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ABSTRACT

Magnetic helicity has risen to be a major player in dynamo theory, with the helicity of the small-scale field being
linked to the dynamo saturation process for the large-scale field. It is a nearly conserved quantity, which allows
its evolution equation to be written in terms of production and flux terms. The flux term can be decomposed in a
variety of fashions. One particular contribution that has been expected to play a significant role in dynamos in the
presence of mean shear was isolated by Vishniac & Cho. Magnetic helicity fluxes are explicitly gauge dependent
however, and the correlations that have come to be called the Vishniac–Cho flux were determined in the Coulomb
gauge, which turns out to be fraught with complications in shearing systems. While the fluxes of small-scale helicity
are explicitly gauge dependent, their divergences can be gauge independent. We use this property to investigate
magnetic helicity fluxes of the small-scale field through direct numerical simulations in a shearing-box system and
find that in a numerically usable gauge the divergence of the small-scale helicity flux vanishes, while the divergence
of the Vishniac–Cho flux remains finite. We attribute this seeming contradiction to the existence of horizontal fluxes
of small-scale magnetic helicity with finite divergences.
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1. INTRODUCTION

The large-scale magnetic field of the Sun and other stars is
often modeled using mean-field theory (Rüdiger & Hollerbach
2004). Important ingredients in this theory are the α effect re-
sponsible for field amplification and an enhanced (turbulent)
magnetic diffusivity (Moffatt 1978; Krause & Rädler 1980).
Once the field has reached appreciable field strength, these ef-
fects become modified through the backreaction of the Lorentz
force. Often a simple algebraic quenching formula is assumed,
but such a simple prescription is unable to model correctly the
quenching under more general conditions with shear (Branden-
burg et al. 2001) or boundaries (Brandenburg & Dobler 2001).

Over the past decade, significant progress has been made in
modeling the dynamo saturation process in mean-field models
through the development and use of the dynamical α quenching
methodology. This methodology (originally due to Kleeorin
& Ruzmaikin 1982) has explained several puzzling features
of MHD dynamos, such as the slow saturation phase of a
homogeneous α2 dynamo (Field & Blackman 2002; Blackman
& Brandenburg 2002), and has reposed the crucial question
of catastrophic α quenching (see Brandenburg & Subramanian
2005a for a review). In this picture, the saturation of the dynamo
is caused by the buildup of magnetic helicity, which is nearly
conserved in the high conductivity limit in the absence of
fluxes. This raises the possibility of speeding up the saturation
process and reaching significant saturation field strength through
mechanisms that export or destroy magnetic helicity.

Making general use of the dynamical α quenching methodol-
ogy in open systems then requires an understanding of magnetic
helicity fluxes, more significantly an understanding of the fluxes
of magnetic helicity of the small-scale field. In the following,
we often refer to such fluxes as small-scale magnetic helicity
fluxes, although this is not quite accurate, because it is itself a
mean quantity and not a fluctuation. Recent work has shown
that in inhomogeneous systems there is a turbulent diffusive

flux of small-scale helicity, at least in the absence of shear, al-
though the diffusion coefficient is in some cases smaller than
expected (Mitra et al. 2010; Hubbard & Brandenburg 2010).
Consideration of that flux term has allowed mean-field models
to capture the saturation behavior of some non-triply periodic,
non-homogeneous dynamos without shear. Unfortunately, the
fluxes of small-scale magnetic helicity are explicitly gauge de-
pendent, and in the presence of turbulence, can be decomposed
in different fashions.

In Vishniac & Cho (2001), an interesting component of the
flux of small-scale helicity was isolated. This component has
been named the Vishniac–Cho flux, henceforth the VC flux. In
later work (Subramanian & Brandenburg 2004; Brandenburg
& Subramanian 2005b), the form of this flux in the presence
of uniform shear was calculated, and found to be both simple
and of significant magnitude. Shear drives an Ω effect and is
an important and nearly omnipresent player in astrophysical
dynamos, so the VC flux has seen significant interest, both
in mean-field modeling (Brandenburg & Subramanian 2005b)
and in the interpretation of the differences between similar
direct numerical simulations with differing boundary conditions
(Brandenburg 2005; Käpylä et al. 2008). It is important to realize
however that shear poses unique difficulties in the formulation,
and importantly, interpretation, of magnetic helicity fluxes. It is
the goal of this paper to explore those difficulties and determine
the significance of the VC flux. We use the perhaps surprising
result that while magnetic helicity fluxes are gauge dependent,
their divergences may not be across broad gauge families (Mitra
et al. 2010) to allow us to compare the VC flux with the small-
scale magnetic helicity flux in a gauge where the mean shear
is easy to treat. Our investigations will bear weight on the
interpretation and use of the VC flux, but we will not and indeed
cannot extract the VC flux from the simulations we perform.

In Section 2, we discuss the various contributions to the
magnetic helicity flux and define our mean-field decomposi-
tion. Further, we explain the broad gauge independence of
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small-scale magnetic helicity flux divergences. In Section 3,
we sketch the difficulties inherent in uniform shear, define the
shearing-advective gauge, and derive the small-scale magnetic
helicity flux in that gauge. In Section 4, we discuss the VC flux
as calculated in Subramanian & Brandenburg (2004) and Bran-
denburg & Subramanian (2005b). In Section 5, we present the
results of our direct numerical simulations and compare the re-
sults with the VC flux. We discuss the significance of our results
in Section 6 and conclude in Section 7.

2. MAGNETIC HELICITY FLUX AND FORMALISM

We begin by deriving the formula for magnetic helicity fluxes
in general. The MHD equations for the magnetic field are

B = ∇ × A, (1)

J = ∇ × B/μ0, (2)

E = −U × B + ημ0 J, (3)

∂ A
∂t

= −E − ∇Φ, (4)

where η is the molecular resistivity, μ0 is the vacuum perme-
ability, and Φ is the electrostatic or scalar potential that de-
termines our gauge. For example, setting Φ = 0 results in
the Weyl gauge, of interest numerically because it simplifies
Equation (4), while a solution of Equation (4) with ∇2Φ =
−∇ · E will have constant ∇ · A and with an appropriate initial
condition on A results in the Coulomb gauge.

The time evolution of the magnetic helicity density h ≡ A · B
is then given by

∂h

∂t
= ∂ A

∂t
· B + A · ∂ B

∂t
= − 2ημ0 J · B − ∇ · (E × A + ΦB) . (5)

The flux FΦ of magnetic helicity in a given gauge with a
corresponding Φ can be read out of Equation (5):

FΦ = E × A + ΦB = − (U × B) × A + ΦB + ημ0 J × A
= hU + (Φ − U · A)B + ημ0 J × A. (6)

In Equation (6), we recognize the advective flux Fadv ≡ hU , a
resistive flux Fres ≡ ημ0 J × A, and finally a dynamical flux,

Fdyn ≡ (Φ − U · A)B. (7)

The formula for Fdyn leads us to consider “advective” gauges of
the form Φ ≡ U ′ · A, where U ′ is one component of the velocity
field, see Section 3.1.

2.1. Mean-field Decomposition

We proceed to a mean-field decomposition of the magnetic
helicity flux. We denote general averaging schemes by overbars.
Fluctuating terms will be denoted by lower cases or primes:

A = A + a, A · B = A · B + (A · B)′ . (8)

The mean-field decomposition of Equations (4) and (5) yields

∂ A
∂t

= U × B + E − ημ0 J − ∇Φ, (9)

where E ≡ u × b and

∂h

∂t
= −2ημ0 J · B − ∇ · E × A − ∇ · ΦB. (10)

The latter can be written as

∂h

∂t
= ∂hm

∂t
+

∂hf

∂t
, (11)

where h = hm + hf , with hm ≡ A · B being the helicity in the
large-scale fields and hf ≡ a · b the helicity in the small-scale
fields.

The evolution equations for these helicities are

∂hm

∂t
= +2E · B − 2ημ0 J · B − ∇ ·(E × A + ΦB), (12)

∂hf

∂t
= −2E · B − 2ημ0 j · b − ∇ ·(e × a + φb), (13)

where φ = Φ − Φ is the fluctuating scalar potential and

E = αB − ηtμ0 J (14)

is the mean turbulent electromotive force, where α is the α effect
and ηt is the turbulent magnetic diffusivity. From Equations (12)
and (13) we find the fluxes of the large-scale and small-scale
fields:

Fm = E × A + ΦB, (15)

Ff = e × a + φb. (16)

2.2. The Significance of Gauges for Magnetic Helicity Fluxes

It is clear from the form of Fdyn in Equation (7) that any
consideration of helicity fluxes must also take into account the
gauge choice, as at any point where Fdyn �= 0, the value of
Fdyn can be arbitrarily set by the gauge or, equivalently, the
condition for Fdyn being independent of Φ is that Fdyn = 0 for
all gauges. A gauge choice that generates a desired flux along
x̂ is always possible provided B · x̂ �= 0. Such a gauge takes
the form Φ(x, t) = f (x, t)Bx . Recall also that boundary or
symmetry conditions on the physical system do not apply to the
vector potential or the gauge (although numerical simulations
may require gauge choices where they do). The ability to add an
arbitrary flux of magnetic helicity to the system via the addition
of a new gauge makes the isolation of differing components of
the flux a risky business.

There are effects that mitigate this gauge dependence how-
ever. The divergence of Ff and the term ∂h/∂t are the only
gauge-dependent terms in Equation (13). If hf is indeed gauge
independent then the divergence of Ff must be gauge indepen-
dent as well, even though the flux itself is explicit gauge depen-
dent. Clearly the divergence of Ff is the same for all gauges for
which ∂thf is the same. As long as our shearing box has a time-
constant hf in the saturated regime, we can make statements
about the divergence of Ff for all gauges which would have a
time-constant saturated hf .

The dynamical α quenching methodology, one of the pri-
mary consumers of magnetic helicity information, assumes that
the small-scale magnetic helicity hf and the small-scale current
helicity j · b are proportional. This requirement is often used
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as an argument in favor of the Coulomb gauge (Kleeorin &
Rogachevskii 1999). Even if the saturated current helicity is not
time independent (as might be the case for an oscillating solu-
tion), as the current helicity is gauge independent, the validity of
the dynamic α quenching methodology assumes therefore that
the former is as well. Recent studies have supported this hypoth-
esis (Mitra et al. 2010; Hubbard & Brandenburg 2010), at least
in the limits of numerical simulations, which disallow extreme
levels of gauge pathology by forcing the vector potential to be
numerically resolved. (This will be discussed in more detail in
a separate paper where we solve an evolution equation for the
gauge transformation.) Alternatively, one could restrict oneself
to families of gauges where the relation holds. We note that, in
that regard, both the magnetic and current helicities are shearing
periodic in our system in the shearing-advective gauge that will
be described later, while in the Weyl gauge the magnetic helicity
is not.

3. SHEAR

The presence of shear poses further difficulties when consid-
ering magnetic helicity fluxes. To see this, consider a shearing
periodic box with an imposed flow, US = (0, Sx, 0), and sides
of length L centered on the origin. We will use the Weyl gauge
(Φ = 0) and a planar averaging scheme:

B(x, y, z, t) ≡ L−2
∫ L/2

−L/2

∫ L/2

−L/2
dx ′dy ′ B(x ′, y ′, z, t). (17)

In what follows, we will assume that the shear flow is the
only large-scale velocity, and note that it averages to 0 and
so technically is a fluctuating field. This could in principle be
avoided under a local planar average over a square centered on
(x, y) for example (Brandenburg et al. 2008). However, such
an average is problematic too, because it does not obey one of
the Reynolds averaging rules: the average of a product of an
average and a fluctuation does not vanish. Nevertheless, even
though uniform shear can complicate averaging schemes, it is
easier to treat than non-uniform shear with the resulting non-
uniform Ω effect. We therefore proceed with our standard (non-
sliding) averaging scheme. We will also assume that, at the
single instant in time that we consider, the vector potential A
is shearing periodic as well. Note that in the Weyl gauge, the
vector potential will not remain shearing periodic. Numerical
simulations in the shearing box approximation use therefore a
different gauge (Brandenburg et al. 1995), as will be discussed
below.

The difficulty in treating the helicity flux can be seen from
Equation (6) which, in the Weyl gauge, becomes

F = hUS − (US · A)B + hu − (u · A)B + ημ0 J × A. (18)

If A were shearing periodic, the last three terms of
Equation (18) would be likewise shearing periodic and hence
would not contribute a net divergence to the system. However,
the first two terms on the right-hand side of Equation (18) vio-
late shearing periodicity. In particular, the x-component of the
second term on the right-hand side of Equation (18) reduces to

Fx = −(US · A)Bx + · · · = −SxAyBx + · · · , (19)

where the dropped terms cannot contribute a net divergence.
Recall that, at first, AyBx would here still be shearing peri-
odic. Systems with shearing-periodic magnetic vector potentials
would then allow for a horizontal flux of magnetic helicity.

3.1. Helicity Fluxes in Advective Gauges

To examine the VC flux numerically, we adopt a homoge-
neous shearing-periodic setup. (The resulting magnetic field will
however become inhomogeneous and could produce finite mag-
netic helicity fluxes and flux divergences.) As discussed above,
to keep the magnetic vector potential itself shearing periodic
we must use an appropriate gauge, namely Φ = US · A, which
we term “shearing advective.” This is also the gauge used by
Brandenburg et al. (1995). More generally, we can define a fam-
ily of “advective gauges” with ΦA = UA · A, for a component
of the velocity UA, with the corresponding UNA = U − UA.
The name “advective” is chosen because in this gauge the ef-
fect of UA on the helicity flux is advective as can be seen from
Equation (6), which becomes

EA = −UNA × B + ημ0 J, (20)

FΦ = hUA + (EA × A). (21)

If UA is a mean flow (UA = UA), then the mean flux of the
small-scale helicity becomes

Ff = hfUA + eA × a. (22)

Alternatively, if UA is not a mean flow (UA = 0), then we have

Ff = h′
fU

′
A + eA × a. (23)

For our system, with UA = US , eA, a, and b are all shearing
periodic, and so their mean values, as well as all other mean
values, are functions of z alone. Correspondingly, only the
z-component of Ff can have a finite divergence, and we have
eliminated the worry of horizontal magnetic helicity fluxes.
Further, to the extent that the system is homogeneous, and
invariant under a 180◦ rotation about the z-axis, the horizontal
fluxes vanish entirely except for the advective flux due to the
shear flow.

4. THE VISHNIAC–CHO FLUX WITH MEAN SHEAR

The VC flux, FVC, has been calculated in several places
using the first-order smoothing approximation and later the τ
approximation. Their applicability to highly turbulent systems
with large magnetic Reynolds numbers cannot be guaranteed
and is subject to verification by numerical simulations, although
it should work in cases of small magnetic Reynolds numbers
considered in this paper. This flux was originally calculated
in the Coulomb gauge, but it can be calculated in a related
gauge in which the magnetic helicity density corresponds to
a density of magnetic linkages (Subramanian & Brandenburg
2006). It is most interesting in the case of shear, and we will
restrict ourselves to the consideration of uniform shear which, as
noted above, raises concerns about horizontal fluxes with finite
divergence. In this system, FVC was calculated in the appendix
of Brandenburg & Subramanian (2005b) to be

FVC = CVC
S ẑ

2k2
f

(
B

2
x − B

2
y

)
, (24)

where CVC is a coefficient expected to be of order unity and kf
is the wavenumber of the energy-carrying eddies. As alluded
to in Section 2.2, we assume here that the current helicity is
proportional to k2

f times the magnetic helicity density. There
are other components of the magnetic helicity flux known,
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for example the term in Equation (19) can be found in the
Fbulk of Subramanian & Brandenburg (2006), and, as noted in
Section 2.2, the interesting value is the divergence of the total
of all fluxes, which might pick up contributions from the
x-component of the flux.

While the VC flux is of pressing interest to mean-field dynamo
theory and it has been invoked in the interpretation of numerical
simulations (Käpylä et al. 2008), the work on its implications
in mean-field theory is not well developed. In Section 5.2, we
present a brief mean-field analysis of the effects of a VC flux in
our shearing-sheet system using (24), and compare those results
to the work of Guerrero et al. (2010) in spherical shells.

5. MODEL CALCULATIONS

5.1. Preliminary Considerations

In order to quantify shear-driven magnetic helicity fluxes,
we consider the shearing box approximation (Wisdom &
Tremaine 1988) with periodic boundary conditions in the y- and
z-directions and shearing-periodic boundary conditions in the
x-direction. According to Equation (24) we expect a magnetic
helicity flux in the z-direction. However, because our system is
periodic in the z-direction, there will be no net magnetic helicity
flux in or out of the domain. Nevertheless, the local divergence
of FVC should be finite because, contrary to homogeneous α2

dynamos without shear, B
2
x − B

2
y is in general z-dependent for

αΩ dynamos. Indeed, the mean field that develops is a reason-
able approximation to an αΩ dynamo, where |S| > |αkz|. The
marginally excited kinematic solution of a mean-field αΩ dy-
namo is a traveling wave (see, e.g., Brandenburg & Sokoloff
2002), i.e.,

B = B0

(
sin θ,

√
2

∣∣∣ c

α

∣∣∣ sin(θ + χ ), 0
)

(25)

with

c = ±
∣∣∣∣ αS

2kz

∣∣∣∣
1/2

= ±ηT kz, θ = kz(z − ct), χ = ∓3

4
π,

(26)
where the sign in front of c is given by the sign of the product
αS and B0 is an undetermined amplitude factor. Note that the
magnetic helicity of this large-scale field, hm = |c/α|k−1

z B2
0 , is

independent of z for the “natural” vector potential

A = k−1
z B0

(
−

√
2

∣∣∣ c

α

∣∣∣ cos(θ + χ ), cos θ, 0
)

. (27)

The point of this discussion is to emphasize that even for an
initially homogeneous system, Equation (4) would predict the
appearance of a magnetic helicity flux. This flux would lead
to the annihilation of magnetic helicity fluctuations of opposite
sign—even if such fluctuations were not present initially. The
effect of such fluxes can be predicted by mean-field models with
catastrophic quenching included (Brandenburg et al. 2009). As
we will show in the next section, the VC flux has actually an
adverse effect on the saturation behavior, and that only fluxes
with the opposite sign are able to accelerate the saturation of the
mean field.

5.2. Mean-field Model with Diffusive and VC Fluxes

To demonstrate the difference between mean-field predic-
tions with and without the presence of a VC flux that is not

compensated for by other fluxes we use a mean-field dynamical
α quenching model (Kleeorin & Ruzmaikin 1982; Blackman &
Brandenburg 2002; Brandenburg et al. 2009). This methodology
combines the dynamical α quenching equations

α(z, t) = αK + αM, αM = ηtk
2
f

hf

B2
eq

, (28)

∂αM

∂t
= −2ηtk

2
f

(
E · B
B2

eq

+
αM

ReM

)
− ∇ · Fα, (29)

with the standard mean-field equation (in the shearing-advective
gauge with U = 0):

∂ A
∂t

= −SAy x̂ + E − ημ0 J, (30)

where the E is given by Equation (14).
We test diffusive and VC fluxes, setting

Fα = ηtk
2
f

B2
eq

(
FVC − κα∇hf

)
. (31)

We measure the strength of the kinetic α effect αK and the shear
S with the dynamo numbers

Cα ≡ αK

ηtk1
	 kf

k1
, CS ≡ S

ηtk
2
1

, (32)

where k1 = 2π/Lz is the minimal wavenumber of the domain
in the z-direction. Note that αK is assumed independent of B,
so the kinetic α effect is therefore also a kinematic one.

The results are shown in Figure 1, where we plot the saturation
behavior of models with ηt/η = 103, and dynamo numbers
Cα = −0.2 and CS = −20. The left panel covers four values
of κα/ηt the turbulent diffusion coefficient for hf , with the
VC flux turned off (CVC = 0). The right panel displays the
dynamo behavior for three values of CVC with κα/ηt = 0.2.
Note that in all calculations an early intermediate saturation
level of ≈ 0.15Beq is reached. This is followed by a resistively
slow saturation phase, as was expected from models without
shear (Brandenburg 2001; Blackman & Brandenburg 2002).
In agreement with earlier work, the saturation behavior is
accelerated by diffusive fluxes (Brandenburg et al. 2009). In the
absence of a diffusive flux, κα = 0, the field drops suddenly back
to lower values and continues to oscillate. These oscillations are
eliminated by small values of κα while not significantly affecting
the intermediate saturation behavior if κα = 0.2ηt. Note that for
positive values of CVC, the VC flux actually has an adverse effect
on the saturation behavior and only negative values are able to
accelerate the saturation. This is similar to results for mean-field
dynamo action in spherical shells (Guerrero et al. 2010).

5.3. Simulations of Shear Flow Turbulence

We turn to the computation of magnetic helicity fluxes
through direct numerical simulations. We solve the stochasti-
cally forced isothermal hydromagnetic equations in a generally
cubical domain of size (2π )3 in the presence of a uniform shear
flow, US = (0, Sx, 0), with S = const,

DA
Dt

= −SAy x̂ + U × B + η∇2 A, (33)
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Figure 1. Top: saturation behavior of models with ηt/η = 103, CVC = 0,
Cα = −0.2, and CS = −20, and for κα/ηt ranging from 0 to 1. Bottom: same,
but for CVC ranging from −0.2 to +0.2 and κα/ηt = 0.2.

DU
Dt

= −SUx ŷ − c2
s ∇ ln ρ +

1

ρ
J × B + Fvisc + f , (34)

D ln ρ

Dt
= −∇ · U, (35)

where D/Dt = ∂/∂t + (U + US) · ∇ is the advective derivative
with respect to the total flow velocity that also includes the
shear flow, cs = const is the isothermal sound speed, Fvisc =
ρ−1∇ · (2ρνS) is the viscous force, Sij = 1

2 (Ui,j + Uj,i) −
1
3δij∇ · U is the traceless rate-of-strain tensor, commas denote
partial differentiation, and f is the forcing term. As in earlier
work (Brandenburg 2001), the forcing function consists of plane
polarized waves whose direction and phase change randomly
from one time step to the next. The modulus of its wavevectors
is taken from a band of wavenumbers around a given average
wavenumber that is referred to as kf .

The main control parameters in our simulations are the
magnetic Reynolds and Prandtl numbers, as well as the shear
parameter,

ReM = urms

ηkf
, PrM = ν

η
, Sh = S

urmskf
. (36)

We adopt periodic boundary conditions in the y- and z-directions
and shearing-periodic boundary conditions in the x-direction.
Our initial velocity, in addition to US , is U = 0 and the initial
density is ρ = ρ0 ≡ const, while for the magnetic field we take
a Beltrami field of negative magnetic helicity and low amplitude
(10−7 times the equipartition value). The magnetic field grows
then exponentially owing to dynamo action and saturates when
the field reaches a certain multiple of the equipartition value. We

Figure 2. Panel 1: visualization of hf as a function of normalized t and z−ct for
Run A: kf/k1 = 5, Re = 0.4, ReM = 9, and Sh = 0.95. Here c = 0.6ηt0k1 is
the actual speed of the dynamo wave. Panels 2–4 give the z dependence of hf ,
Bi for i = x, y, and the z-component of Ff , averaged in the comoving frame
over the time of the first panel.

(A color version of this figure is available in the online journal.)

solve the governing equations using the Pencil Code
3 which

is a high-order finite-difference code (sixth order in space and
third order in time) for solving partial differential equations
on massively parallel machines. Our model setup is identical
to that used by Käpylä & Brandenburg (2009), who studied
the frequency of dynamo waves in the saturated regime as
a function of the fractional helicity and thereby the effective
dynamo number and, more importantly, different magnetic field
strengths.

5.4. The VC Flux in Simulations

We focus here on the results of four simulations, with
parameters given in Table 1. Standard estimates suggest that
the two dynamo parameters given in Equation (32) suffice

3 http://pencil-code.googlecode.com/
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Figure 3. Same as Figure 3, but for Run B: kf/k1 = 3, Re = 9, ReM = 90, and
Sh = 0.5. In this case, c = 1.04ηt0k1. The vertical bars in the first panel denote
the time interval over which the functions in the other three panels are averaged.
Note also that after urmskf t ≈ 7800 the dominant dynamo mode changes and
the field becomes x dependent.

(A color version of this figure is available in the online journal.)

Table 1
Summary of the Runs Discussed in This Paper

Run Figure ReM Re Sh Cα = kf/k1 CS Resolution c/ηt0kz

A 2 9 0.4 0.95 5 71 643 0.6
B 3 90 9 0.5 3 14 643 1
C 4 280 19 0.4 3 11 1283 0.5
D 5 7.9 1.6 0.016 20 19 642 × 256 0.24

Note. The wavespeed c is described in Equation (26).

for large-scale dynamo action (CαCS > 2), and also their
ratio, CS/Cα ≈ 3Sh kf/k1, is large enough for oscillatory
dynamo action with significant dynamo wave speeds—even

Figure 4. Same as Figure 3, but for Run C: kf/k1 = 3, Re = 19, ReM = 280,
and Sh = 0.4. The vertical bars in the first panel denote the time interval over
which the functions in the other three panels are averaged.

(A color version of this figure is available in the online journal.)

for Run D, with a ratio of unity (note the finite wavespeed
c = 0.24ηt0kz). Recall that the vertical elongation of Run
D suppresses non-vertical mean-field structures by increasing
the minimum horizontal wavenumber to 4, suppressing any
potential x-varying α2 field.

The magnetic field is normalized to the equipartition value

Beq = (μ0ρ0)1/2urms, (37)

while, as suggested by Equation (24) and Section 5.1, hf and Ff
are normalized to

h0 ≡ k−1
f

(〈
B

2
x

〉〈
B

2
y

〉)1/2
, F0 ≡ k−2

f S〈B2〉. (38)

The brackets represent full volume averaging, here of already
planar-averaged values.
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Figure 5. Same as Figure 3, but for Run D: kf/k1 = 20, Re = 9, ReM = 7.9,
and Sh = 0.016. The domain for this run is π/2 × π/2 × 2π , and the helicity
in the top panel has been multiplied by 10 to achieve dynamic color range. The
vertical bars in the first panel denote the time interval over which the functions
in the other three panels are averaged.

(A color version of this figure is available in the online journal.)

The simulations developed the expected dynamo wave, so
we analyze the data in a comoving frame in which the wave
is standing, allowing us to average in time. In agreement with
earlier work (Mitra et al. 2010; Hubbard & Brandenburg 2010),
the magnetic helicity of the small-scale magnetic field is then
statistically steady and therefore the divergence of the magnetic
helicity flux must be independent of the gauge chosen. Note
that for Run A (Figure 2) the flux is generally quite small (less
than 10−3 times the value expected based on Equation (24)),
except when By = 0 where it shows a small peak. The situation
is different in Runs B and C (Figures 3 and 4), where the flux
is larger but uncorrelated compared to the spatial dependence

expected to be dominated by B
2
y � B

2
x . Finally, note that

for a mean-field wavenumber k = k1 the expected VC flux

would be of wavenumber 2k1, not much smaller than forcing
wavenumbers of 3k1 or 5k1. In Figure 5, we therefore present
the results of Run D with kf = 20k1 in a non-cubic domain with
Lz = 4L. The results are qualitatively similar to Run A which
has a similar ReM .

The significant result to draw from the figures is that the
small-scale flux is both smaller than the expected FVC and
uncorrelated with it. Note that as the y-directed field is much
greater than the x-directed field, as expected, and that the VC
flux is approximately proportional to the square of the By . Thus,
according to our present results we must conclude that there is
no support for the validity of Equation (24).

6. COMPARISON WITH PREVIOUS WORK

We would like to emphasize that our results are not in
contradiction with previous calculations: we are not working
in a gauge where one would expect the VC flux to exist.
Disentangling the differing components (there are four in
Subramanian & Brandenburg 2006, including an unexplored
triple correlator) is not straightforward. In this work, we are
using the gauge independence of the divergence of the flux of
small-scale magnetic helicity, as described in Section 2.2, to
relate the observations in the shearing-advective gauge to the
expected divergence of FVC.

To date, the only numerical evidence for the VC flux comes
from interpretations of the differing dynamo behavior in shear-
ing systems with vertical field boundary conditions (that al-
low a flux) as compared with those systems with perfect con-
ductor boundary conditions that disallow a flux; see Equation
(6). Examples of such indirect evidence include the papers by
Brandenburg (2005) and Käpylä et al. (2008). An alternative
interpretation might simply be that the excitation condition for
the onset of large-scale dynamo action is simply delayed suffi-
ciently when changing the boundary condition from a vertical
field to a perfect conductor condition, as was discussed also
by Käpylä et al. (2010). It should also be noted that the use
of FVC in various dynamical quenching models has not alle-
viated catastrophic quenching unless CVC is increased beyond
a certain limit where the flux divergence leads to a magnetic
α effect that is more important than the kinematic α effect
(Brandenburg & Subramanian 2005b; Guerrero et al. 2010);
see also Section 5.2.

7. CONCLUSIONS

We conclude that there is at present no evidence for a
shear-driven vertical flux of small-scale magnetic helicity in
a gauge where the only significant flux must be vertical. We
speculate that the finite divergence of the VC flux found earlier
in analytic studies using Coulomb and related gauges might
be a consequence of the gauge choice, which can generate
unexpected horizontal helicity fluxes that are not normally
considered. When the gauge choice is such that those horizontal
fluxes are transformed out, there is no remaining vertical flux. It
appears therefore that the VC flux either does not operate, or it
at least does not follow the expected functional form. We note
that diffusive fluxes have been found to exist, so there do remain
mechanisms that can export small-scale magnetic helicity from
a dynamo.

The simultaneous export of large- and small-scale helicity
at some relative level is inevitable (Blackman & Brandenburg
2003) and in fact necessary, because otherwise simple consider-
ations (Brandenburg et al. 2002; Brandenburg & Subramanian
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2005a) have long suggested that the magnetic energy would
reach unrealistically large values. The VC flux was a partic-
ularly promising mechanism to export small-scale magnetic
helicity because it could do so while allowing the system to
retain much of the large-scale dynamo generated field, result-
ing in rapid growth to strong mean fields. Turbulent diffusion
of magnetic helicity is now the most promising escape from
catastrophic α quenching—even for shearing systems. Simula-
tion and theory suggest that this will be significant starting near
ReM = 104 (Mitra et al. 2010; Hubbard & Brandenburg 2010),
which, while astrophysically significant eludes numerical ver-
ification at present. However, diffusive fluxes must inevitably
export scales of helicity at comparable fractional rates, reduc-
ing expected final field strengths below those that might have
been hoped for with the VC flux.
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