p̃ = p/ρ + 1

2u2, enters in equation (29).
However, because of the solenoidality constraint, ∇ · u = 0,
the pressure gradient also constitutes a quadratic nonlinearity
of the form

p̃ = ∇−2∇ · (u × ω + f). (30)

This relation follows directly from equation (29) after taking
its divergence and noting that ∇ · ∂u/∂t = ∇ · ∇2u = 0.

4.2. Compressible fluid dynamics

In the compressible case, the Navier–Stokes equation can be
written in the form

ρ
Du

Dt
= −∇p + F + ∇ · τ , (31)

where τ = 2ρνS is the stress tensor, here assumed to be
proportional to the kinematic viscosity ν and the traceless rate
of strain tensor, S, whose components are

Sij = 1
2 (ui,j + uj,i) − 1

3δij∇ · u, (32)

where commas denote partial differentiation. Note that the
form of the stress tensor above applies only to a monatomic gas.
In more general cases there may be additional contributions
from the bulk viscosity corresponding to terms proportional to
δij∇ · u.

To compare with the incompressible case, we evaluate

1

ρ
∇ · τ = ν

[
∇2u +

1

3
∇∇ · u + 2S · ∇ ln(ρν)

]
, (33)

and note that, in addition to the ∇2u term, there is also a term
∇∇ ·u, which vanishes in the incompressible case, and a term
Sij∇j ln(ρν), which vanishes when the dynamical viscosity,
µ = ρν, is constant.

Equation (31) has to be solved together with the continuity
equation

Dρ

Dt
= −ρ∇ · u, (34)

and an energy or entropy equation,

ρT
Ds

Dt
= 2νρS2. (35)

The heating term is generally given by ui,j τij . Splitting
ui,j = sij + aij into symmetric and antisymmetric parts, it is
clear that only sij contributes after multiplying with another
symmetric matrix, i.e. with τij . Furthermore, since τij is
also trace-free, the result does not change when adding or
subtracting from sij a term proportional to δij , in particular
1
3δij∇ · u. Therefore, we have ui,j τij = 2ρνS2, which is
manifestly positive definite.

For a perfect gas the specific entropy s is related to pressure
and density via

s = cv ln p − cp ln ρ + s0, (36)

where s0 is an additive constant. (The specific entropy s is
not to be confused with sij or Sij .) It is important to realize
that even in the inviscid limit, ν → 0, the term 2νρS2 cannot
be neglected in equation (35). For example, across a shock
there is always a well-defined increase in specific entropy that
is independent of the value of ν.

In compressible fluid dynamics it is often advantageous
to consider the evolution equations in their conservative form.
This means that the rate of change of the density of a
conserved quantity, X, is given by the negative divergence of
its corresponding flux, i.e.

∂

∂t
(density of X) = −∇ · (flux density of X)

+ sources − sinks, (37)

where the presence of sources and sinks indicates additional
processes whose detailed evolution is not captured by the total
energy equation within the same framework. An example
is radiation, which provides sources and sinks to the energy
equation as heating and cooling terms. Alternatively, if the
evolution of the radiation energy is included in the total energy
equation, any explicit heating and cooling terms disappear,
and only boundary (flux divergence) terms remain [114]. If
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there is no radiation, gravity, external forcing, etc, there are no
additional terms, so the conservative form of the equations is

∂ρ

∂t
= − ∂

∂xj

(ρuj ), (38)

∂

∂t
(ρui) = − ∂

∂xj

(ρuiuj + δijp − τij ), (39)

∂

∂t

(
ρe +

1

2
ρu2

)
= − ∂

∂xj

(
ρujh +

1

2
ρuju

2 − uiτij

)
,

(40)

where h = e + p/ρ is the specific enthalpy per unit mass.
For a perfect gas, h and e are proportional to temperature with
h = cpT and e = cvT , where cp and cv are the specific heats
at constant pressure and constant volume, respectively.

The equations above show explicitly that the volume
integrals of the terms under the time derivative are conserved,
i.e. constant in the absence of fluxes in or out of the domain.
In one dimension, the terms in parentheses under the spatial
derivatives are constant and, in particular, uniform across a
shock. This allows shock jump conditions to be derived. Note
that, since viscosity acts only locally, these conditions are
independent of the width of the shock. This is an important
property that allows simulating highly supersonic turbulence
using a modified viscosity (Neumann–Richtmyer artificial
viscosity) for smearing out the shock [115]. In the presence
of source or sink terms in equations (38)–(40) this would no
longer be possible.

4.3. Anelastic approximation

The advantage of making the assumption of incompressibility
is not only that one has one equation less to solve (the ∂ρ/∂t

equation), but mainly that one eliminates sound waves, whose
associated wave speed is often much faster than the speed
associated with other processes. This means that one can then
focus more efficiently on the slower dynamics of the system.

Incompressibility is normally associated with constant
density. In view of our earlier discussion regarding the strong
density stratification in stars, incompressibility would not be
a useful assumption, even though the sound speed can be
much larger than other speeds such as that associated with
the convection itself. It is then better to relax the condition
∇ · u = 0 and use instead ∇ · ρu = 0. This is called the
anelastic approximation [116, 117]. It is important to realize
that with this assumption one replaces the original continuity
equation (38). Consequently this equation can then no longer
be used to argue that ∂ρ/∂t = 0. Indeed, ρ is in general not
constant in time and can evolve, while ∇·ρu = 0 is maintained
at all times. This technique is sometimes used in simulations
of solar convection [55, 118–122].

Just like in the incompressible case, also here one has
to solve a Poisson-like equation that emerges when taking
the divergence of the evolution equation for the momentum
density. Taking the divergence of equation (39) one obtains

∇2p = ∇ · R, (41)

where R = −ρu · ∇u + F + ∇ · τ is the sum of the
advection term plus all the other terms on the right-hand side
of equation (39), except for the pressure gradient term. The F
term in equation (41) refers to additional terms such as gravity
and Lorentz force terms in equation (31).

The anelastic approximation is sometimes associated with
linearizing the equation of state [55]. However, this is
not necessary and one can just continue working with the
original, fully nonlinear equation of state [119, 123]. The only
difference is that in the fully compressible case one would
obtain the pressure from density and specific entropy, while
in the anelastic case one obtains the density from pressure and
specific entropy, if the latter is indeed the main thermodynamic
variable.

4.4. Large-eddy and hyperviscous simulations

The maximum achievable Reynolds number scales as the
number of mesh points in one direction, raised to the
power 4/3; see equation (11). With the largest attainable
resolution being at present 40963 [18], it is impossible to reach
Reynolds numbers of 106 and beyond. In many engineering
applications of turbulence one needs to calculate flows at
very large Reynolds numbers and one therefore uses large-
eddy simulations. This involves some representation of the
unresolved Reynolds stress in terms of other flow variables.
This approach can be rather uncertain. Unlike engineering
applications, where such models can be tested against
measurements, this is usually not possible in astrophysics,
due to a large number of additional complications (strong
stratification, magnetic fields, rotation, etc) that are hard to
realize in the laboratory. The best one can therefore hope for
is a rigorous comparison of large-eddy simulations with DNS.
Examples of this are discussed in section 6.

One of the simplest subgrid scale models is the
Smagorinsky model [124]. This approach is strictly
dissipative, i.e. the Reynolds stress of the unresolved velocity
fluctuations, denoted here by primes, is modeled by a viscous
stress of the form

u′
iu

′
j = −2(CS�x)2ρ|S|Sij , (42)

where CS is the Smagorinsky constant (between 0.1 and 0.2)
[125–127], and the rate-of-strain tensor S was defined in
equation (32), and is here applied to the resolved motions u,
i.e. excluding the subgrid scale motions. Another approach,
which cannot be classified as large-eddy simulation, consists in
using hyperviscosity. In spectral space, the viscosity operator
−νk2 is simply replaced by −νnk

2n, where n > 1 is the
order of hyperviscosity. Unlike the Smagorinsky model,
the results from this approach are known not to converge
to the original Navier–Stokes equations, but the hope is that
in the inertial range the flow is unaffected by the unphysical
form of the diffusion operator. This is indeed the case, as was
demonstrated in [104].

4.5. Turbulence simulations using Godunov/PPM-type
schemes

The Godunov scheme is a conservative numerical scheme for
solving partial differential equations. In this method, the
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conservative variables are considered as piecewise constant
over the mesh cells at each time step and the time evolution is
determined by the exact solution of the Riemann shock tube
problem at the intercell boundaries. This scheme consists
of first defining a piecewise constant approximation of the
solution at the next time step. The resulting scheme is usually
first-order accurate in space. This approximation corresponds
to a finite volume method representation whereby the discrete
values represent averages of the state variables over the cells.
Exact relations for the averaged cell values can be obtained
from the integral conservation laws. Next, the solution for
the local Riemann problem is obtained at the cell interfaces.
This is the only physical step of the whole procedure. The
discontinuities at the interfaces are resolved as a superposition
of waves satisfying locally the conservation equations. The
original Godunov method is based upon the exact solution
of Riemann problems. However, approximate solutions can
be applied as an alternative. Finally, the state variables are
averaged after one time step. The state variables obtained
after the second step are averaged over each cell defining a
new piecewise constant approximation resulting from the wave
propagation during the time step.

Nowadays one uses often higher-order Godunov schemes
for astrophysical applications. One such method is the
piecewise parabolic method that is also referred to as
PPM. Examples of such codes include Athena [128], Pluto
[129], Nirvana [130], Ramses [131], Flash [132], and Enzo
[133]. Such codes have been used for many astrophysical
applications including supersonic, isotropic homogeneous
turbulence [134].

4.6. Analyzing and modeling turbulence with wavelets

Wavelets are sometimes used both to analyze and to model
turbulence. In particular the wavelet technique has been used
for extracting coherent vortices out of turbulent flows. The aim
is to retain only the essential degrees of freedom responsible
for the transport. It is intriguing that with this technique one
can actually retain nearly all velocity structure and dissipation
information in turbulent flows using a relatively small selection
of wavelets with non-zero amplitudes [135]; see also [136].
This method is related to the so-called proper orthogonal
decomposition of turbulent flows [137]. This decomposition is
statistically based and permits the extraction of spatio-temporal
structures that are judged essential according to predetermined
criteria. It is not only useful in the analysis and synthesis
of data from simulations and experiments, but it also allows
the construction of low-order models from the Navier–Stokes
equations. Finally, let us note that the wavelet representation
has been applied with success to simulations of resistive drift-
wave turbulence in magnetized plasma Hasegawa–Wakatani
system [138].

5. Extra ingredients to turbulence in astrophysical
flows

5.1. Passive scalars: mixing and dust dynamics

One of the simplest additional ingredients in fluid dynamics
in general, and in turbulence physics in particular, are passive

scalars. The passive scalar concentration per unit mass, θ , is
governed by the equation

∂

∂t
(ρθ) = − ∂

∂xj

(
ρujθ − ρκθ

∂θ

∂xj

)
, (43)

where κθ is a diffusion coefficient for the passive scalar
concentration. This equation describes the transport of
chemicals in a gas. Additional source and sink terms could
be included to model production and destruction of chemicals.
The non-conservative form of this equation can be written as

Dθ

Dt
= − 1

ρ
∇ · (ρκθ∇θ), (44)

where we have made use of the continuity equation (34). For
κθ = 0, this equation gives Dθ/Dt = 0, which shows that
the concentration per unit mass is unchanged at each point
comoving with the flow.

Another class of scalars are inertial particles that are
advected by their own velocity up rather than the velocity of
the gas u. The evolution equation of up is similar to that of u,
except that it lacks the pressure gradient term and the Lorentz
force. However, such particles are strictly speaking active
particles, because of the mutual coupling between the two
velocity fields. Only in the limit of sufficiently light particles
can the back-reaction on u be neglected.

In astrophysics one often finds the condensation of heavier
elements into solid dust. Their evolution is described as
a passive scalar or as passively advected particles. The
inclusion of inertia can sometimes become important, because
inertial particles have a tendency to accumulate in anti-cyclonic
vortices [139–143].

5.2. Active scalars: stratification and convection

In this context, the term ‘active’ refers to the property that
the scalar quantity can affect the momentum equation, for
example by exerting a pressure gradient force. An example is
the advection–diffusion equation for the energy density of low-
energetic cosmic rays [144, 145]. Another example concerns
temperature or specific entropy, which affect the momentum
equation by locally changing the relation between pressure and
density. In the presence of a gravity force, F = ρg, this can
lead to an Archimedian buoyancy force. Furthermore, with
g �= 0 a new wave mode can exist known as gravity waves
(not to be confused with gravitational waves of the space–
time metric in general relativity; see comment at the end of
section 3.7). The restoring force comes from the linearized
buoyancy term, (δρ/ρ0)g ≈ (δp/p0 + δs/cp)g. Since the
restoring force is related to gravity, these wave modes are often
referred to as g-modes, in contrast to p-modes or sound waves,
whose restoring force is related to the pressure gradient. If
pressure fluctuations may be neglected the essential terms are

∂uz

∂t
= · · · + δs g/cp, (45)

∂δs

∂t
= · · · − uz

∂s

∂z
, (46)
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Figure 8. Dispersion relation ω = ω(kr), for kz = 0 with
kr = (k2

x + k2
y)

1/2 being the horizontal wavenumber, for different
values of the ratio of specific heats, γ , showing p-modes branch
(upper branch) and g-models (lower branch) compared with the case
where the anelastic approximation has been made (dashed line).
Length is given in units of H0 = γHp/(1 − γ /2) and time in units
of T0 = H0/cs, and ω0 = √

γ − 1/(1 − γ /2) is the non-dimensional
Brunt–Väisälä frequency. In the plot, the break point at kr/ω0 = 1
corresponds to a critical horizontal wavelength of
�crit = 2πγHp/

√
γ − 1. For γ = 5/3 this means �crit ≈ 12.8 Hp .

Adapted from [147].

where s denotes the specific entropy of the background
stratification. The oscillation frequency NBV (for Brunt–
Väisälä frequency) is given by

N2
BV = −g · ∇s/cp. (47)

While this pair of equations represents the basic feedback loop
correctly, it ignores the fact that buoyancy is only possible
when there is lateral non-uniformity of density. Indeed, solving
the proper dispersion relation reveals that on large scales the
frequency increases linearly with wavenumber; see, e.g., [146]
for a review. In figure 8 we show the dispersion relation as a
function of the horizontal wavenumber, kr = (k2

x + k2
y)

1/2, for
kz = 0 and different values of the ratio of specific heats ranging
from γ = 1.1 to 1.9. The p-modes correspond to the upper
branch while the g-modes to the lower one. Also shown are the
g-modes obtained using the anelastic approximation discussed
in section 4.3. Note that this approximation yields correct
results for γ close to one and for large horizontal wavenumbers,
i.e. on scales that are small compared with the pressure scale
height [147].

Given that gravity points downward, N2
BV is positive (i.e.

the frequency is real) when the specific entropy increases in
the upward direction. If it decreases with height, the system
is unstable to the onset of convection with an approximate
growth rate given by Im|NBV|. Here we have omitted viscous
and diffusive effects that could slow down the growth and
even stabilize the system. This is quantified by the value
of the Rayleigh number that will be defined and discussed in
more detail in section 6.7. However, in astrophysics viscosity
and diffusivity are comparatively small and one uses just the
condition g · ∇s > 0 for instability. This is known as
the Schwarzschild criterion and corresponds to saying that
the Rayleigh number is positive (convection is discussed in
more detail in section 6.7).

In the presence of strong vertical density stratification, the
convection flow tends to develop an interconnected network of
downdraft lanes, with isolated tube-like stronger downdrafts
at network vertices. With depth, the downdrafts merge and
the network size increases [148]; cf also figures 3 and 4.
At large Reynolds numbers the flow is of course turbulent,
but with the intensity of turbulence strongly influenced by
stratification effects: Because ascending flows are strongly
divergent, turbulence is suppressed there, while in downflows,
which are converging, turbulent intensity is enhanced.

In the Sun, the Prandtl number, Pr = ν/χ , is far
below unity (around 10−5). This means that velocity or
vorticity structures can be much thinner than temperature
structures. As a consequence, thin vortex tubes can develop
within downdrafts. The dynamical pressure associated with
vortex tubes allows locally a lower gas pressure and hence a
lower density, making vortex tubes buoyant. As a result, the
downdraft speed is slowed down (‘vortex braking’) [149, 150].
This is a particular property of low Prandtl number dynamics
which, at the same time, requires compressibility.

Compressibility leads to yet another interesting effect in
convection. The pressure gradient associated with driving
the horizontal expansion of upwelling motions works in all
directions, and in particular also in the downward direction.
This tends to brake the upwellings. This phenomenon is known
as buoyancy braking [151].

Another important effect caused by compressibility is the
production of vorticity by the baroclinic term, i.e. the curl of
ρ−1∇p. The curl of this term is finite if the surfaces of constant
ρ and p are inclined relative to each other. Another way of
writing this term is using the thermodynamic relation for the
differential of enthalpy, dH = T dS + V dp. With this we can
write the pressure gradient term in terms of specific enthalpy,
specific entropy s and specific volume ρ−1 as

− ρ−1∇p = −∇h + T ∇s. (48)

This formula shows that the baroclinic term is just given by

∇ × (−ρ−1∇p
) = ∇T × ∇s. (49)

This relation will become useful later in connection with
the Taylor–Proudman theorem and ideas to understanding
departures from it. The baroclinic term vanishes under
isothermal (T = const), isentropic (s = const) or barotropic
[p = p(ρ)] conditions. In all these cases, equation (48) can
be written purely as a gradient term, −∇h̃, where h̃ is then
called the pseudo-enthalpy and it is proportional to h which,
in turn, is proportional to the temperature. In the irrotational
case, ω = 0, the only nonlinearity comes from the 1

2u2 term
in the reduced pressure.

5.3. Rotation and shear

It is often convenient to solve the governing equations in
a rotating frame of reference. In that case, Coriolis and
centrifugal forces as well as possibly the Poincaré force have
to be included on the right-hand side of the Navier–Stokes
equation, so the equation takes the form

Du

Dt
= · · · − 2Ω0 × u − Ω0 × (Ω0 × r) − Ω̇0 × r, (50)
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where r is the position vector with respect to a point on the
rotation axis and Ω0 = const is the angular velocity vector of
the reference frame. The Poincaré force, Ω̇0×r can drive flows
and even turbulence in precessing bodies with boundaries.
This has been discussed in attempts to explain the flows that
drive the geodynamo [152–155].

An important effect of the Coriolis force is to suppress
variations of the azimuthal velocity in the axial direction. This
can be seen by taking the curl of the Coriolis term,

∇ × (−2Ω0 × u) = 2�0

(
∂u⊥
∂z

− ẑ∇ · u⊥

)
, (51)

where u⊥ = u − (u · ẑ)ẑ is the velocity in the direction
perpendicular to the rotation axis and ẑ is the unit vector
along the direction of Ω0. Taking the curl of the evolution
equation for ∂u/∂t in cylindrical polar coordinates, (R, φ, z),
and projecting on the φ component, yields

φ̂ · Dω

Dt
= 2�0

∂uφ

∂z
− φ̂ · (∇T × ∇s) + F visc

φ , (52)

where F visc
φ is the φ component of the viscous force. This

shows that, when rotation is important, i.e. �0 is large, ∂uφ/∂z

must be small.
Of course, the physics is independent of the coordinate

system one is working in. If one is working in the inertial
(non-rotating) frame, there is no Coriolis force, but one can
then write uφ = R�, where � = �(R, φ, z) is now the local
angular velocity, which is not to be confused with Ω0. If the
velocity has only an azimuthal component, u = φ̂R�, one
can write the curl of the u · ∇u term as

∇ × (−u · ∇u) = R
∂�2

∂z
. (53)

We will return to the astrophysical consequences of this in
section 7.3 when we discuss the angular velocity of the Sun.

5.4. Active vectors: magnetic fields and dynamos

An important vector field to be included in the fluid equations is
the magnetic field, B. It is an active vector because the Lorentz
force, J × B, backreacts through the momentum equation, so

ρ
Du

Dt
= · · · + J × B, (54)

where J is the current density. One makes here the assumption
that there is no net charge in the fluid, i.e. the density of
positive and negative charge carriers balances everywhere,
and the currents are produced by the sum of the fluxes of
counterflowing positive and negative charge carriers. The B
field is solenoidal and its evolution is governed by the Faraday
equation,

∂B

∂t
= −∇ × E, with ∇ · B = 0, (55)

where E is given by Ohm’s law,

− E = u × B − J/σ, (56)

and σ is the electric conductivity. Its inverse is related to
the magnetic diffusivity, η = (µ0σ)−1, and it has the same
dimension as the kinematic viscosity ν. Their ratio is the
magnetic Prandtl number PrM = ν/η.

Ampere’s equation is used to express the current density
in terms of the magnetic field via

J = ∇ × B/µ0, (57)

where µ0 is the vacuum permeability. Equation (57) is an
approximation to the full Faraday equation which includes also
the displacement current. Neglecting it corresponds to filtering
out electromagnetic waves, which is justified at finite electric
conductivity and velocities small compared with the speed of
light.

Inserting equation (56) into equation (55) we obtain the
induction equation in the form

∂B

∂t
= ∇ × (u × B − J/σ). (58)

In its ‘uncurled’ form this equation reads

∂A

∂t
= u × B − J/σ − ∇φ, (59)

where φ is the electrostatic potential. By evaluating the time
derivative of A · B and integrating over space we obtain the
evolution equation for magnetic helicity,

d

dt

∫
A · B dV = −2σ−1

∫
J · B dV −

∮
FH · dS, (60)

where FH = E × A + φB is the flux of magnetic helicity.
Magnetic fields constitute an additional form of energy,

EM = ∫
B2/(2µ0) dV , whose evolution is given by

d

dt

∫
B2

2µ0
dV = −

∫
u · (J × B) dV − σ−1

∫
J2 dV

−
∮

FM · dS, (61)

where FM = E × B/µ0 is the Poynting flux. Equation (40)
for the evolution of the total energy density can be generalized
correspondingly by adding B2/2µ0 underneath the time
derivative and FM underneath the divergence term.

In this connection it might be useful to emphasize that in
numerical simulations one hardly uses the full energy equation
in that form if the magnetic energy becomes comparable to
or in excess of the thermal energy. Normally one would
calculate the thermal pressure from the internal energy, but
in the magnetically dominated case this becomes a small
residual between total, kinetic and magnetic energies, and so
this calculation becomes exceedingly inaccurate.

Another comment regarding simulations is here in order.
A commonly encountered difficulty is to preserve solenoidality
of B. One method is to use a staggered mesh and to evaluate
the right-hand side of equation (55) such that the numerical
evaluation of the curl produces zero divergence to machine
accuracy. Another method is to use A as dependent variable,
which also preserves ∇ · B = 0, and it also allows for
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a straightforward calculation of the magnetic helicity. Yet
another method is to write

B = ∇α × ∇β, (62)

where α and β are the Euler potentials [156]. However, this
method only works in the strictly ideal case, in which case the
evolution equations are just

Dα/Dt = Dβ/Dt = 0. (63)

This approach is now quite popular in smoothed particle
hydrodynamics calculations, because then the values of α and
β are just kept fixed at each Lagrangian particle [157, 158].
Unfortunately, this method cannot even approximately capture
non-ideal effects. As a consequence, dynamo action (see
below) is not possible in this approach and energy spectra
of MHD turbulence with imposed field become too shallow
[159]. Finally, there is the possibility of divergence cleaning,
which requires the solution of a Poisson-type equation for the
correction term to the numerically obtained B field. This
approach is analogous to calculating the pressure under the
constraint that ∇ · u = 0 or ∇ · ρu = 0; see section 4.3.
The disadvantage here is that this approach may introduce an
unphysical nonlocality as a consequence of invoking a Poisson-
type equation.

The Lorentz force gives rise to various restoring forces that
lead to additional wave forms including Alfvén waves as well
as fast and slow magnetosonic waves. The slow magnetosonic
waves are particularly important in the presence of shear and
rotation, because those waves can be destabilized to give rise
to the magneto-rotational instability. This will be discussed in
more detail in section 6.11.

One of the other new features allowed by the addition
of magnetic fields is the possibility of self-excited dynamo
action, i.e. the spontaneous conversion of kinetic energy into
magnetic energy by work done against the Lorentz force.
This is an important process in astrophysics. Magnetic fields
observed in planets and stars with outer convection zones are
clear examples where dynamo action is required to sustain
magnetic fields against ohmic decay and to explain field
reversals on time scales short compared with the resistive time.
Galaxies and clusters of galaxies also harbor magnetic fields.
Many spiral galaxies show magnetic fields with a large-scale
design that is approximately axisymmetric. One prominent
exception is a galaxy with the name M81, where the field
is non-axisymmetric with a strong m = 1 component, i.e.
the field is proportional to eimφ , where φ is the azimuthal
angle. Observations give direct indications about the turbulent
nature of galactic disks, so the magnetic field must be
maintained against turbulent decay in the vertical direction
along the axis. The relevant time scale is only about 107 yr.
In the present review we discuss dynamos only insofar as
they are directly connected with understanding or clarifying
astrophysical turbulence.

Details regarding dynamo theory as well as magnetic fields
in solar-like stars and galaxies have recently been reviewed
in [11, 85, 160]. One of the important recent developments
concerns the realization that the evolution of the large-scale

magnetic field can be constrained decisively by magnetic
helicity evolution; see equation (60). This has to do with the
fact that large-scale magnetic fields tend to be helical. This
point will be taken up briefly in section 7.2, but for a more
thorough discussion we refer to [11] for a recent review.

In the incompressible case with constant density ρ = ρ0,
it is convenient to write the MHD equations using Elsasser
variables z± = u ± B/

√
µ0ρ0, because then the evolution

equations take a form similar to the usual Navier–Stokes
equations, i.e.

∂z±
∂t

+ z∓ · ∇z± = −∇� + ν∇2z±, ∇ · z± = 0.

(64)

Here, ν = η has be assumed for simplicity and � = (p +
B2/2µ0)/ρ is a pressure that ensures that ∇ · z± = 0.

5.5. Radiation: optically thick and thin

Radiation transport describes the coupling to the photon field.
As far as the dynamics is concerned, the radiative flux gives
rise to a radiation force that can, for example, cause levitation
of the gas by radiation. The radiative energy flux divergence
enters the energy equation and describes local heating and
cooling. Thus, the momentum and specific entropy equations
are amended as follows:

ρ
Du

Dt
= · · · +

ρκ

c
Frad, (65)

ρT
Ds

Dt
= · · · − ∇ · Frad. (66)

Here, κ is the opacity, i.e. the photon cross-section per unit
mass. The cross-section per unit volume is ρκ , which is also
the inverse mean free path of photons, � = (ρκ)−1. If the mean
free path is small compared with other relevant length scales,
a diffusion approximation may be used for Frad, which means
that it is proportional to the negative gradient of the radiation
energy density, Frad = − 1

3�c∇(aT 4), and so it points in the
direction of the negative temperature gradient. The transition
layer between optically thin and thick is an important region
in astrophysics, because it marks the effective surface of an
otherwise extended body. In this transition region the diffusion
approximation is no longer valid and proper equations for
the radiation intensity have to be solved to obtain Frad; see
[119, 161].

6. Simulations of turbulence

Astrophysical turbulence is frequently caused by instabi-
lities. However, many instabilities imply the presence of
anisotropies. For example, in convection the vertical direction
is a preferred one, while in the case of the magneto-rotational
instability the velocity gradient matrix associated with the
shear governs the anisotropy. In the presence of magnetic
fields, the otherwise isotropic turbulence becomes at least
locally anisotropic, because at every patch in the turbulent flow
the direction of the local mean-field imprints anisotropy on all
smaller scales within this patch. On the other hand, much
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Figure 9. Examples of vortex tubes in homogeneous turbulence. Courtesy of Zhen-Su She (left figure) [177] and Paul Woodward (right
figure) [179].

of turbulence theory is concerned with isotropic turbulence.
Computationally, isotropic turbulence can be modeled by
adopting an imposed forcing function. Common applications
of isotropically forced turbulence include simulations of
turbulent star formation, as well as turbulent mixing and
dynamo processes. We begin by discussing some general
aspects of isotropic turbulence simulations.

6.1. General aspects

The concept of isotropic turbulence is a convenient and
useful theoretical idealization. Computationally, isotropy
does not lead to any significant simplification, except that
periodic boundary conditions are possible and in many ways
advantageous. Isotropic turbulence needs to be forced by an
isotropic body force, unless an isotropic instability can be
identified that would drive turbulence. The thermal instability
would be an example of an instability without preferred
direction, but simulations have not shown that it can lead
to sustained turbulence [162, 163]. The Jeans instability
is another example, which is particularly relevant to the
problem of star formation through strong compressions by
the turbulence in the interstellar medium. This problem is
frequently tackled using smoothed particle hydrodynamics
[164, 165], while mesh-based techniques have explored mostly
the case of forced supersonic turbulence [166, 167] and
have only recently incorporated the effects of self-gravity,
augmented with so-called sink particles to account for the
production of high density cores that cannot be resolved with
a fixed mesh [168–171].

In order to study more basic properties of turbulence one
often resorts to a random forcing function to simulate the
effects of an instability with a well-defined forcing strength
and a well-defined length scale of the driving. Plane waves
with randomly changing orientation are an obvious possibility
for driving turbulence. To make the forcing divergence-free,
one uses only transversal waves.

The idea of simulating turbulence on the computer
developed during the 1970s. Almost all simulations in those
days utilized pseudo-spectral methods, i.e. spatial derivatives
are calculated in Fourier space by multiplication with ik, but

all nonlinear terms are calculated in real space. The main
advantage of such methods is the small discretization error.
Furthermore, this technique also allows an efficient solution
of the Poisson-like equation for the pressure if one makes the
incompressible or the anelastic approximation, i.e. ∇ · u = 0
or ∇ · ρu = 0, respectively.

Spectral methods have the disadvantage that one cannot
easily deal with arbitrary boundary conditions. Also,
the Fourier transformation is a nonlocal operation which
is not optimal when using many processors. These are
reasons why sometimes finite difference methods are used
instead. Finite difference methods are normally not as
accurate as spectral methods unless one uses a higher-order
scheme (e.g. fourth and sixth order schemes are common
choices). On the other hand, many astrophysical flows develop
shocks for which there are a number of other dedicated
methods (Riemann solvers, approximate Riemann solvers,
monotonicity schemes, Godunov schemes and Neumann–
Richtmyer artificial viscosities [115, 172]). These methods are
frequently generalized to mesh refinement methods that allow
increased accuracy in specific locations of the flow. Finally,
there are also Lagrangian methods of which smooth particle
hydrodynamics is an example [165, 173–175]. A promising
new Lagrangian method has been presented in [176].

6.2. Hydrodynamic turbulence

When simulations became able to resolve turbulence with
around 1283 meshpoints, it became evident that much of the
flow is governed by a tangle of vortices; see, e.g., [177–179].
The left-hand panel of figure 9 shows examples of such
vortices. Their thickness is related to the viscous scale while
their length was often expected to be comparable with the
integral scale. However, in subsequent years simulations at
increasingly higher Reynolds numbers seem to reveal that
the vortex turbulence becomes a less prominent feature of
otherwise nebulous looking structures of variable density (see
the right-hand panel of figure 9).

Incompressible forced turbulence simulations have been
carried out at resolutions up to 40963 meshpoints [18].
Surprising results from this work include a strong bottleneck
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Figure 10. Comparison of energy spectra of the 40963 meshpoints
run [18] (solid line) and 5123 meshpoints runs with hyperviscosity
(dashed–dotted line) and Smagorinsky viscosity (dashed line). (In
the hyperviscous simulation we use ν3 = 5 × 10−13.) The Taylor
microscale Reynolds number of the Kaneda simulation is 1201,
while the hyperviscous simulation of [180] has an approximate
Taylor microscale Reynolds number of 340 < Reλ < 730. For the
Smagorinsky simulation the value of Reλ is slightly smaller.
Courtesy of Nils E Haugen [19].

effect [20] near the dissipative subrange, and possibly a
strong inertial range correction of about k−0.1 to the usual
k−5/3 inertial range spectrum, so that the spectrum is k−1.77.
Note that the She–Leveque correction (17) is only k−0.03,
so that the spectrum is k−1.70. Similarly strong inertial
range corrections have also been seen in simulations using
a Smagorinsky subgrid scale model [19] (5123 meshpoints,
dashed line in figure 10). Here we also show the results of
simulations with hyperviscosity, i.e. the ν∇2 diffusion operator
has been replaced by a ν3∇6 operator [180] (5123 meshpoints,
dashed–dotted line). Hyperviscosity greatly exaggerates the
bottleneck effect, but it does not seem to affect the inertial
range significantly; see figure 10.

The nature of the k−0.1 correction factor is currently not
understood. It might be an artifact resulting from applying a
forcing function at a scale close to the scale of the box [8].
Alternatively, the presence of a bottleneck might also lead to
the emergence of a dip just before the bottleneck. In either case
this would not be a true k−0.1 correction in the entire inertial
range.

In virtually all astrophysical settings the relevant Reynolds
numbers are very large and the bottleneck is hardly important,
because it is located at very small length scales. However,
this is not the case in simulations which show the bottleneck
as a pronounced feature. There are several important issues
here. Firstly, simulations at resolutions of 2563 meshpoints
give hardly any indication of a bottleneck effect, and only
at resolutions of 10243 meshpoints and above does it really
develop its full strength. For this reason the bottleneck effect
has been studied more seriously only in recent years. Secondly,
the bottleneck effect can affect certain aspects of a simulation
in a way that is not yet asymptotically meaningful. An example
is the small-scale dynamo effect that is discussed below.

6.3. Supersonic turbulence

In the interstellar medium the gas can condense into more
concentrated regions called molecular clouds. These clouds
are so cold that molecules can form, which explains their
name. Because of low temperature in the range 10–100 K,
the flows in these clouds can become highly supersonic. This
in turn leads to even stronger mass concentrations that can
become gravitationally unstable and form stars. This is why
supersonic turbulence is commonly studied in connection with
star formation [167, 181].

With increasing Mach number, density fluctuations begin
to become important. In fact, in supersonic turbulence with an
isothermal equation of state it has been demonstrated that the
standard deviation of the (linear) density, σlinear, grows linearly
with the Mach number [166, 182, 183]

σlinear = γMa, (67)

where the Mach number is defined as Ma = urms/cs. The
density obeys a log-normal distribution, i.e. the probability
density function, p(ln ρ), with

∫
p(ln ρ) d ln ρ = 1, is

given by

p(ln ρ) = 1√
2πσ 2

exp

[
−1

2
(ln ρ − ln ρ)/σ 2

]
, (68)

where σ is the standard deviation of the logarithmic density,
which is related to the Mach number like [166]

σ = ln(1 + γ 2Ma2), (69)

again with γ ≈ 1/2 to good accuracy.
As indicated in section 2.1 the spectra of u, ρ1/2u

and ρ1/3u begin to differ from each other at larger Mach
number. Observations of the line-of-sight velocity dispersion
of molecular clouds in the Perseus cluster also show that in the
highly supersonic case the velocity spectrum is not far from
k−1.8 [184], and thus deviates clearly from the characteristic
spectrum of shock turbulence [185]. However, the density
weighted spectra tend to become shallower. In particular, the
spectra of ρ1/3u are very close to k−5/3 [13]; see figure 11. This
appears to be connected with the fact that the kinetic energy
flux, i.e. the quantity that is constant throughout the inertial
range at scale l, is given by ρu3

l / l. This idea goes back to an
early paper by Lighthill [12].

6.4. Hydromagnetic turbulence

The gas in many astrophysical settings is partially or fully
ionized and hence electrically conducting. This means that the
effects of magnetic fields cannot be neglected. The full extent
of associated behavior is not yet well understood, nor is there
unambiguous evidence for universal and asymptotic scaling
behavior in the limit of large fluid and magnetic Reynolds
numbers [186]. However, using decay simulations at moderate
magnetic Reynolds numbers, three types of behavior have
been identified [187], depending essentially on the ratio of
the initial magnetic to kinetic energy densities. The purpose
of this section is to discuss the expected properties in these
three regimes.
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Figure 11. Left: time-averaged velocity spectra compensated by k2 from uniform grid PPM simulations at resolutions 2563, 5123, 10243,
and from an adaptive mesh refinement simulation with effective resolution of 20483 grid points. The spectra demonstrate convergence for
the inertial range of scales. Right: time-averaged spectrum of ρ1/3u compensated by k5/3. The straight lines represent the least-squares fits
to the data within a suitable intermediate range of wavenumbers. Courtesy of Alexei Kritsuk [13].

It is convenient to introduce here the Alfvén speed vA =
Brms/

√
µ0ρ0 associated with the random magnetic field Brms.

The case of sub-equipartition random fields with vA < urms

was studied by Iroshnikov [188] and Kraichnan [189] who
argued that the turbulence can still be treated as isotropic
and that the flux of energy ε down the turbulent cascade
will be modified by Alfvénic interactions and replaced by the
geometric mean of energy flux and Alfvén speed, i.e.

ε → (εvA)1/2. (70)

The dimensional argument used in equation (8) for the energy
spectrum of Kolmogorov turbulence gets correspondingly
modified and is then of the form

E(k) = CIK(εvA)1/2k−3/2. (71)

In the case of strong magnetic fields, vA � urms, the
turbulence becomes highly anisotropic, so the spectrum
E(k⊥, k‖) depends on the wavenumbers parallel (k‖) and
perpendicular (k⊥) to the local direction of the field. In this
limit the turbulence can be treated as wave turbulence using
weak turbulence theory [190], which leads to

E(k⊥, k‖) ∼ k−2
⊥ . (72)

In the intermediate case, the kinetic energy of the turbulence
is comparable to that of the magnetic field. This regime
is referred to as strong turbulence—not because the field is
strong, but because the u · ∇u nonlinearity cannot be
neglected. The flow is still anisotropic, and energy is
cascaded in k⊥ at a rate ε. The resulting energy spectrum
is [191–194], i.e.

E(k⊥, k‖) = CGSε
2/3k

−5/3
⊥ . (73)

In the following we present a more detailed phenomenology
that highlights the essential physics behind the various regimes.

We consider as governing equations the MHD equations
written for the Elsasser variables z±, see equation (64), and
denote by zk⊥ the modulus of z± at wavenumber k⊥. In all
cases the energy spectrum is given by

E(k⊥, k‖) ∼ z2
k⊥/k⊥, (74)

and the spectral energy flux is then given by an expression of
the form

ε = z2
k⊥/τcasc, (75)

where τcasc is the cascade time. The main difference between
the various regimes lies in the form of the τcasc; see also
[11, 195].

For strong magnetic fields, interactions are being
accomplished by wave packets traveling in opposite directions.
The duration of the interactions is given by

τA = (vAk‖)−1, (76)

where k−1
‖ is the longitudinal extent of such a packet. The

fractional change in a wave packet is given by the ratio

χ = τA/τNL (77)

of Alfvén time to the nonlinear interaction time

τNL = (zk⊥k⊥)−1. (78)

However, because the sign of each interaction is random,
the net effect grows only like the square root of the number
of interactions. Therefore, the effective fractional change
associated with each interaction is only χ2. This means that
the effective cascade time is τcasc = τA/χ2. By contrast, in
the strong turbulence regime the Alfvén and nonlinear times
are equal, i.e. χ = 1, and the cascade time is therefore just
τcasc = τNL. Since the zk⊥ in equation (74) enters also in
the expression for τcasc, the resulting spectra are qualitatively
different. For weak turbulence we have

ε = z2
k⊥

τcasc
= z2

k⊥
(zk⊥k⊥)2

vAk‖
,

so E(k⊥, k‖) ∼ z2
k⊥

k⊥
∼ (εvAk‖)1/2k−2

⊥ , (79)

while for strong turbulence we have

ε = z2
k⊥

τcasc
= z2

k⊥ (zk⊥k⊥),

so E(k⊥, k‖) ∼ z2
k⊥

k⊥
∼ ε2/3k

−5/3
⊥ . (80)
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Table 1. Summary of the essential properties of the three regimes of MHD turbulence.

Iroshnikov–Kraichnan Strong turbulence Weak turbulence
(isotropic, sub-equip.) (critically balanced) (wave turbulence)

vA/urms ∼ χ−1 <1 ∼1 >1
τcasc χ−2τA (with k⊥ = k‖) χ−1τA( = τNL) χ−2τA

ε z4
kk/vA z3

k⊥k⊥ z4
k⊥k2

⊥/vAk‖
k⊥/k‖ 1 ∝k

1/3
⊥ → ∞

E(k⊥, k‖) (εvA)1/2k−3/2 ε2/3k
−5/3
⊥ (εvAk‖)1/2k−2

⊥

Figure 12. Total energy spectra compensated by k5/3 and averaged
over �t = 0.5 (1.5 to 2 turnover times) about the maximum of
dissipation for three runs: solid line for super-equipartition initial
fields (vA/urms ≈ 2.0), dashed for equipartition initial fields
(vA/urms ≈ 1.3) and dots for sub-equipartition initial fields
(vA/urms ≈ 0.9). The three arrows indicate the magnetic Taylor
scale. Note that the three spectra follow noticeably different spectral
laws and possibly different scale-dependence for their time scales as
well. In all cases the numerical resolution is 20483. Courtesy of
E Lee et al [187].

In the latter case, because of τNL = τA, we have k⊥/k‖ =
vA/zk⊥ = (vA/ε)k

1/3
⊥ , so the degree of anisotropy increases

toward smaller scales until we have k‖ → ∞. For weak
turbulence we have k‖ → 0, so the turbulence is fully
anisotropic at all scales. Finally, for even weaker magnetic
fields, the weak turbulence formalism again applies, except that
now the turbulence is isotropic, i.e. we put k⊥ = k‖ = k and
thus recover equation (71). Table 1 summarizes the essential
properties in the three regimes.

Using up to 20483 simulations of decaying MHD
turbulence with different initial field strength, Lee et al [187]
showed that all three scalings are indeed possible. In figure 12
we show compensated power spectra for three runs with
different initial field strengths with vA/urms ≈ 0.9, 1.3
and 2.0, that are consistent with the regimes of Iroshnikov–
Kraichnan turbulence, strong turbulence and weak turbulence,
respectively.

6.5. Dynamo action

In the absence of an externally imposed magnetic field, it is
possible that the field-free state is unstable to the dynamo
instability, which leads to a conversion of kinetic to magnetic

Figure 13. Third order structure function, as defined in
equation (16), for hydromagnetic runs with 5123 meshpoints [196].
The inset gives the result for 2563 meshpoints. The scaling for
transversal structure functions (dotted lines) tends to be better than
for the longitudinal ones (solid lines). The statistics for the 2563

runs is somewhat better than for the shorter 5123 runs. Courtesy of
Nils E Haugen [196].

energy. If dynamo action occurs, the magnetic field will grow
exponentially to become dynamically important. The precise
outcome regarding energy spectra and structure functions is
still uncertain, but there is mounting evidence that in the inertial
range they are similar to those in the purely hydrodynamic
case [104, 196, 197]; see figures 13 and 14. However, the
largest resolutions obtained in MHD simulations so far are still
only between 15363 [198] and 20483 mesh points [187], and
it is not necessarily surprising that there is no evidence for a
clear bottleneck effect, although the spectra have always been
seen to be slightly shallower than k−5/3 and closer to k−3/2

[196, 199–202]. However, it has been argued that, compared
with fluid turbulence, MHD turbulence is more nonlocal in
spectral space [186]. The anticipated spectral bump would
be more spread out, which might explain the absence of a
bottleneck at the resolutions available so far, and that much
larger resolution would be needed to see it. For supersonic
MHD turbulence with dynamo action there is evidence that
the mixed longitudinal structure functions of Politano and
Pouquet [28] in equation (18) scale linearly with r , provided
the Elsasser variables are scaled with a ρ1/3 factor [203, 204].

In the absence of helicity and with full isotropy, a
successful dynamo (positive growth rate in the linear regime
or finite amplitude in the nonlinear regime) is referred to as
small-scale dynamo. This refers to the nature of the dynamo
process rather than just the typical scale of the magnetic field.
For example, a small-scale magnetic field that is just the result
of shredding of an imposed large-scale field is not the result
of any dynamo process. On the other hand, in the presence of
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Figure 14. Structure function exponents for interstellar turbulence simulations (left) and fractal dimension of the dissipative structures
(right) from simulations. Courtesy of Miguel de Avillez [197].

Figure 15. Kinetic and magnetic energy spectra in a turbulence simulation without net helicity (left) and with net helicity (right) for a
magnetic Prandtl number of unity and a mesh size of 5123 meshpoints. Note the pronounced peak of M(k) at k = k1 in the case with
helicity. Adapted from [11] and [205], respectively.

helicity, or with anisotropy combined with a mean shear flow,
there is the possibility of large-scale dynamo action.

6.6. Large-scale and small-scale dynamos

A typical large-scale dynamo produces magnetic energy on a
scale larger than the scale of the energy-carrying eddies. A
small-scale dynamo is one that generates magnetic energy on
scales smaller than the scale of the energy-carrying eddies.
The difference between large-scale and small-scale dynamos
is demonstrated in figure 15 where we compare kinetic and
magnetic energy spectra of turbulent dynamos with [205] and
without [11] helicity. Flows with a large-scale helical pattern
of alternating sign, such as the Taylor–Green flow [206, 207],
may be considered as an intermediate case between large-scale
and small-scale dynamos.

In the following we use the magnetic Reynolds number,
defined analogously to the fluid Reynolds number in

equation (11) by replacing ν by η:

ReM = urms/ηkf . (81)

The ratio between kinematic viscosity and magnetic diffusivity
is referred to as the magnetic Prandtl number, PrM = ν/η.
The onset of a dynamo is characterized by ReM � ReM,crit ,
where ReM,crit is the critical value. An important difference
between large-scale and small-scale dynamos is the different
dependence of ReM,crit on PrM . Establishing an asymptotic
dependence of ReM,crit on PrM is important because, even
though the computing power will increase, it will still not be
possible to simulate realistic values of PrM in the foreseeable
future. Schekochihin et al [208] have compared the results
from two independent codes and show that there is a sharp
increase in ReM,crit with decreasing PrM ; see figure 16 (where
the two quantities are denoted as Rmc and Pm). Such a result
was first derived analytically [209], well before it was seen
also in simulations.
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Figure 16. Dependence of Rcrit on Re. The plot on the left-hand side compares the results from spectral simulations with those of
meshpoint methods. The plot on the right-hand side shows the results of the most recent simulations with magnetic Prandtl numbers down
to 0.06 and compares with the case of the Taylor–Green flow [206, 207]. ‘JLM’ refers to simulations done with the incompressible spectral
code written by J L Maron: runs with Laplacian viscosity, 4th-, 6th- and 8th-order hyperviscosity (resolutions 643 to 2563). In this set of
simulations, hyperviscous runs were done at the same values of η as the Laplacian runs, so the difference between the results for these runs
is nearly imperceptible. ‘PENCIL’ refers to weakly compressible simulations done with the PENCIL code: runs with Laplacian viscosity,
6th-order hyperviscosity, and Smagorinsky large-eddy viscosity (resolutions 643 to 5123). Courtesy of A A Schekochihin [208].

The reason for the increase in ReM,crit with increasing
Re has been explained by Boldyrev and Cattaneo [210] as
being related to the fact that when ReM < Re, the resistive
scale (i.e. where the magnetic power spectrum peaks in the
kinematic regime) shifts from the dissipative subrange into the
inertial range. In the inertial range the velocity field is no
longer smooth, but it is rough in the sense that the exponent
ζ1 (see section 2.4) in the scaling of velocity differences over
distance r is less than 1 [210]. For ζ1 < 1, the velocity field
becomes non-differentiable in the sense that velocity gradients
diverge like rζ1−1. The smaller ζ1, the rougher the velocity
field, while ζ1 = 1 corresponds to a smooth velocity field.

More recent work [211, 212] suggests that the threshold
for small-scale dynamos is particularly high only in the range
0.06 � PrM � 0.2, because then the resistive scale lies
within the range where the kinetic energy spectrum shows
the bottleneck with ζ1 → 0, corresponding to an extremely
rough velocity field with very large critical magnetic Reynolds
number. However, when PrM � 0.06, the resistive scale lies
beyond the bump of the bottleneck, i.e. well inside the inertial
range, and there the critical magnetic Reynolds number is again
somewhat smaller. Resolving this issue conclusively requires
a numerical resolution well in excess of 10243 meshpoints, as
well as long run times, which is only now beginning to become
feasible. We may therefore expect further developments in this
area in the near future.

If there is large-scale dynamo action, the magnetic field
grows preferentially at scales large compared with the energy-
carrying scale. This process is non-local in spectral space
[213], although it has also been shown that an externally
applied magnetic field produces mainly local interactions

[214]. On the other hand, large-scale dynamo action depends
on velocity and magnetic field correlations at the energy-
carrying scale (rather than the resistive scale). The onset of this
type of large-scale dynamo action is essentially independent
of PrM and occurs when ReM > ReM,crit ≈ 1. The
independence of the saturation strength of the large-scale
dynamo on the microscopic resistivity is demonstrated in
figure 17, where we show spectra of kinetic and magnetic
energies for different values of PrM .

6.7. Turbulent convection and stratification

In certain layers of a star the opacity of the gas can
become so large that the energy flux can no longer be
transported by radiative diffusion, but by convection. A
phenomenological theory called mixing-length theory allows
one to make reasonable estimates for the expected turbulent
velocity. As mentioned in section 3.2, the convective energy
flux is approximately equal to the ρu3

rms. This gives a good
estimate for the convective velocity in a star.

The basics of the convection instability was discussed in
section 5.2. A necessary condition for convection is that the
specific entropy decreases with height, i.e. N2

BV < 0; see
equation (47). In addition, viscosity and thermal diffusion
have to be small enough compared with the height of the
unstable layer, d, and the Brunt–Väisälä frequency, NBV. This
is quantified by the Rayleigh number,

Ra = d4

νχ
(−N2

BV)0, (82)

which has to be above a certain critical value for the onset of
convection. Here, the subscript 0 refers to the requirement
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Figure 17. Compensated kinetic and magnetic energy spectra in the saturated regime for PrM = 1 with Re = 450, PrM = 10−1 with
Re = 1200, PrM = 10−2 with Re = 2300 and PrM = 10−3 with Re = 4400. The spectra are compensated by ε

−2/3
T k5/3, where εT is the

sum of kinetic and magnetic energy dissipation rates. The ohmic dissipation wavenumber, kη = (εM/η3)1/4, is indicated by an arrow. The
viscous dissipation wavenumbers are 180, 290, 350 and 430 for PrM = 1, 10−1, 10−2 and 10−3, respectively. Adapted from [205].

that the specific entropy gradient has to be calculated for the
associated hydrostatic equilibrium solution, and not for the
already convectively unstable solution. Such solutions are not
normally presented in the literature. Also, the thickness of
the outer layers of the Sun would be much smaller in the
hydrostatic reference state. It is therefore not common to
quote Rayleigh numbers in astrophysics, except in idealized
simulations whose hydrostatic reference solutions tend to be
polytropes where the initial density is related to the initial
temperature via ρ ∼ T n, where n is the polytropic index.
Unlike the incompressible case, where the Rayleigh number
is based on the background gradient of temperature, in the
compressible case it is based on the gradient of specific entropy
for the associated hydrostatic solution [52].

If the value of the Rayleigh number is increased
sufficiently beyond the critical value, the flow becomes
turbulent. Simulations of turbulent convection have been
provided by many different groups, both in the incompressible
approximation [215–217] as well as in the fully compressible
case [148, 218, 219]. Typical Rayleigh numbers that are
currently reached in simulations are around 106. With rotation
the onset of convection is delayed correspondingly, which
enables one to reach somewhat larger Rayleigh numbers in
such cases.

The Nusselt number is another commonly used quantity
in incompressible and laboratory convection. In that
case it gives the ratio of the total heat flux to that
transported by heat conduction alone, using the same boundary
conditions. However, unlike laboratory convection, where
the temperatures at top and bottom are usually kept fixed, in

many compressible simulations with a polytropic background
solution the energy flux at the bottom is actually prescribed.
One compares therefore normally with the radiative solution
with a linear temperature profile that has the same top and
bottom temperatures as the convective solution. One also
subtracts out the flux that is transported by the adiabatic
stratification alone [151]. Again, this value is nowadays
not normally quoted for compressible simulation. For many
purposes, a more useful characterization of the turbulence is
the resulting value of the Reynolds number.

Another important difference to laboratory convection
is the absence of boundaries in astrophysical convection.
Convectively unstable layers are the result of a particular
dependence of opacity on temperature and density. This has
frequently been modeled using prescribed spatial profiles of the
radiative conductivity. In this way one can model convection in
an unstable layer, sandwiched between two stable layers [220].
This makes the dynamics near the transition layer softer and
allows the flow to overshoot into the stably stratified layers.
This leads to the excitation of gravity waves in the stably
stratified layers [220–225].

Convective flows can well support dynamo action. As an
example we mention here the result of a convection simulation
with horizontal shear which leads gradually to the development
of a large-scale magnetic field [226]. A result of such
calculations is shown in figure 18, where we visualize the
toroidal field component at an early time when only small-
scale fields have been produced, and at a later time when also
a large-scale field is present.

The presence of large-scale fields is often characterized
by energy spectra. However, because of stratification it only

23



Rep. Prog. Phys. 74 (2011) 046901 A Brandenburg and Å Nordlund

Figure 18. Snapshots of By in the early phase (left) and saturated phase (right) of the dynamo. The sides of the box show the periphery
of the domain whereas the top and bottom slices show By at top and bottom of the convectively unstable layer, respectively. Courtesy of
Petri J Käpylä [226].

makes sense to look at horizontal spectra taken at a specific
depth. If the mean magnetic field depends mainly on depth, the
horizontal magnetic energy spectra will peak at wavenumber
zero, which can only be seen if one plots the spectral energy
versus linear wavenumber; see, for example, figure 12 of [226].

6.8. Global hydromagnetic dynamo simulations

Simulations of global convection have demonstrated the gen-
eration of differential rotation and magnetic fields [227, 228].
However, with parameters relevant to the Sun such models have
not yet produced large-scale magnetic fields similar to those
in the Sun [55, 121]. This is plausibly explained by the rele-
vant dynamo numbers for coherent large-scale field generation
being still too small. In that case, only small-scale magnetic
fields are generated, while the threshold for large-scale field
generation has still not been reached. This is different when
the rotation rate of the sphere is increased to several times the
solar value [229]. As an example we show here the results for
a sphere that has a stratification similar to that of the Sun, but
it is rotating about 3 times as fast; see figure 19.

The rapid rotation is primarily responsible for producing
the typical convection patterns that are elongated in the
direction of the rotation axis. This effect is especially obvious
at low latitudes, outside the inner tangent cylinder, i.e. the
cylinder that is tangent with the bottom of the convection zone.
The resulting convection pattern is often referred to as banana
cells, a concept that was widely discussed in the 1980s [230],
but there has never been observational evidence supporting
this type of flow pattern for the Sun. Banana cells occur as
a consequence of rapid rotation, which is also responsible for
cylindrical angular velocity contours. Although this does not
apply to the Sun, it may well apply to some stars that rotate
much more rapidly than the Sun.

Simulations of rapidly rotating convection [56, 229] show
that in the region with strong banana cell convection, there
is strong large-scale dynamo action with pronounced toroidal
flux belts on one or both hemispheres; see figure 19. This
is partially reminiscent of the magnetic activity in the Sun,
although it would be premature to draw any conclusions from

this given that at present there is no explicit evidence of banana
cell convection in the Sun.

We mention here another line of research. Instead of
convection driving the flow one can apply an artificial forcing
function. This has the advantage of producing a flow pattern
whose typical scale can be controlled. In particular, it is
possible to achieve turbulent scales that are small compared
with the radial extent of the domain, so as to produce a well-
defined scale separation [231, 232]. With such simulations
it has been possible to focus entirely on the nature of the
dynamo in spherical shell geometries and to isolate its physics
from many other effects that may still be important. It turns
out that even in the absence of global shear, oscillatory large-
scale fields can be generated [232, 233]. Such solutions show
equatorward migration and are quite different in nature from
oscillatory solutions of α� type. It is quite possible that these
solutions have nothing to do with those in the solar dynamo,
but it serves as a reminder that the variety of possibilities may
be much larger than what is usually discussed.

6.9. Interaction between convection and shear

Simulations of rotating convection in spherical shells
demonstrate that there is equatorward acceleration of the mean
flow. This phenomenon is generally referred to as differential
rotation and will be discussed in more detail in section 7.3.
In addition, one sees that the convection pattern itself moves
differentially across the surface. However, a more detailed
inspection reveals that at the equator the convection pattern
can actually move still somewhat faster than the mean flow.
This has been revealed both by linear theory [234–236] and by
nonlinear simulations [237], and may explain a phenomenon
seen at the solar surface which shows that magnetic tracers
move at speeds faster than the speed of the plasma. In fact,
even very young sunspots tend to move not only faster than the
plasma at the surface, but they move also faster than the gas at
any other place in the Sun, as seen by global helioseismology;
see figure 4 of [238].

There is at present no universally accepted theory for
the enhanced rotation speed of magnetic tracers on the
Sun. It has, however, been pointed out that the enhanced
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Figure 19. Toroidal and radial magnetic field (first and second row) together with radial velocity (bottom row) near the top of the convective
shell (left column at r/R = 0.95) and in the middle (right column at r/R = 0.85). The mean magnetic field is approximately antisymmetric
about the equator. The radial velocity shows flow patterns elongated along the rotation axis (so-called banana cells). The resolution is
96 × 256 × 512 mesh points or collocation points in the radial, latitudinal and longitudinal directions, respectively. The magnetic Reynolds
number based on the thickness of the convective shell and without dividing by 2π is 86 and the Coriolis number, i.e. the ratio of vorticity
from the mean rotation to the rms vorticity of the turbulence, is about 3. Courtesy of Benjamin P Brown [229].

pattern speed of magnetic tracers might be understandable
if the observed magnetic field (including that responsible for
producing sunspots) was generated in a layer not too far below
the surface [239]. This proposal would be in conflict with the
generally adopted view according to which the magnetic field
responsible for the solar cycle is generated near or even below
the bottom of the convection zone of the Sun.

6.10. Granulation, convection and solar abundances

Simulations of solar granulation have reached a high level of
realism and have proved to be a viable and feasible alternative
to earlier one-dimensional models for calculating diagnostic
spectra in visible light. Strictly one-dimensional models
always needed to incorporate ill-determined parametrizations
of what is known as micro- and macro-turbulence. New
realistic three-dimensional simulations of solar convection
[49–51, 240–243] lead to diagnostic spectra that can be
fitted to observed spectra without invoking these ill-known
parametrizations. The use of 3D models also results in
abundances derived from different spectral features (e.g.
molecular and atomic lines) being more consistent.

Initial efforts to derive updated solar abundances based on
3D models resulted in new abundance estimates for the heavier
elements in the Sun that were as low as only 60% of previous

estimates [244]. It should be noted, however, that even though
these abundances are often referred to as ‘3D abundances’, 3D
effects were not the main cause of the systematic lowering of
the abundance estimates, which were instead a combined result
of updated oscillator strengths, different line fitting procedures,
and choices made when estimating collision cross sections
important for non-LTE corrections for some spectral lines.
This was elucidated by an independent analysis by a different
group [50, 243], who confirmed that 3D effects improve the
consistency but do not give rise to a significant systematic
abundance effect for the important heavy elements.

The abundances of the heavier elements determine the
opacity of the gas and thereby the detailed radial structure
of the Sun. On the other hand, the radial dependence of
the sound speed and density in the Sun can be determined
independently through helioseismology [59, 60, 63, 245, 246],
and helioseismology can thus provide important constraints on
the heavy element abundances in the solar interior. (It may in
the future be possible to also determine the Sun’s deep interior
composition by exploiting neutrinos from the CN cycle and the
p–p chain to determine the primordial solar core abundances
of C and N at an interesting level of precision [247].) In the
convection zone the gradual ionization of carbon, nitrogen
and oxygen with depth influences the equation of state, and
helioseismic measurements of the effective ratio of specific

25



Rep. Prog. Phys. 74 (2011) 046901 A Brandenburg and Å Nordlund

heats of the gas can thus provide constraints on the abundance
of these elements also there [62, 248].

The significant downward revision of solar abundances
proposed in [242] and even the somewhat more moderate
revisions proposed more recently by the same group [51]
turned out to be difficult to reconcile with observational
constraints from helioseismology, despite many different
attempts to do so; cf [62] and references therein. However, the
downward revisions recommended by [50] are only about half
as large and are in fact consistent with helioseismic estimates
of the heavy element abundance in the solar convection zone,
Z = 0.167; see table 2 of [248].

Due to gravitational settling the abundances of all elements
differ somewhat between the convection zone and the radiative
interior [249]. Because of rapid mixing the abundance
levels are constant in the convection zone, but below the
convection zone the chemical abundances vary with radius in a
manner that is influenced by how turbulence in the convection
zone generates weak overshooting motions in the radiative
zone, which result in a slow mixing over depth of chemical
elements [250].

There was always a small departure in sound speed
between models and helioseismic observations in a narrow
region just below the convection zone. With the revised
abundance estimates by [242] this departure increased from
about 0.3% to about 1.2% [62, 251], while with the abundances
recommended by [50] the discrepancy is of the order 0.6%.
Even the smallest of these discrepancies is many times
larger than the helioseismic measurement uncertainties, and
one should thus worry less about the particular size of
the discrepancy in any one case, and more about the very
existence of the discrepancy. In general terms, the lack
of a detailed quantitative understanding of the overshoot of
convection below the bottom of the convection zone and the
associated slow mixing seems to be a likely reason for the
discrepancy [61].

An important additional observational constraint on slow
mixing below the convection zone comes from the depletion of
lithium in the Sun. Lithium is destroyed at temperatures that
are reached about one pressure scale height (corresponding to
about 1% of the solar mass) below the convection zone, and
the observed depletion (a factor of about 160) implies that
mixing down to that temperature takes place on a time scale
considerably shorter than the age of the Sun, but still very
large compared with convection zone turnover times [61, 252].
Lithium depletion in other stars is now known to be essentially
consistent with the behavior expected from the differences
in age and structure deduced from standard stellar evolution
theory [252].

6.11. Turbulence from the magneto-rotational instability

In the presence of shear and rotation, the slow magnetosonic
waves develop a long wavelength instability, where ω2 < 0
for v2

Ak2 < 2q�2. Here, q = −d ln �/d ln r quantifies the
radial gradient of the angular velocity. This is called the
magneto-rotational instability (MRI). It is particularly simple
to analyze if the magnetic field is vertical, in which case the

Figure 20. Toroidal magnetic field component displayed on the
periphery of the computational domain (color coded). The size of
the box is 2π in all three directions and the mesh size is 5123

meshpoints. The gas is isothermal with a constant sound speed of
cs = 5�/k1. Viscosity and magnetic diffusivity are
ν = η = 2.5 × 10−4�/k2

1 . Note that the magnetic field develops
long thin structures aligned at some angle relative to the toroidal
direction. Adapted from [253].

instability is purely axisymmetric. However, the same growth
rates are obtained in the nonaxisymmetric case, if B points in
the streamwise direction [86].

In the axisymmetric case the instability takes the form
of so-called channel flows. In three dimensions the flow
experiences strong shearing and hence small length scales in
the cross-stream direction. This leads to the flow breaking
up into what we loosely call fully developed turbulence.
An example of such a flow is shown in figure 20, where
periodic boundary conditions have been used in the vertical
and azimuthal directions, and shearing-periodic boundary
conditions in the cross-stream direction. No net magnetic
flux has been applied [253]. Numerical simulations show,
however, that the MRI is no longer excited when the magnetic
Prandtl number is less than a critical value of the order of
unity [254, 255]. A strong sensitivity on the magnetic Prandtl
number has also been found for magnetized Taylor–Couette
flow [256–260]. At present it is still unclear whether there
is a real problem with the MRI in accretion disks when the
magnetic Prandtl number is small. This issue may well be
connected with the difficulty to excite small-scale dynamos
at low magnetic Prandtl numbers [208–212]. On the other
hand, astrophysical dynamos are large-scale dynamos, and
they do not suffer from that particular difficulty [205, 261]. It
would therefore be important to perform new MRI simulations
in cases where large-scale dynamos are possible, i.e. in the
presence of vertical density stratification, which can then
lead to an α effect [262, 263]. In another recent study it
has been shown that even without stratification, large-scale
dynamo action is possible when pseudo-vacuum boundary
conditions are used at top and bottom of the rotating shearing
box [264]. A similar generation of mean fields has also been
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Figure 21. Visualization of the logarithmic density of an accretion
torus around a black hole. Courtesy of John F Hawley [277].

found without rotation [239, 265–267]. Possible candidates
for explaining the origin of large-scale fields in this case
include the incoherent α-shear dynamo [268, 269] and the
shear-current effect [270, 271]. For the latter effect to work,
it is necessary that one of the off-diagonal components of the
magnetic diffusivity tensor has a suitable sign, which may,
however, not be the case [267, 272–274].

The MRI is generally thought to be responsible for driving
turbulence in accretion disks, where q = 3/2. A more accurate
representation of accretion disks is obtained with the inclusion
of vertical and radial density stratification. The former case can
be treated within the shearing-box approximation [275, 276]
while the latter requires a global treatment [277–280]. In
figure 21 we show a visualization of the logarithmic density of
an accretion torus around a black hole.

An important diagnostic quantity of accretion disk
simulations is the dimensionless turbulent disk viscosity,
αSS = νt/csH . Here, the subscripts SS refer to Shakura
and Sunyaev [281], who employed this parametrization of
turbulent viscosity νt in terms of local sound speed cs and
pressure scale height H . In the simulations, νt is normally
estimated by the mean total horizontal stress, �Rφ =
bRbφ/µ0 − ρuRuφ , divided by the mean rate of strain resulting
from the differential rotation, ρR∂�/∂R, where cylindrical
coordinates, (R, φ, z), have been employed.

In comparison with local shearing box simulations, an
important difference is that global simulations are capable of
producing about 10 times larger values of αSS. This is an
immediate consequence of the larger field strength in global
simulations rather than a difference in the intrinsic properties of
local versus global disk simulations [277]. Another important
outcome of global disk simulations is the fact that �Rφ is finite
at the innermost marginally stable orbit. This is a property
that is not normally taken into account in analytic models and
continues to be debated in the literature [282, 283].

A number of new simulations have emerged in recent
years. A major step was the combination of dust dynamics
with self-gravity in the shearing box approximation [284, 285].

One of the remarkable results is the rapid formation of nearly
Earth-sized bodies from boulders (figure 22). Even though the
mass of what one might call protoplanet is growing, this body
is also shedding mass during encounters with ambient material
as it flows by. One might speculate that what is missing is the
effect of radiative cooling of the protoplanet. This would allow
the newly accreted material to lose entropy, become denser, and
hence fall deeper into its potential well.

The main reason the simulations presented in [284]
produce rapid growth is connected with the occurrence of
sufficiently strong compressions caused by the turbulence.
Once the compression is strong enough, self-gravity takes over
and leads to a fully developed nonlinear collapse.

6.12. Effects of thermal and gravitational instabilities

A thermal instability may arise if a cooling term, �(T ), and a
heating term, �(T ), are included on the right-hand side of the
energy or entropy equation, i.e.

ρT
Ds

Dt
= · · · + ρ�(T ) − ρ2�(T ). (83)

It is convenient to abbreviate the combination of the two terms
on the right-hand side by ρL, where L = �−ρ�. This allows
us to state a sufficient condition for stability [163, 286](

∂L
∂T

)
p

> 0 (stability). (84)

This means that when the temperature is increased, the
corresponding cooling increases, bringing the temperature
down again to the original value. In the presence of thermal
diffusion, with Frad = −K∇T �= 0, the system can always
be stabilized at small scales, i.e. for large wavenumbers,
where eventually the thermal diffusion rate becomes faster
than the cooling rate. For � = const and � ∝ T β , the
dispersion relation ω(k), is on sufficiently large scales (small
wavenumbers) of the form [163, 286].

ω = cisok
√

1 − β−1, (85)

where ciso = cs/
√

γ is the isothermal sound speed. Evidently,
for β < 1 sound waves become destabilized (ω becomes
imaginary).

Numerical simulations [162, 163] have not been able to
confirm alternative findings [287] that the thermal instability
can lead to sustained turbulence. This is demonstrated in
figure 23, which shows (here in the presence of shear) that
the thermal instability leads to the development of patches with
low temperature (100 K compared with 10 000 K outside those
patches), but over time these patches merge until eventually a
stable equilibrium is reached where a few big patches continue
to coexist.

Another instability where sound waves are destabilized
is the Jeans instability. Here the dispersion relation can be
written in the form [288–291]

ω2 = c2
s k

2 − 4πGρ, (86)
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Figure 22. Simulations showing the total column density (gas plus all particle sizes) in the horizontal plane. The insets show the column
density in logarithmic scale centered around the most massive cluster in the simulation. Time is given in terms of the number of orbits after
turning on self-gravity. Courtesy of Anders Johansen [284].

Figure 23. Visualization of ln T on the periphery of the box at different times, for ν = χ = 5 × 10−4 Gyr km2 s−2 and 2563 mesh points.
〈ρ〉 ≈ 1.74 × 10−24 g cm−3, 〈p〉 ≈ 24.2 × 10−14 dyn and 〈T 〉 ≈ 8200 K. Here � = 100 Gyr−1 and S = −�. For this run kF/k1 = 32 and
nρ/(cskF) = 1.5. The growth rate is about 190 Gyr−1, which is somewhat larger than for the corresponding non-shearing run. Note that the
initially produced structures are quickly sheared out. Adapted from [163].

where ρ is the local density of the gas. So, again, large
scales become unstable. In an asymptotically thin layer
such as an accretion disks or galaxies, the dispersion relation
becomes [292]

ω2 = c2
s k

2 − 4πG�|k|, (87)

where � is the local surface density. In the context of
local accretion disk models, simulations suggest that this
process can indeed lead to sustained turbulence [87, 293–295].
In simulations of star formation [181, 296–298], the Jeans
instability leads to a continuous production of gravitationally
bound structures corresponding to protostars. The stars
that form have a broad distribution of masses, determined
mainly by the statistics of mass fragmentation in supersonic
MHD-turbulence [166]. The fraction of stars that are heavier
than about 8 solar masses eventually (after a delay of up to a
few tens of Myr) explode as supernovae. These supernovae
contribute to sustaining the turbulence in the interstellar
medium that ultimately causes additional generations of stars
to be born [79, 197].

6.13. Supernova-driven turbulence

Interstellar turbulence is an example of astrophysical turbulent
flows where the driving is usually modeled by a distributed
body force. As discussed in section 3.4, the blast waves of
supernova explosions provide energy input to the surrounding
gas. These explosions drive gas flows with temperatures of
around 108 K, but they also lead to strong compressions where

the gas cools rapidly to about 104 K. When the temperature is
between 100 and 104 K the gas may, depending as details of
the cooling curve �(T ), be thermally unstable [286]. This
contributes to keeping the gas in the interstellar medium
preferentially in one of two distinct temperature regimes (the
so-called cold and warm phases; see section 6.12). The hot
phase at temperatures >106 K is a direct result of heating by
supernova explosions combined with a low cooling efficiency
of the interstellar medium at that temperature. This is also
borne out by various simulations [299–301]. Simulations
show that the filling factor of the hot gas (T > 106 K)
grows with height from 0.2–0.3 at the midplane to about
0.5–0.6 at a height of about 300 pc [299]. However, this result
depends on the degree of correlation of supernovae in space
and can reach 0.6 at the midplane for completely uncorrelated
supernovae, as in an early analytic model [302]. Simulations
have also been able to demonstrate that significant amounts
of vorticity are being produced if the flow is sufficiently
supersonic and if the baroclinic term is important [303, 304].
The presence of vorticity is advantageous for dynamo action;
in fact, no dynamos have yet been found when the turbulence
is irrotational [305].

There is now mounting evidence that for large Mach
numbers the energy ratio of compressive to solenoidal
velocities approaches 1/2 [166, 179, 306–309]. This can be
explained if the mean square values of longitudinal and
transversal velocity derivatives were equal, i.e. 〈u2

x,x〉 = 〈u2
x,y〉.

Assuming isotropy and that mixed terms cancel, this implies
〈(∇ · u)2〉 ≈ 3〈u2

x,x〉 and 〈ω2〉 ≈ 6〈u2
x,y〉, giving a ratio of
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Figure 24. Visualization of ln ρ on the periphery of the box at different times, for k1R = 0.2, Re = 50, and 5123 mesh points. Note that in
the fully developed state individual expansion waves can hardly be recognized. Adapted from [305].

1/2 [307]. Whether or not this behavior is really universal
needs to be seen. In the papers listed above the turbulence was
forced with a substantial solenoidal component, so the issue of
vorticity production was not addressed. In the following we
discuss the opposite limit, where only compressive modes are
driven and where no vorticity is produced.

6.14. Irrotational turbulence

Turbulence is usually thought of as being an ensemble of
interacting eddies. If one associates eddies with vortices,
then ‘irrotational’ turbulence must be a contradiction in terms.
Nevertheless, irrotational turbulence can be regarded as an
idealization that can serve its purpose in illustrating the
difference to regular (vortical) turbulence.

Irrotational turbulence means that ω = ∇ × u = 0. As
explained in section 4.1, the u × ω nonlinearity is absent
and the only nonlinearity comes from the 1

2u2 term. This
causes a significant modification of the turbulent cascade,
which is one of the reason why irrotational turbulence may be
a contradiction in terms. Because of compressibility, however,
vorticity can in principle be generated via the viscous term.
Taking the curl of 1

ρ
∇ · τ in equation (33), and assuming

ν = const, gives

∇ ×
(

1

ρ
∇ · τ

)
= ν∇2ω + ∇ × [2νS · ∇ ln(ρν)]. (88)

Here, the first term vanishes if ω = 0, but the second term does
not. As mentioned in section 6.13, simulations show that this
term remains small in the limit ν → 0 [305]. In figure 24 we
show visualizations of the logarithmic density in a simulation,
which shows that the initially highly ordered expansion waves
turn rapidly into a complicated pattern. The flow is here driven
by a forcing function f = −∇φ, where φ is a scalar function
consisting of randomly placed Gaussians that change in regular
time intervals, �t , such that �turmskf ≈ 0.25.

Given that viscosity always perturbs the zero vorticity state
slightly, and because the vorticity equation is analogous to
the induction equation, one must ask whether a small initial
vorticity could increase owing to an instability. However, at
the Reynolds numbers achieved so far in simulations, neither
vorticity nor magnetic fields have been found to increase
spontaneously [305]. The suggestion that purely irrotational
turbulence cannot produce dynamo action may be related to
the finding that in vortical supersonic turbulence the critical
magnetic Reynolds number for small-scale dynamo action

shows a ‘bimodal’ behavior with Mach number: for Mach
numbers below unity the critical magnetic Reynolds number is
about 35 to 40, and above unity it is about 70 to 80 [307]. Note,
however, that the flow is here not purely irrotational, and that
the ratio of 〈(∇ · u)2〉 and 〈ω2〉 is about 1/2; see the discussion
in section 6.13.

The results concerning vorticity production may be of
relevance for other flows that can be described by spherical
expansion waves. One example concerns phase transition
bubbles that are believed to be generated in connection with the
electroweak phase transition in the early universe [310, 311].
Here the equation of state is that of a relativistic fluid, p =
ρc2/3, where c is the speed of light. Thus, again, there is no
baroclinic term and no obvious source of vorticity. However,
the relativistic equation of state may be modified at small length
scales, but it is not clear that this can facilitate significant
vorticity production.

7. Collective effects of turbulence

In this section we denote the velocity by a capital U . Overbars
indicate averages over one or two coordinate directions. They
are not therefore regarded as spatial filters that are often used in
the theory of large-eddy simulations [312, 313]. The definition
of averages in terms of coordinate averages is convenient for
interpreting simulation data. Other definitions of averages are
possible. In analytic studies ensemble averages are commonly
used. Departures from these averages are denoted by lower
case symbols, i.e. u = U − U and b = B − B denote
the fluctuating components of the velocity and magnetic field
vectors. We discuss the properties of various correlators such
as uiuj , uibj and bibj .

In general turbulence is non-isotropic. This can lead to
the possibility of non-trivial components of the correlations
tensorsuiuj , uibj andbibj . The effects of these correlations on
the evolution of the mean flow, U , and the mean magnetic field,
B, or the mean passive scalar concentration, C, are referred
to as collective or mean-field effects of the turbulence. Even
in the special case where uiuj is a diagonal tensor there is at
least the phenomenon of turbulent diffusion, which will now
be illustrated in connection with the passive scalar field.

7.1. Turbulent passive scalar diffusion

The relevant dynamics comes from the nonlinearity. In order
to keep the discussion simple, we neglect the diffusion term.
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The evolution equation of the passive scalar density per unit
volume, C = ρθ , is then

∂C

∂t
= − ∂

∂xj

(CUj ), (89)

cf equation (43). Again, we define the average concentration
per unit volume as C and write C = C + c. The evolution
equation of C is obtained by averaging equation (89), i.e.

∂C

∂t
= − ∂

∂xj

(CUj + cuj ). (90)

The problematic term here is cuj , and the hope is that it can
be expressed in terms of mean fields such as C and U .

In order to derive an expression for cuj , we consider its
evolution equation,

∂

∂t
cuj = ċuj + cu̇j , (91)

where dots denote partial time derivatives. The evolution
equation for c is obtained by subtracting equation (90) from
equation (89), which yields

∂c

∂t
= − ∂

∂xj

(Cuj + cUj + N
(c)
j ), (92)

where N
(c)
j = cuj − cuj denotes nonlinear terms. In the

absence of rotation, shear, viscosity or other linear effects, the
momentum equation takes the form

∂uj

∂t
= N

(u)
j . (93)

Assuming incompressibility and no mean flow, U = 0, we
have

∂

∂t
cuj = −κ̃

(c)
ij

∂C

∂xj

+ T
(cu)
j , (94)

where κ̃
(c)
ij = uiuj and T (cu) = −[∇N (c)]u + cN (u) denotes

a triple correlation term.
Clearly, in the statistically steady state the two terms on

the right-hand side of equation (94) must balance to zero,
suggesting that T (cu) cannot be neglected, as is assumed in the
commonly used first-order smoothing approximation, when
it is applied to the case of vanishing diffusivity (κθ = 0);
see [314] for a more detailed discussion. When κθ is large, the
microscopic diffusion term involving κθ∇2θ in equation (43)
or κC∇2C in equation (89) needs to be restored. Since it is
applied to the small-scale field with typical wavenumber kf ,
the inclusion of the κθ term corresponds essentially to adding
−κθk

2
f cuj on the right-hand side of equation (94). (This can

be treated more accurately in Fourier space; see [315] for a
corresponding treatment in the magnetic case.)

The closure assumption used in the τ approximation
consists of the assumption that the triple correlations can be
expressed in terms of the quadratic correlation, i.e.

T
(cu)
j = −cuj/τ (closure assumption). (95)

Inserting this into equation (94) yields(
1 + τ

∂

∂t

)
cuj = −κ

(c)
ij

∂C

∂xj

, (96)

where κ
(c)
ij = τ κ̃

(c)
ij corresponds to the usual turbulent

diffusivity. This equation shows that, in the statistically steady
state, there is a flux of passive scalar concentration in the
direction of the negative gradient of C. Note that the effect
described here works also when the turbulence is isotropic,
i.e. when uiuj = 1

3δiju2. In that case we have κ
(c)
ij = κ

(c)
t δij ,

where κ
(c)
t is the scalar turbulent diffusivity of the mean passive

scalar concentration. By assuming τ = (urmskf)
−1 we obtain

κt = 1
3urmsk

−1
f . On the other hand, if Pe � 1, κ

(c)
t is small

and increases linearly with Pe such that κt = 1
3Pe urmsk

−1
f .

The effect discussed above is known as turbulent diffusion.
It is a very basic effect that characterizes an enhanced diffusion
experienced by the mean concentration. It is present whenever
the typical scale of the mean field is large compared with
the scale of the turbulence. This is the requirement of scale
separation that needs to be made in order for a multiplicative
relation in terms of the product of κt and ∇C to be valid. On
the other hand, if the scale of the turbulence is comparable
with the system size, a local connection between flux and
gradient becomes invalid, and nonlocal expressions must be
considered [316].

Let us now contrast the τ approximation with the first-
order smoothing approximation, where equation (92) is still
used, but the N

(c)
j term is now neglected. Again, assuming

U = 0 and integrating in time, we have

c(x, t) = −
∫ t

0

∂C(x, t ′)
∂xj

uj (x, t ′) dt ′. (97)

Thus,

cui = −
∫ t

0
ui(t)uj (t ′)

∂C(t ′)
∂xj

dt ′, (98)

where we have dropped the common x dependence of all
variables for clarity. This expression would be identical to
equation (96) in the special case where

ui(t)uj (t ′) = −uiuj exp[−(t − t ′)/τ ] for t > t ′. (99)

This type of agreement is restricted to the simplest case
when there is no contribution from the momentum equation.
Examples where such agreement is lost include cases with
rotation or shear, as well as analogous cases with magnetic
field where there can be contributions from the Lorentz force
[11, 317].

The concept of turbulent diffusion carries over to vector
fields such as the velocity itself and the magnetic field. In
these cases one talks about turbulent viscosity, νt , and turbulent
magnetic diffusivity, ηt . The relevant correlations are then
uiuj and uibj that are being expressed in terms of negative
gradient terms, i.e.

uiuj = −νt

(
∂Ui

∂xj

+
∂Uj

∂xi

)
, (100)

uibj = −ηt
∂Bj

∂xi

. (101)
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This last formula is quite analogous to the passive scalar case
discussed in equation (96),

uic = −κ
(c)
t

∂C

∂xi

, (102)

where we have dropped the time derivative of uic. The term on
the right-hand side of equation (100) is similar to the expression
for microscopic diffusion, see equation (32). The correlation
that enters in the mean induction equation is

E i = (u × b)i = εijkujbk = −ηt(∇ × B)i = −ηtµ0J i,

(103)

which gives a contribution similar to the microscopic diffusion
term in equation (58).

7.2. The α effect

Turbulence does not always act just diffusively. There can be
non-diffusive effects, especially if the turbulence lacks local
isotropy or at least parity invariance. If the flow is statistically
non-mirrorsymmetric (for example helical) interesting effects
can occur in connection with the evolution of the mean
magnetic field. In particular, there are terms proportional to
the mean magnetic field itself, i.e.

u × b = αB − ηt∇ × B. (104)

This is the famous α effect [15, 318, 319] that is often invoked
in order to understand the generation of large-scale magnetic
fields in astrophysical bodies. The possibility of magnetic field
generation can be seen by inserting equation (104) into the
mean induction equation,

∂B

∂t
= ∇ × (u × b − η∇ × B). (105)

One can look for solutions proportional to exp(ik ·x + λt) and
find that

λ = ±αk − (η + ηt)k
2, (106)

where k = |k|; see, e.g., [11] for details. This shows that
exponentially growing solutions exist on sufficiently large
scales, i.e. on sufficiently small wavenumbers, k < α/ηT. Here
we have introduced the total magnetic diffusivity, ηT = η + ηt .

Although this topic already reached text book level
several decades ago [15, 318, 319], it continues to be a field
of intense research—especially with regards to nonlinear
feedback. Basic aspects of the α effect can best be explained in
the context of isotropic turbulence. In that case the following
expression for α has been derived [320–322]

α = − 1
3τ 〈ω · u〉 + 1

3τ 〈j · b〉/ρ, (107)

which shows that α is determined by the residual between
kinetic helicity of the small-scale velocity, 〈ω · u〉, and the
normalized small-scale current density, 〈j · b〉/ρ.

The 〈j · b〉 term contributes to the nonlinear saturation
of the dynamo. This is because the α effect produces
magnetic helicity both at large and small scales such as to
obey the magnetic helicity equation; see section 5.4. While

this can lead to a dramatic reduction of α in periodic or
closed domains [213, 323], the quenching effect may be less
extreme in the astrophysically relevant case of open domains
where magnetic helicity can be transported out of the domain
by magnetic helicity fluxes [324, 325]. The theory of these
fluxes [326] shows that there can be several contributions
to the flux. One such contribution is along the contours of
constant shear [327, 328], but recent work has cast some doubt
on whether such shear-driven magnetic helicity fluxes really
exist [329]. Other contributions can come from advection
[330] and diffusion [233]. For further aspects regarding
nonlinear dynamo theory we refer to a review dedicated to
recent developments; see [11].

The presence of shear provides an additional induction
effect that usually contributes to the dynamo. In order
to estimate the relative importance of these effects, and to
estimate whether a large-scale dynamo is excited, one needs
to know the values of some relevant non-dimensional numbers
that characterize the magnitude of α effect and shear,

Cα = α/ηTkm, C� = ��/ηTk2
m, (108)

where km is an estimate for the relevant wavenumber of the
dynamo that fits into the domain and �� is the absolute
differential rotation. In the case of the Sun it is about 30%
of the average angular velocity. Let us quantify the degree
of helicity in the turbulence as εf = 〈ω · u〉/kfu

2
rms, where

kf = ωrms/urms, and assume ηt � η, we find

Cα ≈ εfkf/km. (109)

Thus, the efficiency of the α effect depends on how helical the
turbulence is and on the amount of scale separation available.
A so-called α2 dynamo is possible when Cα exceeds a critical
value of the order of unity.

Often Cα is too small, and then the presence of shear can
help us to produce large-scale dynamo action. We assume that
the shear is a significant fraction, q = ��/�, of the mean
angular velocity � which, in turn, is often expressed as the
Coriolis number, Co = 2�/urmskf . We may then estimate

C� ≈ 3
2q Co (kf/km)2. (110)

A large-scale dynamo of α� type is excited when the product
CαC� exceeds another critical value which is also of the order
of unity. For a homogeneous dynamo, the critical value of
CαC� for plane wave solutions is 2.

In conclusion, we see that the possibility of large-scale
dynamo action depends critically on the scale separation ratio,
kf/km. It is therefore important that the domain is big enough to
contain a significant number of turbulent eddies. Simulations
have now confirmed the possibility of large-scale dynamo
action in cases of forced turbulence, convective turbulence and
for turbulence driven in turn by magnetic fields through the
magneto-rotational instability.

7.3. Lambda effect

An effect somewhat analogous to the α effect is the � effect.
It parametrizes the dependence of the Reynolds stress on the
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mean angular velocity [331, 332] as

uiuj = �ijk�k + Nijkl

∂Uk

∂xl

, (111)

where � = Uφ/(r sin θ) is the local angular velocity (not
the �0 used earlier in connection with the transformation
to a rigidly rotating frame of reference). The second term
in equation (111) is just the tensorial form of the turbulent
viscosity; see equation (100). The first one exists already in the
presence of uniform rotation. It is this term, balanced against
the resulting turbulent viscosity term, that drives and maintains
non-uniformity in the mean angular velocity [333–335]. There
are two important contributions to the � effect, a vertical and
a horizontal one that quantify the rφ and θφ components of
the Reynolds stress, respectively. In particular, we have, in
spherical coordinates, (r, θ, φ),

�ijk�k =
0 0 V sin θ

0 0 H cos θ

V sin θ H cos θ 0

 . (112)

Here, V and H are functions of r and θ that depend on the
anisotropy of the turbulence. Using the first-order smoothing
approximation one finds [331, 332]

V = τ(u2
φ − u2

r ), (113)

H = τ(u2
φ − u2

θ ). (114)

For small turbulent Taylor numbers, Taturb = 〈2�R2/νt〉2, one
finds for H = 0 and V �= 0 that the � contours are purely
radial, while for V = 0 and H �= 0 the � contours are purely
spoke-like. For V = νt(sin2 θ − 1) and H = νt sin2 θ one
finds disk-shaped � contours. For V = νt(

5
4 sin2 θ − 1)

and H = 5
4νt sin2 θ one finds approximately spoke-like

contours. However, those contours can change significantly
with increasing values of Taturb, which leads to the development
of cylindrical � contours. This is explained by the Taylor–
Proudman theorem, as will be explained below.

The development of differential rotation is well
established and is routinely seen in direct simulations of
convective turbulence in rotating shells [55, 336, 337]. The
existence of the � effect has been verified in local Cartesian
simulations and the magnitude and spatial dependence have
been determined [338]. Solutions of the equations for U

have shown differential rotation roughly similar to what is
found for the Sun using helioseismology. However, both DNS
and solutions of the mean-field equations show a tendency
toward � contours being constant along cylinders, which is
not the case in the Sun. The cylindrical contours are the result
of a feedback from the production of meridional circulation
modifying the angular velocity contours. This leads to an
approximate geostrophic balance, where

U · ∇U + ρ −1∇p = 0. (115)

In the barotropic case, when ∇T and ∇s are parallel
to each other, taking the curl of equation (115) yields

∇ × (U · ∇U) = 0. Assuming that the mean flow is purely
toroidal, i.e. U = (0, 0,�r sin θ), we have

r sin θ
∂�

2

∂z
= 0. (116)

So, if viscous and inertial terms are small, which is indeed the
case for rapid rotation, then ∂�

2
/∂z must be small, so � would

be constant along cylinders [333]. This is also what is seen in
mean-field models with � effect [339, 340].

It is generally believed that the main reason for � not
having cylindrical contours in the Sun is connected with
the presence of the baroclinic term [123, 333]. The highest
resolution simulations available today produce � contours
that are still too close to being constant along cylinders
[55, 57, 121, 341–344]. These simulations do not quite reach
the solar surface, so they cannot show the near-surface shear
layer where the rotation rate drops by more than 20 nHz over
the last 30 Mm just below the surface. Nevertheless, these
simulations reproduce some important features of the Sun’s
differential rotation such as a more rapidly spinning equator.

Mean-field simulations using the � effect show
surprisingly good agreement with the helioseismologically
inferred � pattern [340, 345], and they are also beginning to
reproduce the near-surface shear layer; see figure 25. In these
models it is indeed the baroclinic term that is responsible for
causing the departure from cylindrical contours. This, in turn,
is caused by an anisotropy of the turbulent heat conductivity
which causes a slight enhancement in temperature and specific
entropy at the poles. In the bulk of the convection zone the
specific entropy is nearly constant while the temperature varies
significantly in the vertical direction. It is therefore primarily
the latitudinal specific entropy variation that determines the
baroclinic term. This can be demonstrated by focusing on the
contribution from the radial temperature and the latitudinal
specific entropy gradients; see equations (49) and (53), i.e.

r sin θ
∂�

2

∂z
≈ −φ̂ · ∇T × ∇s ≈ −1

r

∂T

∂r

∂s

∂θ
< 0. (117)

The inequality shows that negative values of ∂�
2
/∂z require

that the pole is slightly warmer than the equator (∂s/∂θ < 0).
However, this effect is so weak that it cannot at present be
observed. Allowing for these conditions in a simulation may
require particular care in the treatment of the outer boundary
conditions, or perhaps at the bottom of the convection zone
in the tachocline. Given that the turbulent convective flux is
proportional to −χij∇j s, a negative ∂s/∂θ can be produced
from a positive enthalpy flux with a positive value of χrθ .
This is indeed compatible with theory that predicts a rotational
influence on the turbulence which makes χij anisotropic
[317, 346]. One expects

χij = χtδij + χ�εijk�
(0)
k + χ���

(0)
i �

(0)
j , (118)

where we have used superscripts (0) interchangeably with
subscripts 0 to denote the rotation vector in a rotating
frame of reference. In spherical polar coordinates we have
Ω0 = (cos θ, − sin θ, 0), so χrθ = −χ�� sin θ cos θ �2

0.
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Figure 25. Contours (left) and radial profiles (right) of differential rotation in a model of the Sun. Note the presence of radial deceleration
near the surface layers (fractional radius above 0.9). Adapted from [340].

Simulations confirm that χ�� is negative, but only when the
scale of the mean field is comparable to that of the fluctuating
velocity field [317], which is somewhat unexpected. An
alternative idea was advanced by Rempel [347], who was
able to reproduce solar-like � contours by imposing a suitable
latitudinal s variation at the bottom of the convection zone.

In the discussion above we ignored in the last step
the correlation between specific entropy and temperature
fluctuations, i.e. a contribution from the term ∇T ′ × ∇s ′
where primes denote fluctuations. Such correlations, if of
suitable sign, might provide yet another explanation for a non-

zero value of ∂�
2
/∂z.

It is in principle also possible that the differential rotation
could entirely be driven by the baroclinic term [348, 349].
However, quantitative calculations showed that this effect on
its own would be too small [332, 350].

7.4. Turbulent transport coefficients from simulations

In the past few years significant progress has been made in
determining tensor components such as κij , αij and ηijk from
local turbulence simulations. The recommended approach is
what is referred to as the test-field method [351, 352]. This
method is not to be confused with the test-field model that was
introduced by Kraichnan [353] as a closure approach.

In the test-field method one solves numerically the
evolution equation (92) for the fluctuations of the passive scalar
concentration c, or a corresponding equation for fluctuations
of the magnetic field b to obtain the magnetic transport
coefficients. These equations are inhomogeneous in c or b and
have terms of the form ∇ · (uC) or ∇ × (u × B). Here the
mean fields C and B are now replaced by test fields. The best
studied cases are for periodic boundary conditions and then
the test fields are taken to be C

cx = cos kx or C
sx = sin kx,

and similarly for the y and z directions. For each test field one
evaluates the corresponding flux, ujcpq , and computes

κij = −〈cos kxjF
js

i − sin kxjF
jc

i 〉/k, (119)

for i, j = x, y, z. Here, angular brackets denote volume
averages. Using this method it has now been possible to

compute the dependence of the coefficients κt , κ� and κ��

in an equation analogous to equation (118), where χ has been
replaced by κ . A similar equation can also be written down for
the case where the anisotropy is caused by an applied magnetic
field.

In the presence of a linear shear flow with Ui,j = const,
it has proved advantageous to express κij in terms of the
tensors Sij = 1

2 (Ui,j + Uj,i) and Aij = 1
2 (Ui,j − Uj,i). The

corresponding representation of κij has been found to be of the
form

κij = κtδij + κSSij + κAAij + κSS(S S)ij + κAS(A S)ij . (120)

There are indications that, in addition toκt , only the coefficients
κS and κSS are important, while κA and κAS are either small or
become small at larger Peclet number [354].

The test-field method also allows one to compute turbulent
transport coefficients where the assumption of scale separation
is not obeyed, or where the mean quantities vary on time
scales comparable to the turnover time of the turbulence.
In those cases we have to replace the multiplications in
equations (100)–(102) by convolutions with integral kernels
of the corresponding transport coefficients, e.g.

uic(x, t) = −
∫

κ
(c)
t (x, x′, t, t ′)

∂C(x′, t ′)
∂x ′

i

d3x ′ dt ′, (121)

and likewise for the other equations. If the system is
homogeneous and statistically stationary, the kernels depend
only on the differences x − x′ and t − t ′. In such cases the
convolution in real space becomes a multiplication in Fourier
space. The test-field method yields directly the Fourier-
transformed kernels if the test fields consist of sine and cosine
functions [316], and if they are made time-dependent [355].
By changing the wavenumber and/or the frequency of the test
fields one can then obtain the full wavenumber and frequency
dependence of the Fourier-transformed kernel functions that
enables one to compute the kernels in real space via Fourier
transformation.

It turns out that, for a range of quite different physical
circumstances, the k dependence can well be fitted to the
form of a Lorentzian proportional to [1 + (ak/kf)

2]−1, where
a is a fit parameter of the order of unity. The frequency
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dependence can be fitted to a function whose Fourier transform
corresponds to a multiplicative contribution to the kernel of the
form e−t/τ cos ω0t , where ω0 and τ−1 are fit parameters that
are of the order of the inverse turnover time, urmskf .

This type of analysis has been carried out both for turbulent
transport coefficients of both passive scalars and magnetic
fields. In the magnetic case there is, in addition to the
turbulent magnetic diffusivity tensor, also the α tensor [267].
Using test fields proportional to sine and cosine functions, one
can compute α and ηt simultaneously. It turns out that in
the kinematic regime α and ηt reach asymptotic values for
ReM > 1 where α ≈ α0 and ηt ≈ ηt0 with [356]

α0 = 1
3τ 〈ω · u〉, ηt0 = 1

3τ 〈u2〉,
where τ = (urmskf)

−1. (122)

Both show similar behavior as far as their wavenumber and
frequency dependence is concerned [357].

Anisotropies of the flow yield anisotropies in the α and η

tensors. In addition, since the magnetic field is an active vector,
it backreacts on the flow and makes it anisotropic even if it was
otherwise isotropic. It turns out that the α and η tensors are of
the form

αij = α1δij + α2B̂iB̂j , ηij = η1δij + η2B̂iB̂j , (123)

where we have assumed that only the unit vector of the mean
field, B̂ = B/|B|, is crucial. Simulations with the test-field
method have revealed that in the quenched state α1 and α2 have
opposite sign [358]. The test-field method has been used to
compute the dependence of ηt and ηt on ReM in the nonlinearly
saturated state for B ∼ Beq, where Beq is the field strength
where magnetic and kinetic energies are in equilibrium. It
turns out that at large ReM the effects of α and ηt tend to
balance each other. Furthermore, ηt does not show a sharp
decline like Re−1

M , as would be the case in two dimensions,
but, even though ReM is already around 600, there remains a
weak decrease of ηt , without any obvious indications that this
trend might level off (figure 26).

When the α and η tensors are multiplied by B, the result
is [358]

αijBj − µ0ηijJ j = (α1 + α2 − η2km)Bi − η1µ0J i, (124)

where km = µ0J · B/B
2

is an effective wavenumber of
the mean field. This shows that the tensorial nature of α

is unimportant in this context. However, this changes when
considering passive vector equations that are equivalent to
the induction equation, with a passive vector field B̃ that is
similar to the actual magnetic field, but it has no effect on
the motions. Such a passive vector field can display dynamo
action and can continue to grow even when the underlying
velocity field corresponds to that of a nonlinearly saturated
dynamo. This phenomenon was first observed for turbulent
convective dynamos [359] and then confirmed for laminar
dynamos generating a mean field that is an eigenvector of the
matrix B̂iB̂j with vanishing eigenvalue. Thus, given that α2/α1

is negative, such fields remain unquenched for a velocity field
or an α tensor that corresponds to a saturated dynamo [360].

Figure 26. ReM -dependence of α and η̃t . Both curves are
normalized by α0. Adapted from [358].

8. Concluding remarks

Over the past few decades hydrodynamic and magnetohydro-
dynamic simulations have become a frequently used tool in
astrophysics research. This trend is surely going to continue.
As an example of the importance of turbulence considerations
we mention here the well-established field of stellar structure,
which has recently been the subject of intense debate, because
fits to three-dimensional time-dependent turbulent model
atmospheres have led (mostly due to non-3D effects!) to a
significantly lower estimate of the solar abundance of heavier
elements. Although this issue is not yet settled, it is clear that
the results from three-dimensional turbulence simulations will
continue to provide valuable input to the debate.

Even the radially symmetric (one-dimensional) models of
stellar interiors are bound to be soon superseded or amended
by higher-dimensional models. Clearly, the vast range of time
and length scales between those of turbulent convection of
stars and those of stellar structure and evolution necessitate
a proper understanding of the collective or mean-field effects
that are controlled by various correlators discussed in section 7.
Obviously, we were only able to expose a small part of the
many recent developments in this field. Quite frequently
astrophysical turbulence involves magnetic fields, and often
many more ingredients such as dust, chemicals, cosmic rays
and coupling to radiation. Instead of simply neglecting such
additional features, one may attempt to incorporate them into
stellar evolution models using a mean-field approach. The
transport properties depend on rotation, shear and magnetic
field in ways that are reasonably well understood now. This
is important, for example, in understanding the dependence
of the lithium abundance of young stars on their rotation rate
[361, 362].

Astrophysical turbulence concerns usually extreme
parameter regimes: large Reynolds and/or Mach numbers, very
large or very small Prandtl numbers, as well as extreme density
and temperature contrasts. This motivates thorough studies
of turbulence in regimes that are not otherwise addressed.
This can either provide broader support for certain turbulence
theories, or it can more clearly highlight problems that
would be otherwise overlooked. In this sense astrophysical
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turbulence research is not just the application of regular
turbulence theory, but it can also provide complementary
insights of broader relevance also for other research fields.

One of the aspects where astrophysical turbulence
encounters an as yet unsettled issue is the question how
compressibility really enters the theory. We have seen some
ambiguity in the proper definition of the kinetic energy where,
empirically, the spectrum of ρ1/3u appears to be closest to the
case of incompressible turbulence. There are several related
issues in the context of mean-field theory. For example,
the equation for the magnetic α effect in equation (107)
contains a ρ factor, but since this equation was derived
for the compressible case, it is not clear whether ρ should
enter inside or outside the average of j · b when ρ is
non-uniform or strongly fluctuating. Another occurrence of
compressibility effects could be in the relation between the
enthalpy flux and the specific entropy gradient. Finally, let
us also mention here the issue of the baroclinic term, which
can be important in the production of vorticity and shaping the
form of the differential rotation contours in the Sun. There
could potentially be systematic corrections resulting from the
fluctuations of specific entropy and temperature. This and
other effects might be responsible for causing a departure from
cylindrical Taylor–Proudman contours of �(r, θ) in the Sun.

There are several other quadratic correlation functions that
need to be modeled more accurately. One is the current helicity
flux involving terms of the form E × J , for example. Other
examples include Reynolds and Maxwell stresses and their
dependence not only on the mean velocity, as discussed above,
but also on the magnetic field. This quadratic nonlinearity
means that the standard test-field method cannot be used, but
possibly some kind of modification of it might work.
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