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ABSTRACT

Context. Turbulent fluxes of angular momentum and enthalpy or heat due to rotationally affected convection play a key role in
determining differential rotation of stars. Their dependence on latitude and depth has been determined in the past from convection
simulations in Cartesian or spherical simulations. Here we perform a systematic comparison between the two geometries as a function
of the rotation rate.
Aims. Here we want to extend the earlier studies by using spherical wedges to obtain turbulent angular momentum and heat transport
as functions of the rotation rate from stratified convection. We compare results from spherical and Cartesian models in the same
parameter regime in order to study whether restricted geometry introduces artefacts into the results. In particular, we want to clarify
whether the sharp equatorial profile of the horizontal Reynolds stress found in earlier Cartesian models is also reproduced in spherical
geometry.
Methods. We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate
the computational cost in the spherical runs, and to reach as high spatial resolution as possible, we model only parts of the latitude
and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero to roughly
seven, which is the regime that is likely to be realised in the solar convection zone. Cartesian simulations are performed in overlapping
parameter regimes.
Results. For slow rotation we find that the radial and latitudinal turbulent angular momentum fluxes are directed inward and equa-
torward, respectively. In the rapid rotation regime the radial flux changes sign in accordance with earlier numerical results, but in
contradiction with theory. The latitudinal flux remains mostly equatorward and develops a maximum close to the equator. In Cartesian
simulations this peak can be explained by the strong “banana cells”. Their effect in the spherical case does not appear to be as large.
The latitudinal heat flux is mostly equatorward for slow rotation but changes sign for rapid rotation. Longitudinal heat flux is always
in the retrograde direction. The rotation profiles vary from anti-solar (slow equator) for slow and intermediate rotation to solar-like
(fast equator) for rapid rotation. The solar-like profiles are dominated by the Taylor-Proudman balance.
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1. Introduction

The surface of the Sun rotates differentially: the rotation pe-
riod at the poles is roughly 35 days as opposed to 26 days at
the equator. Furthermore, the internal rotation of the Sun has
been revealed by helioseismology (e.g. Thompson et al. 2003):
the radial gradient of Ω is small in the bulk of the convec-
tion zone, whereas regions of strong radial differential rotation
are found near the base and near the surface of the convection
zone. According to dynamo theory, large-scale shear plays an
important role in generating large-scale magnetic fields (e.g.,
Moffatt 1978; Krause & Rädler 1980). More specifically, large-
scale shear lowers the threshold for dynamo action and the com-
bined effect of helical turbulence and shear yields oscillatory
large-scale magnetic fields, resembling the observed solar ac-
tivity pattern (e.g. Yoshimura 1975). It is even possible to drive
a large-scale dynamo in nonhelical turbulence with shear (e.g.,
Brandenburg 2005; Yousef et al. 2008a,b; Brandenburg et al.
2008). Thus, it is of great interest to study the processes that
generate large-scale shear in solar and stellar convection zones.

� Movies and Appendix A are available in electronic form at
http://www.aanda.org

Differential rotation of the Sun and other stars is thought to
be maintained by rotationally influenced turbulence in their con-
vection zones. In hydrodynamic mean-field theories of stellar
interiors the effects of turbulence appear in the form of turbulent
fluxes of angular momentum and enthalpy or heat (cf. Rüdiger
1989; Rüdiger & Hollerbach 2004). These fluxes can be defined
by Reynolds averaging of products of fluctuating quantities, viz.,
the fluxes of angular momentum and heat, respectively, are

Qi j = u′iu
′
j, (1)

Fi = cPρ u′iT ′. (2)

Here overbars denote azimuthal averaging, primes denote fluc-
tuations about the averages, Qi j is the Reynolds stress, Fi is the
turbulent convective energy flux, u is the velocity, T is the tem-
perature, ρ is density, and cP is the specific heat at constant pres-
sure.

Much effort has been put into computing these correlations
using analytical theories (e.g., Rüdiger 1980, 1982; Kitchatinov
& Rüdiger 1993; Kitchatinov et al. 1994). Most of the ana-
lytical studies, however, rely on approximations such as first-
order smoothing, the applicability of which in the stellar envi-
ronments can be contested. In order to get more insight, idealised
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numerical simulations, often working in Cartesian geometry,
have been extensively used to compute the stresses for modestly
large Reynolds numbers (e.g., Pulkkinen et al. 1993; Brummell
et al. 1998; Chan 2001; Käpylä et al. 2004; Rüdiger et al. 2005b).
However, the Cartesian simulations have yielded some puzzling
results, such as the latitudinal angular momentum flux having a
very strong maximum very close to the equator (e.g., Chan 2001;
Hupfer et al. 2005) and a sign change of the corresponding radial
flux (Käpylä et al. 2004). Neither of these effects can be recov-
ered from theoretical studies (Rüdiger & Hollerbach 2004) or
simpler forced turbulence simulations (Käpylä & Brandenburg
2008). The Reynolds stresses have also been computed from
high resolution spherical convection simulations (e.g. DeRosa
et al. 2002; Miesch et al. 2008), but a detailed comparison with
Cartesian results is lacking in the literature.

Rotation also affects the turbulent convective energy trans-
port. In fact, in the presence of rotation, the turbulent heat
transport due to convection is no longer purely radial (e.g.,
Brandenburg et al. 1992; Kitchatinov et al. 1994; Brun &
Rempel 2009). In a sphere, such anisotropic heat transport
leads to latitude-dependent temperature and entropy distribu-
tions. Such variations can be important in determining the rota-
tion profile of the Sun: neglecting the Reynolds stress and molec-
ular diffusion, the evolution of the azimuthal component of vor-
ticity, ω = ∇ × u, is governed by

∂ωφ

∂t
= r sin θ

∂Ω
2

∂z
+

1

ρ2
(∇ρ × ∇p)φ, (3)

where ∂/∂z = Ω̂ · ∇ is the derivative along the unit vector of the
rotation vector, Ω̂ = (cos θ,−sin θ, 0), and p is the pressure. The
last term on the rhs describes the baroclinic term which can be
written as

1

ρ2
(∇ρ × ∇p)φ = (∇T × ∇s)φ ≈ − grcP

∂s
∂θ
, (4)

where g = |g| is the acceleration due to gravity, s is the specific
entropy, and∇T ≈ g/cP has been used for the adiabatic tempera-
ture gradient. In the absence of latitudinal entropy gradients, the
solution of Eq. (3) is given by the Taylor-Proudman theorem, i.e.
∂Ω/∂z = 0. In general, however, the thermodynamics cannot be
neglected and latitudinal gradients of entropy influence the ro-
tation profile of the star via the baroclinic term. Such an effect
is widely considered to be instrumental in breaking the Taylor-
Proudman balance in the solar case (e.g., Rempel 2005; Miesch
et al. 2006). Local simulations can be used to determine the lat-
itudinal heat flux but by virtue of periodic boundaries, no infor-
mation about the latitudinal profile of entropy can be extracted
from a single simulation. Earlier local studies suggest that in the
presence of rotation the latitudinal heat flux is directed towards
the poles (e.g. Rüdiger et al. 2005b) and mean-field models in
spherical geometry indicate that such a flux leads to warm poles
and a cooler equator (e.g. Brandenburg et al. 1992), thus alle-
viating the Taylor-Proudman balance. Computing the turbulent
heat fluxes in spherical geometry in order to compare with ear-
lier results is one of the principal aims of the present study. Of
particular importance is the sign and magnitude of the latitudinal
heat flux.

It is possible that the use of Cartesian geometry and pe-
riodic boundaries give rise to artefacts which are not present
in fully spherical geometry. In the present paper we undertake
the computation of Reynolds stress and turbulent heat transport
from simulations in spherical geometry as functions of rotation,

and compare them with Cartesian simulations of the same sys-
tem located at different latitudes. One of the most important
goals of the paper is to find out whether the present results in
Cartesian geometry compare with early similar studies and to
test if these results are still valid when spherical geometry is
used. Earlier studies comparing spherical and Cartesian mod-
els used limited two-dimensional geometry in the spherical case
Hupfer et al. (2006) whereas we perform all our simulations in
three dimensions. Furthermore, Robinson & Chan (2001) used
spherical wedges to compute the rotation profiles and turbulent
fluxes using two representative runs. Here we explore a signifi-
cantly larger portion of parameter space. As a side result we also
obtain angular velocity profiles as a function of rotation from
our spherical simulations which, however, are dominated by the
Taylor-Proudman balance in the regime most relevant to the Sun.
Thus we fail in reproducing the solar rotation profile which is a
common problem that can currently be overcome only by in-
troducing some additional poorly constrained terms, e.g. a lat-
itudinal entropy gradient, by hand rather than self-consistently
(e.g. Miesch et al. 2006). Another important use for the results
will be the more ambitious future runs where subgrid-scale mod-
els of the turbulent effects can be used to overcome the Taylor-
Proudman balance.

2. Model

Our spherical model is similar to that used by Käpylä et al.
(2010a) but without magnetic fields. We model a segment of a
star, i.e. a “wedge”, in spherical polar coordinates where (r, θ, φ)
denote the radius, colatitude, and longitude. The radial, latitu-
dinal, and longitudinal extents of the computational domain are
given by 0.65R ≤ r ≤ R, θ0 ≤ θ ≤ 180◦ − θ0, and 0 ≤ φ ≤ φ0,
respectively, where R is the radius of the star. In all of our runs
we take θ0 = 15◦ and φ0 = 90◦. We study the dependence of
the results on domain size in Appendix A. In our Cartesian runs,
the coordinates (x, y, z) correspond to radius, latitude and longi-
tude of a box located at a colatitude θ. Our domain spans from
0.65R ≤ x ≤ R, −0.35R ≤ y ≤ 0.35R and −0.35R ≤ z ≤ 0.35R,
i.e., the extension of the horizontal directions is twice the verti-
cal one, as has been used in previous Cartesian simulations (e.g.
Käpylä et al. 2004).

In both geometries, we solve the following equations of com-
pressible hydrodynamics,

Dln ρ
Dt

= −∇ · u, (5)

Du
Dt
= g − 2Ω × u +

1
ρ

(∇ · 2νρS − ∇p) , (6)

Ds
Dt
=

1
ρT

(
∇ · K∇T + 2νS2 − Γcool

)
, (7)

where D/Dt = ∂/∂t + u · ∇ is the advective time derivative, ν is
the kinematic viscosity, K is the radiative heat conductivity, and
g is the gravitational acceleration given by

g = −GM
r2

r̂, (8)

where G is the gravitational constant, M is the mass of the star,
and r̂ is the unit vector in the radial direction. Note that in the
Cartesian case x corresponds to the r direction so that all radial
profiles in spherical coordinates directly apply to the Cartesian
model. We omit the centrifugal force in our models. This is con-
nected with the fact that the Rayleigh number is much less than
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in the Sun, which is unavoidable and constrained by the numer-
ical resolution available. This implies that the Mach number is
larger than in the Sun. Nevertheless, it is essential to have real-
istic Coriolis numbers, i.e. the Coriolis force has to be larger by
the same amount that the turbulent velocity is larger, but without
significantly altering the hydrostatic balance that is determined
by gravity and centrifugal forces.

The fluid obeys the ideal gas law with p = (γ − 1)ρe, where
γ = cP/cV = 5/3 is the ratio of specific heats in constant pressure
and volume, respectively, and e = cVT is the internal energy. The
rate of strain tensor S is given by

Si j =
1
2 (ui; j + u j;i) − 1

3δi j∇ · u, (9)

where the semicolons denote covariant differentiation (see Mitra
et al. 2009, for details).

The computational domain is divided into three parts: a
lower convectively stable layer at the base, convectively unsta-
ble layer and a cooling layer at the top mimicking the effects
of radiative losses at the stellar surface. The radial positions
(r1, r2, r3, r4) = (x1, x2, x3, x4) = (0.65, 0.7, 0.98, 1)R give the
locations of the bottom of the domain, bottom and top of the
convectively unstable layer, and the top of the domain, respec-
tively. The last term on the rhs of Eq. (7) describes cooling in the
surface layer given by

Γcool = Γ0 f (r)

⎛⎜⎜⎜⎜⎝c2
s − c2

s0

c2
s0

⎞⎟⎟⎟⎟⎠ , (10)

where f (r) is a profile function equal to unity in r > r3 and
smoothly connecting to zero below, and Γ0 is a cooling luminos-
ity chosen so that the sound speed in the uppermost layer relaxes
toward c2

s0 = c2
s (r = r4).

2.1. Initial and boundary conditions

For the thermal stratification we adopt a simple setup that can be
described analytically rather than adopting profiles from a solar
or stellar structure model as in, e.g., Brun et al. (2004). We use a
piecewise polytropic setup which divides the domain into three
layers. The hydrostatic temperature gradient is given by

∂T
∂r
=

−g
cV(γ − 1)(n + 1)

, (11)

where n = n(r) is the radially varying polytropic index. This
gives the logarithmic temperature gradient∇ (not to be confused
with the operator ∇) as

∇ = ∂ln T/∂ln p = (n + 1)−1. (12)

The stratification is unstable if ∇−∇ad > 0 where ∇ad = 1−1/γ,
corresponding to n < 1.5. We choose n = 6 for the lower over-
shoot layer, whereas n = 1 is used in the convectively unsta-
ble layer. A polytropic setup with n = 1 is commonly used in
convection studies (e.g. Hurlburt et al. 1984). This implies that
about 80 per cent of the energy is transported by radiation (cf.
Brandenburg et al. 2005), regardless of the vigor of convection
and the value of the Reynolds number.

Density stratification is obtained by requiring hydrostatic
equilibrium. The thermal conductivity is obtained by requiring
a constant luminosity L0 throughout the domain via

K =
L0

4πr2∂T/∂r
· (13)

Fig. 1. Radial profiles of entropy, temperature, density, and pressure in
the initial state (solid lines) and the in the saturated state (dashed) of
Run B0. Reference values T0 and p0 are taken from the bottom of the
convectively unstable layer in the initial state. The dotted vertical lines
at r2 = 0.7R and r3 = 0.98R denote the bottom and top of the convec-
tively unstable layer, respectively.

In order to expedite the initial transient due to thermal relaxation,
the thermal variables have a shallower profile, corresponding to
ρ ∝ T 1.4, in the convection zone and n = 1 is only used for the
thermal conductivity. This gives approximately the right entropy
jump that corresponds to the required flux (cf. Brandenburg et al.
2005). In Fig. 1 we show the initial and final stratifications of
specific entropy, temperature, density, and pressure for a partic-
ular run.

In the spherical models the radial and latitudinal boundaries
are taken to be impenetrable and stress free, according to

ur = 0,
∂uθ
∂r
=

uθ
r
,
∂uφ
∂r
=

uφ
r

(r = r1, r4), (14)

∂ur

∂θ
= uθ = 0,

∂uφ
∂θ
= uφ cot θ (θ = θ0, π − θ0). (15)

On the latitudinal boundaries we assume that the thermodynamic
quantities have zero first derivative, thus suppressing heat fluxes
through the boundary.

In Cartesian coordinates we use periodic boundary condi-
tions in the horizontal directions (y and z), and stress free condi-
tions in the x direction, i.e.,

ux =
∂uy
∂x
=
∂uz

∂x
= 0 (x = x1, x4). (16)

The simulations were performed using the Pencil Code1, which
uses sixth-order explicit finite differences in space and a third-
order accurate time stepping method (see Mitra et al. 2009, for
further information regarding the adaptation of the Pencil Code
to spherical coordinates).

2.2. Nondimensional quantities

Dimensionless quantities are obtained by setting

R = GM = ρ0 = cP = 1, (17)

1 http://pencil-code.googlecode.com/
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Table 1. Summary of the spherical runs.

Run grid Ra Pr L Ma Re Co Ẽther Ẽkin Emer/Ekin Erot/Ekin ΔΩ/Ωeq

A0 128 × 256 × 128 3.1 × 106 1.0 1.4 × 10−4 0.023 38 0.00 0.116 7.7 × 10−5 0.045 0.004 –

A1 128 × 256 × 128 3.1 × 106 1.0 1.4 × 10−4 0.022 36 0.13 0.114 6.9 × 10−5 0.016 0.022 −0.15
A2 128 × 256 × 128 3.1 × 106 1.0 1.4 × 10−4 0.022 36 0.25 0.114 7.2 × 10−5 0.015 0.073 −0.31
A3 128 × 256 × 128 3.1 × 106 1.0 1.4 × 10−4 0.022 37 0.50 0.113 1.2 × 10−4 0.010 0.438 −1.03
A4 128 × 256 × 128 3.1 × 106 1.0 1.4 × 10−4 0.029 48 0.94 0.112 1.1 × 10−3 0.016 0.927 −1.74
A5 128 × 256 × 128 3.1 × 106 1.0 1.4 × 10−4 0.022 36 2.56 0.111 9.9 × 10−4 0.002 0.949 −0.37
A6 128 × 256 × 128 3.1 × 106 1.0 1.4 × 10−4 0.018 30 6.09 0.114 2.3 × 10−4 0.000 0.824 +0.20

B0 128 × 512 × 256 8.6 × 106 1.0 1.4 × 10−4 0.020 54 0.00 0.113 5.8 × 10−5 0.036 0.009 –

B1 128 × 512 × 256 8.6 × 106 1.0 1.4 × 10−4 0.020 57 1.34 0.112 6.5 × 10−4 0.009 0.927 −1.10
B2 128 × 512 × 256 8.6 × 106 1.0 1.4 × 10−4 0.018 50 3.06 0.113 1.2 × 10−4 0.001 0.689 +0.12
B3 128 × 512 × 256 8.6 × 106 1.0 1.4 × 10−4 0.016 44 6.93 0.113 1.8 × 10−4 0.000 0.833 +0.20

C1 128 × 256 × 128 1.7 × 107 6.7 7.5 × 10−5 0.008 12 7.58 0.114 3.8 × 10−5 0.000 0.817 +0.12

D1 256 × 512 × 256 6.0 × 107 1.0 3.1 × 10−5 0.012 90 5.07 0.113 7.9 × 10−5 0.000 0.796 +0.20
D2 256 × 512 × 256 6.0 × 107 1.0 3.1 × 10−5 0.012 89 7.68 0.113 1.5 × 10−4 0.000 0.895 +0.20

Notes. Here Ma = urms/
√

GM/R, ΔΩ = Ωeq − Ωpole, where Ωeq = Ω(r4, θ = 90◦) and Ωpole = Ω(r4, θ = θ0). Ẽther = 〈ρe〉 and Ẽkin = 〈 1
2ρu

2〉 are
the volume averaged thermal and total kinetic energies, respectively, in units of GMρ0/R. Emer =

1
2 〈ρ(u2

θ + u2
φ)〉 and Erot =

1
2 〈ρu2

φ〉 are the kinetic
energies of the meridional circulation and differential rotation.

where ρ0 is the density at r2, The units of length, velocity, den-
sity, and entropy are then given by

[x] = R , [u] =
√

GM/R , [ρ] = ρ0 , [s] = cP. (18)

The Cartesian simulations have been arranged so that the thick-
ness of the layers is the same, g = −(GM/x2)x̂, and R, which is
still our unit length, has no longer the meaning of a radius. The
simulations are governed by the Prandtl, Reynolds, Coriolis, and
Rayleigh numbers, defined by

Pr =
ν

χ0
, Re =

urms

νkf
, Co =

2Ω0

urmskf
, (19)

Ra =
GM(Δr)4

νχ0R2

(
− 1

cP

ds
dr

)
rm

, (20)

where χ0 = K/(ρmcP) is the thermal diffusivity, kf = 2π/Δr is
an estimate of the wavenumber of the energy-carrying eddies,
Δr = r3 − r2 is the thickness of the unstable layer, ρm is the
density in the middle of the unstable layer at rm = (r3 + r2)/2,

and urms =

√
3
2 〈u2

r + u2
θ〉 is the rms velocity, where the angular

brackets denote volume averaging. In our definition of urms we
omit the contribution from the φ-component of velocity, because
it is dominated by the large-scale differential rotation that devel-
ops when rotation is included. The entropy gradient, measured
at rm in the initial non-convecting state, is given by(
− 1

cP

ds
dr

)
rm

=
∇m − ∇ad

HP
, (21)

where ∇m = (∂ln T/∂ln p)rm, and HP is the pressure scale height
at rm.

The energy that is deposited into the domain at the base is
controlled by the luminosity parameter

L = L0

ρ0(GM)3/2R1/2
, (22)

where L0 = 4πr2
1Fb is the constant luminosity, and Fb =

−(K∂T/∂r)|r=r1 is the energy flux imposed at the lower bound-
ary. Furthermore, the stratification is determined by the pressure
scale height at the surface

ξ =
(γ − 1)cVT4

GM/R
, (23)

where T4 = T (r = r4). Similar parameter definitions were used
by Dobler et al. (2006). We use ξ = 0.020, which results in a
density contrast of 102 across the domain.

3. Results

Our main goal is to extract the turbulent fluxes of angular mo-
mentum and heat as functions of rotation from our simulations.
In order to achieve this we use a moderately turbulent model and
vary the rotation rate, quantified by the Coriolis number, from
zero to roughly six in Set A (see Table 1). We also perform a
subset of these simulations at higher resolution in Set B and a
three runs (C1, D1, and D2) with a lower Mach number. The
runs in Set A were initialized from scratch, whereas in Set B
a nonrotating simulation B0 was run until it was thermally re-
laxed. The runs with rotation (B1–B3) were then started from
this snapshot and computations carried out until a new saturated
state was reached. The runs D1 and D2 were remeshed from a
non-rotating, thermally relaxed model at a lower resolution. In
Fig. 1 we compare the initial and final stratification of specific
entropy, temperature, density, and pressure for Run B0.

As noted in Sect. 2.1, our polytropic setup leads to a sys-
tem where radiative diffusion transports 80 per cent of the total
energy. We show the flux balance in the statistically saturated
state from Run A0 in Fig. 2, where the different contributions
are given in terms of luminosities Li = 4πr2Fi, and where

Frad = −K
∂T
∂r
, (24)

Fconv = −cPρu′rT ′, (25)

Fkin =
1
2ρu

2ur, (26)

Fvisc = −2νρ uiSir, (27)

Fcool =

∫
Γcool dr. (28)

Here we consider averages over φ and θ. We find that in the non-
rotating case the convective flux accounts for roughly 30 per cent
of the total luminosity and the (inward) kinetic energy flux is be-
tween 10 and 15 per cent. When rotation is increased, both the
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Fig. 2. Radiative (dotted line), enthalpy (dashed), kinetic energy (dash-
dotted), cooling (long dashed), and viscous (triple-dot-dashed) lumi-
nosities as functions of radius from Run A0. The solid line shows the
sum of all fluxes, and the red dashed line the luminosity L0 fed into
the domain through the lower boundary. The vertical dotted lines at
r = 0.7R and r = 0.98R denote respectively the bottom and top of the
convectively unstable layer in the initial state.

convective and kinetic fluxes decrease. The viscous flux is al-
ways negligible. The cooling flux transports the total luminosity
near the surface.

Visualizations of ur at a small distance below the surface are
shown in Fig. 3 for Runs B0–B3. The convective velocities u′
can be decomposed in terms of poloidal (u′P) and toroidal (u′T)
parts following Lavely & Ritzwoller (1992)

u′P = Real
∑
l,m

{
ulm

P (r)Ym
l r̂ + vlmP (r)∇Ym

l

}
, (29)

u′T = Real
∑
l,m

{
wlm

T (r)r̂ × ∇Ym
l

}
, (30)

where Ym
l (θ, φ) are spherical harmonics of degree l and order m.

The geometry and amplitude of the poloidal velocity are com-
pletely defined by l, m, and ulm

P since, assuming approximate
mass conservation, vlmP and ulm

P are related as

vlmP (r) =
∂r(r2ρulm

P (r))

ρrl(l + 1)
· (31)

The poloidal flow has characteristics of Bénard convection cells
with upwellings at the centres of cells and downdraughts on the
peripheries. The toroidal flows are characterised by their ampli-
tude and geometry given by wlm

T , l, and m respectively. In contrast
to poloidal flows, their nature resembles that of rotation, jets or
horizontal vortices. In Fig. 3, we observe that so called banana
cells become prominent in the radial velocity with an increase
in the Coriolis number. Such structures are poloidal flows given
by spherical harmonic Ym

l (θ, φ). For Run B3 in Fig. 3, we find
maximum power at m = 16. Note that the reality of the banana
cells in the Sun is hotly debated. Even though significant power
is found at wavenumbers corresponding to giant cells in the sur-
face velocity spectra of the Sun, no distinct peak has been found
at those wavenumbers (Chou et al. 1991; Hathaway et al. 2000).
Global helioseismology caps the maximum radial velocity of the
banana cells at 50 m s−1 (Chatterjee & Antia 2009). We study the
importance of the banana cells to the Reynolds stresses in more
detail in Sects. 3.1 and 3.2.1.

3.1. Reynolds stress

The angular momentum balance of a star is governed by the con-
servation law (Rüdiger 1989)

∂

∂t
(ρ�2Ω) = −∇ ·

[
ρ�

(
�Ωumer + u′φu′

)]
, (32)

where � = r sin θ is the lever arm and umer = (ur , uθ) is the
meridional circulation. The latter term on the rhs describes the
effects of the Reynolds stress components Qrφ and Qθφ, which
describe radial and latitudinal fluxes of angular momentum, re-
spectively. The stress is often parameterised by turbulent trans-
port coefficients that couple small-scale correlations with large-
scale quantities, i.e.

Qi j = Λi jkΩk − Ni jkl
∂uk

∂xl
, (33)

whereΛi jk describes the nondiffusive contribution (Λ-effect) and
Ni jkl the diffusive part (turbulent viscosity), cf. Rüdiger (1989).
However, disentangling the two contributions is not possible, see
e.g., Snellman et al. (2009) and Käpylä et al. (2010b). We post-
pone a detailed study of the turbulent transport coefficients to a
future study and concentrate on comparing the total stress with
simulations in Cartesian geometry.

It is convenient to display the components of the Reynolds
stress in non-dimensional form (indicated by a tilde), and to de-
fine

Q̃i j = u′iu
′
j/u

2
rms, (34)

where urms = urms(r, θ) is the meridional rms-velocity. The aver-
ages are calculated over the azimuthal direction and time also for
urms. In the following, we refer to the three off-diagonal compo-
nents, Qrφ, Qθφ, and Qrθ, as vertical, horizontal, and meridional
components, respectively. Representative results for the vertical
stress component Qrφ are shown in Fig. 4. We find that for slow
rotation (Run A1), Qrφ is small and does not appear to show
a clear trend in latitude. In Run A2 with Co ≈ 0.25 the stress
is more consistently negative within the convectively unstable
layer, showing a symmetric profile with respect to the equator.
These two runs tend to show the largest signal near the latitudinal
boundaries which is most likely due to the boundary conditions
there. Similar distortions are also seen in the large-scale flows
(see Sect. 3.4). In the intermediate rotation regime (Runs A3–
A5), Qrφ is predominantly negative, although regions of oppo-
site sign start to appear near the equator. In Run A6 the stress is
mostly positive. Qualitatively similar results are obtained from
the runs in Set B, Runs C1, D1, and D2. Therefore there is a
sign change roughly at Co = 2. The results for most quantities
from Runs B2 and D1 with intermediate values of Co are simi-
lar to those of Runs A5 and A6, respectively. Thus, we usually
show results only from Runs A4, A5, and A6 in order to demon-
strate the qualitative change that occurs for many quantities in
the range Co ≈ 1 . . .6. A similar phenomenon has been observed
in Cartesian simulations (Käpylä et al. 2004). We note that the
behaviour of Qrφ in the most rapidly rotating runs, namely a
small negative region at the equator and a positive peak near
the surface at somewhat higher latitudes was also reported by
Robinson & Chan (2001).

We find that the horizontal stress, Q̃θφ, is almost always posi-
tive (negative) in the northern (southern) hemisphere for Co < 1,
i.e. antisymmetric about the equator, see Fig. 5. For intermedi-
ate rotation (Runs A4 and A5) the stress is observed to change
sign at high latitudes. In Fig. 6 we plot the latitudinal profiles of
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Fig. 3. Radial velocity ur at a small distance (r = 0.9R) below the surface from Runs B0–B3. The scales give ur in units of the local sound speed.
For visualization purposes, the domain is duplicated fourfold in the longitudinal direction. See also the associated movies available in the electronic
edition of the journal.

Fig. 4. Vertical Reynolds stress, Q̃rφ, from Set A.

the horizontal stress and the mean angular velocity at different
depths for the Runs A4–A6. It can be seen that near the bottom
of the convection zone, the profile of the stress becomes more
and more concentrated about the equator as the Coriolis num-
ber increases. An especially abrupt change can be observed for
Run A5 (Co ≈ 2). A similar peak also persists in Runs A6, B3,
C1, and D2 with the largest Coriolis numbers. Note, however,
that the sign of the latitudinal differential rotation changes as Co
increases to six for Run A6. The results of Robinson & Chan
(2001) also show a peak of Qθφ, occurring at a latitude range
10◦ . . . 15◦, depending on depth.

Using Eqs. (29), (30), we can calculate the stress Qθφ =∑
l,l′,m Qll′m

θφ by azimuthal averaging, with

Qll′m
θφ =

1
2
vlmP w

l′m
T

(
1
r2

∂Pm
l

∂θ

∂Pm
l′

∂θ
− m2

�2
Pm

l Pm
l′

)
,

Fig. 5. Horizontal Reynolds stress, Q̃θφ, from Set A.

where Pm
l (θ) are the associated Legendre polynomials and � =

r sin θ. Note that l and l′ denote the degrees of the poloidal and
the toroidal flow, respectively. It is easy to see that the contribu-
tion to the azimuthally averaged Qθφ is always zero from cross-
correlation between two poloidal velocity fields. Finite contri-
butions to Qθφ instead come from correlations between poloidal
flow and toroidal flow having the same azimuthal degree m. We
have used small-scale velocity fluctuations (i.e., m � 0 modes) to
calculate the Reynolds stresses in the numerical simulations ac-
cording to Eq. (34). The finite correlation of the rotation and the
meridional flow are not included in this discussion since both
are characterised by m = 0 and thus do not correspond to our
definition of velocity fluctuations.

Recently, Bessolaz & Brun (2011) have used wavelets and
autocorrelation techniques to unravel the structure of giant cells
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Fig. 6. Latitudinal profiles of Q̃θφ and Ω̃ for Runs A4, A5, and A6 (from left to right) at three different depths (solid 0.7R, dotted 0.8R, dashed
0.9R). The red dotted lines show data from corresponding Runs B1, B2, and B3 from r = 0.8R. The solid red lines in the right panels show data
from Run D2 at r = 0.8R. The open red diamonds in the top panels denote Cartesian Runs cA1–cA4, cD1–cD4, and cE1–cE4, from left to right.
The blue squares in the top-middle panel show the values of Qyz computed from Fourier-filtered velocity fields from Runs cD1–cD4. Note that
only a part of the full latitudinal range is shown.

in their 3-dimensional hydrodynamic convection simulations. It
is an involved exercise to calculate the net stress by estimating
the power in each triplet (l, l′,m) by wavelet analysis. It is, how-
ever, possible to look for certain combinations of Legendre poly-
nomials that can contribute to the peaks of Qθφ near the equator
as obtained from numerical simulations in spherical geometry.
A visual inspection of the radial flows in Fig. 3 for Run B2
shows four prominent banana cells within the domain which ex-
tends from 0 to π/4 in the azimuthal direction, which means
that the angular dependence is most likely Y16

16 . Hence we set
l = 16, l′ = 16, 17 for the calculation of the stresses and vary
m in search for a match between the peaks of Qθφ from the runs
A1–A6 and Eq. (35). We illustrate the angular part of Qll′m

θφ , for
particular values of l, l′ and m in Fig. 7. We can see from here
that peaks in Q16,17,15

θφ (dashed line) appear at ±6◦ as well as at

±20◦ latitude, whereas peaks in Q16,17,16
θφ appear at ±10◦ lati-

tude, and the highest peaks in Q16,17,8
θφ appear at ±60◦ latitude.

Comparing Fig. 5 with 7, we see that at slow rotation (Runs A1
and A2), a major contribution to the stress may come from giant
cells with an angular dependence Y8

16. At higher Co, the stress
may have contributions from banana cells with angular depen-
dence Y16

16 (compare solid line in top right panel of Fig. 6 with
solid line of Fig. 7). We shall return to the question regarding
the contribution of banana cells in the context of Cartesian runs
in Sect. 3.2.1. However there also exists symmetric contribution
to Qθφ from components like Q16,16,16

θφ , but we do not see any
significant symmetric part in the horizontal stresses from the
numerical simulations. On this basis, zonal flows of the form
wll

T r̂ × ∇Yl
l can be said to be negligible in spherical convection

simulations. These zonal flows correspond to a row of horizontal
vortices with their centres on the equator.

Fig. 7. Angular part of Qll′m
θφ normalized by the maximum value for four

different cases characterized by triplets (l, l′,m) as indicated by the leg-
end. The latitudes of the peaks for the triplets are indicated on the re-
spective curves.

Finally, let us discuss the stress component Qrθ. It does not
directly contribute to angular momentum transport, but it can
be important in generating or modifying meridional circula-
tion, and it has routinely been considered also in earlier studies
(e.g., Pulkkinen et al. 1993; Rieutord et al. 1994; Käpylä et al.
2004). Figure 8 shows the stress component Qrθ from Set A.
We find that for slow rotation (Run A1) the stress is quite weak
and shows several sign changes as a function of latitude. It is
not clear whether this pattern is real or an artefact of insuf-
ficient statistics. For intermediate rotation (Runs A2–A4), Qrθ
shows an antisymmetric profile with respect to the equator being
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Fig. 8. Meridional Reynolds stress, Q̃rθ, from Set A.

positive in the northern hemisphere and negative in the south,
in accordance with earlier Cartesian results (e.g. Käpylä et al.
2004). Although the theory for this stress component is not as
well developed as that of the other two off-diagonal components,
Rüdiger et al. (2005a) state that Qrθ should always be negative
in the northern hemisphere, which is at odds with our results.
However, in our rapid rotation models (Runs A5–A6) the sign is
found to change.

3.2. Comparison with Cartesian simulations

Before describing the Reynolds stress obtained from our sim-
ulations in Cartesian coordinates, we note that the rms veloci-
ties in the Cartesian runs are in general almost twice as large as
in the spherical ones with the same input parameters (compare,
e.g., Run A0 in Table 1 and Run cA0 in Table 2). We argue in
Sect. 3.3 that this is the result of adopting a radial dependence of
gravity in the plane-parallel atmosphere.

The radial profiles of the three off-diagonal components of
the Reynolds stress in Cartesian coordinates agree with previous
studies (Käpylä et al. 2004; Hupfer et al. 2005) for the range
of latitudes and Coriolis number explored here (compare Fig. 9
with bottom panel of Fig. 11 of Käpylä et al. 2004; and Figs. 3
and 5 of Hupfer et al. 2005). For moderate rotation (Runs cA1–
cA4), the vertical component Q̃xz (left panels of Fig. 9) is neg-
ative in the bottom part of the convection zone and almost zero
at the top. The cases with Co ≈ 2.3 (Runs cD1–cD4) show neg-
ative values at the bottom and positive values at the top of the
convection zone. For Co ≈ 4.0 (Runs cE1–cE4), the amplitude
of the positive part of the stress near the surface increases and

Table 2. Summary of the runs in Cartesian coordinates.

Run Latitude Re Co Ma Ẽk Emer/Ek Erot/Ek

cA0 – 63 0.00 0.038 1.7 × 10−4 0.052 0.001
cF0 – 28 0.00 0.027 2.3 × 10−4 0.021 0.001
cF1 – 11 0.00 0.022 2.5 × 10−4 0.002 0.000

cA1 0◦ 64 0.85 0.039 2.9 × 10−4 0.001 0.288
cA2 7◦ 65 0.84 0.039 2.0 × 10−4 0.021 0.017
cA3 14◦ 65 0.84 0.039 1.8 × 10−4 0.014 0.007
cA4 21◦ 65 0.85 0.039 1.8 × 10−4 0.012 0.008

cB1 0◦ 61 1.49 0.037 4.5 × 10−4 0.000 0.623
cB2 7◦ 70 1.30 0.042 2.4 × 10−4 0.023 0.012
cB3 14◦ 68 1.33 0.041 2.0 × 10−4 0.012 0.007
cB4 21◦ 68 1.34 0.041 1.9 × 10−4 0.005 0.009

cC1 0◦ 60 2.14 0.036 2.8 × 10−4 0.000 0.347
cC2 7◦ 76 1.68 0.046 2.5 × 10−4 0.029 0.031
cC3 14◦ 72 1.77 0.044 2.2 × 10−4 0.013 0.011
cC4 21◦ 72 1.78 0.043 2.1 × 10−4 0.004 0.011

cD1 0◦ 69 2.38 0.042 7.5 × 10−4 0.000 0.584
cD2 7◦ 78 2.09 0.047 2.5 × 10−4 0.029 0.018
cD3 14◦ 47 2.32 0.043 2.0 × 10−4 0.009 0.013
cD4 21◦ 70 2.36 0.042 2.1 × 10−4 0.003 0.005

cE1 0◦ 50 3.66 0.045 1.2 × 10−3 0.000 0.685
cE2 7◦ 36 4.00 0.041 1.6 × 10−4 0.025 0.009
cE3 14◦ 34 4.24 0.039 1.5 × 10−4 0.005 0.005
cE4 21◦ 31 4.67 0.035 1.3 × 10−4 0.001 0.008

Notes. Here, we use a resolution of 64×1282 grid points. For the sets of
Runs cA–cD, Ra ≈ 3.1×106, and for the set of Runs cE, Ra ≈ 1.4×106.
Thermal energy in all of the cases is Ẽther ≈ 0.117. All quantities are
computed using the same definitions and normalization factors as in
Table 1.

the negative part at the bottom decreases. We notice that the spa-
tial distribution of Q̃xz, as well as its variation with the Coriolis
number, are in a fair agreement with the corresponding spheri-
cal runs in the same range of Co (Runs A3–A5). In the spher-
ical Run A6 with the highest Coriolis number of roughly six,
the stress is observed to become predominantly positive in the
convection zone. This is not seen in the Cartesian counterparts
that reach Coriolis numbers of roughly four (Runs cE1–cE4), in
which the negative peak near the bottom still persists, although
it has decreased in magnitude. The difference is possibly due to
the lower Coriolis number in the Cartesian runs. It is noteworthy
that also the symmetry of this stress component with respect to
the equator is captured by the Cartesian simulations.

Radial profiles of the horizontal stress, Q̃yz, from the
Cartesian simulations are shown in the middle panels of Fig. 9,
and latitudinal profiles in Fig. 6 with open squares and diamonds.
Similarly as in the spherical runs, this component peaks both at
top and bottom of the convective layer. However, some discrep-
ancies are observed between the profiles in different geometries.
For instance, in spherical Run A4 the stress is somewhat more
widely distributed than in the corresponding Cartesian runs. In
spherical Run A5 the radial profile of this component exhibits a
bump at the bottom of the convection zone which is much larger
than in the corresponding Cartesian cases. Note, however, that in
Fig. 9, the uppermost peak moves inwards with increasing rota-
tion between Sets cA and cD, and at the same time as the lower-
most peak increases in amplitude. For the spherical Run A6 with
the highest Coriolis number of roughly six, the stress changes
sign in the region near the surface, which is not visible in the
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Fig. 9. From left to right: radial profiles of Q̃xz , Q̃yz, and Q̃xy from Cartesian Runs cA1–cA4 (top panels), Runs cD1–cD4 (middle panels), and
Runs cE1–cE4 (bottom panels). The red diamonds correspond to the radial profiles of the stresses in the spherical Runs A4–A6. The blue squares
in the middle panel show Fourier-filtered data from Run cD2.

Cartesian simulations with Coriolis numbers of roughly four
(Runs cE1–cE4).

Finally, the meridional Reynolds stress, Q̃xy, corresponding
to Q̃rθ, is positive in the entire convection zone for moderate
rotation (Runs cA1–cA4). For larger Co, Q̃xy is negative in the
lower part of the domain (see the right panels of Fig. 9). Similar
behaviour occurs in the spherical case with intermediate rotation
(Runs A3–A5). In the most rapidly rotating case (Run A6) an-
other sign change occurs near the equator (see Fig. 8), which is
not observed in Cartesian runs. This, however, could again be
explained by the smaller Co in the Cartesian runs.

3.2.1. Filtering banana cells

The large amplitude of the horizontal Reynolds stress, peaking
around ±7◦ latitude, has been an intriguing issue for several
years (e.g., Chan 2001; Hupfer et al. 2005, 2006). One factor
that might be contributing to the Reynolds stress are the large-
scale banana cell-like flows that develop near the equator (e.g.,

Käpylä et al. 2004; Chan 2007). Such flows vary in the azimuthal
(z) direction and can lead to overestimation of the contribution
of turbulence, especially if averaging is performed over the az-
imuthal (z) direction. We explore this possibility by filtering out
the contribution coming from the large-scale structures observed
in the yz-plane (the so-called banana cells observed in spherical
simulations). The procedure used in this analysis is described
below.

We perform a Fourier decomposition of the horizontal ve-
locities and find out at which Fourier mode the contribution of
the large scales peaks in the spectra. We find that the maximum
is usually situated at wavenumber q = 2. Next we remove this
mode from the spectra and make an inverse Fourier transforma-
tion, thus obtaining the velocity field without the contribution
from the large-scale motions. Finally, we compute Qyz from the
filtered velocities.

Horizontal stress Qyz computed from filtered velocity fields
for Runs cD1–cD4 for different latitudes at r = 0.9R are plot-
ted with blue square symbols in Fig. 6. The radial variation of

A162, page 9 of 17

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201015884&pdf_id=9


A&A 531, A162 (2011)

Fig. 10. Normalized radial turbulent heat flux raised to the 2/3 power
as a function of r (x) (solid lines). The dashed and dot-dashed lines
correspond to the squares of the radial velocity and temperature fluc-
tuations scaled with the coefficients ku and kT , respectively. The upper
(red), middle (blue) and lower (black) curves correspond to Runs cA0,
cF0 and A0, respectively.

Qyz at 7◦ for Run cD2 is shown with blue square symbols in
Fig. 9. It is clear from these figures that the q = 2 mode is the
dominant contribution to Qyz near the surface and it also affects
significantly the secondary peak in deeper layers. Thus, a flatter
profile in latitude with a reduced amplitude of the stress is ob-
tained in comparison to the non-filtered values. The maximum,
however, still resides around ±7◦, which is at odds with theory
(e.g. Rüdiger & Kitchatinov 2007).

3.3. Turbulent heat transport

In non-rotating convection the radial heat flux,

Fr = cPρu′rT ′, (35)

transports all of the energy through the convection zone.
According to mixing length theory, velocity and temperature
fluctuations are related via u′2r ∼ (ΔT/T )g�, where � is the mix-

ing length, g� = c2
s , and ΔT =

√
T ′2. Thus, the three quantities

are related via:

ΔT

T
∼ u′2r

c2
s
∼

(
Fr

ρc3
s

)2/3

· (36)

These quantities are shown in Fig. 10 for non-rotating simula-
tions in Cartesian (Run cA0) and spherical (Run A0) geometries.
Here we use the coefficients

ku =
〈u′2r /c2

s 〉CZ

〈Fr/ρc3
s 〉2/3CZ

, kT =
〈ΔT/T 〉CZ

〈Fr/ρc3
s 〉2/3CZ

, (37)

where 〈.〉CZ denotes an average over the convection zone. For
both geometries we obtain ku ≈ 0.4 and kT ≈ 1.3, values that
are in good agreement with previous results (Brandenburg et al.
2005). Note, however, that the magnitude of the flux in Cartesian
coordinates is around four times larger than that in the spherical
one, implying a difference of 41/3 ≈ 1.6 in the radial velocities
according to Eq. (37). This is roughly the same factor seen in
the rms velocities (compare Runs A0 and cA0). This difference
arises from the fact that we are considering a depth dependent
gravity also in the Cartesian simulations. In spherical geometry,

Fig. 11. Turbulent heat conductivity χt from Runs A0 (solid line) and
B0 (dashed line). The inset shows the radial heat flux Fr (solid line) and
an analytical expression given in Eq. (40) (dashed line) normalized by
the heat flux at r1 from Run A0.

the luminosity is constant and the flux decreases outwards pro-
portional to r−2, whereas in Cartesian geometry the flux is con-
stant. This means that for the same profile of thermal conductiv-
ity, a significantly larger portion of the energy is transported by
convection in the Cartesian case. We verify this result with a sep-
arate Cartesian model in which the radiative flux is constant and,
like in the other models, the gravity varies with depth. In this
case the thermal conductivity varies with radius. The profiles of
the quantities depicted in Fig. 10 obtained from this run (see blue
lines and Run cF0 in Table 2) are in better agreement with the
spherical case. Similar results have been obtained if both, radia-
tive flux and gravity, are constant (Run cF1).

The radial turbulent heat transport may also be described in
terms of a turbulent heat conductivity (e.g. Rüdiger 1989)

Fr = cPρu′rT ′ ≡ −ρTχt∇r s, (38)

from which we can solve the turbulent heat conductivity as

χt = −cPu′rT ′

T∇r s
· (39)

The result, normalized by a reference value χt0 = urms/(3kf), for
Runs A0 and B0 are shown in Fig. 11. Here averages over lon-
gitude and latitude are considered. We find that the value of χt is
almost ten times the reference value. The apparently large value
is most likely due to the normalization factor which is based on
a volume average of the rms velocity and a more or less arbitrary
length scale k−1

f (see also Käpylä et al. 2010b). The sharp peaks
and negative values of χt towards the bottom and top of the con-
vectively unstable region reflect the sign change of the entropy
gradient which is not captured by Eq. (39).

According to first-order smoothing (e.g. Rüdiger 1989), the
radial flux can be written as

F(FOSA)
r = −τcu2

r ρ T∇r s, (40)

where τc is the correlation time of turbulence. We compare the
actual radial heat flux with the rhs of Eq. (40) in the inset of
Fig. 11, where τc is used as a fit parameter. A reasonable fit
within the convection zone is obtained if the Strouhal number

St = τcurmskf , (41)
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Fig. 12. Off-diagonal component χθr of the turbulent heat conductivity
according to Eq. (43) from Runs A1 (solid line), A3 (dashed), A6 (dot-
dashed), B3 (triple-dot-dashed), C1 (red dashed), and D1 (blue dotted).

is around 1.6 which is consistent with previous results from con-
vection (e.g. Käpylä et al. 2010b). Note that the ratio χt/χt0 gives
a measure of the Strouhal number because in the general case
χt0 =

1
3τcu2

rms = Sturms/(3kf), whereas in the main panel of
Fig. 11 we assume St = 1.

In rotating convection, Eq. (38) no longer holds and the heat
flux becomes latitude-dependent. In mean-field theory this can
be represented in terms of an anisotropic turbulent heat conduc-
tivity (Kitchatinov et al. 1994)

χi j = χtδi j + χΩεi jkΩ̂k + χΩΩΩ̂iΩ̂ j, (42)

where δi j and εi jk are the Kronecker and Levi-Civita tensors and
Ω̂i is the unit vector along the ith component of Ω. This indi-
cates that non-zero latitudinal and azimuthal heat fluxes are also
present in rotating convection. However, in order to compute all
relevant coefficients from Eq. (42), a procedure similar to the
test scalar method (Brandenburg et al. 2009) would be required
in spherical coordinates. In most of our runs, however, the radial
gradient of entropy is greater than the latitudinal one. Thus we
can approximate the latitudinal heat flux by

Fθ = −ρTχθr∇r s − ρTχθθ∇θs ≈ −ρTχθr∇r s, (43)

from which the off-diagonal component χθr can be computed in
analogy to Eq. (39). Note that the sign of χθr gives the direc-
tion of the latitudinal heat flux so that positive (negative) val-
ues indicate equatorward (poleward) in the northern (southern)
hemisphere. According to Eqs. (42) and (43), Fθ ∝ sin θ cos θ,
indicating a sign change at the equator.

Representative results from Runs A1, A3, A6, B3, C1, and
D1 are shown in Fig. 12. For slow rotation (Run A1), χθr is
small and shows no coherent latitude dependence. In the inter-
mediate rotation regime (Run A3), χθr is positive (negative) in
the northern (southern) hemisphere. In the most rapidly rotating
case (Runs A6 and B3), the sign changes so that the heat flux
is towards the poles. Qualitatively similar results are obtained
from rapidly rotating Runs C1 and D1 with a lower Mach num-
ber. The smoother latitude profile of χrθ in Run C1 reflects the
smoother entropy profile (see Fig. 15). The qualitative behaviour
as a function of rotation is similar to that found in local sim-
ulations (Käpylä et al. 2004). Comparing with Fig. 11 we find
χθr/χt ≡ χθr/χrr ≈ 0.1, which is of the same order of magnitude
as in local convection models Käpylä et al. (2004) and forced

turbulence Brandenburg et al. (2009). We note that the latitu-
dinal entropy gradient, which we neglected in Eq. (43), can be-
come comparable with the radial one in the rapid rotation regime
near the equator. Since ∇θs < 0 in the northern hemisphere (cf.
Fig. 15), the latter term in Eq. (43) yields a positive contribution
to the flux. Thus our values of χθr near the equator are likely to
be underestimated in the rapid rotation regime. We postpone a
more detailed study of the turbulent transport coefficients to a
future publication and discuss the different components of the
turbulent heat fluxes. We present the components of convective
energy flux as

F̃i = Fi/ρ cs
3, (44)

where longitudinal averages are used.
Figure 13 shows the normalized turbulent heat fluxes as

functions of latitude from five runs with slow (Run A1), in-
termediate (Run A4), and rapid (Runs A6, C1, and D2) rota-
tion. We find that F̃r shows little latitudinal variation except
near the latitudinal boundaries for slow and moderate rotation
(Runs A1–A3). For intermediate rotation Fr peaks at mid lati-
tudes (Runs A4–A5) whereas in the most rapidly rotating cases
(Runs A6, C1, and D2) the maxima occur near the equator and
at the latitudinal boundaries. This behaviour follows the trend
seen in the entropy profile (Fig 15): the radial gradient of entropy
shows only a minor variation as a function of latitude in the most
slowly rotating runs (A1–A3). In Runs A4 and A5 the gradient
is the steepest at mid latitudes and at the equator in Run A6.
We find that the entropy gradient can become positive at certain
latitudes, e.g. close to the pole for Run A4 and around latitudes
±30◦ in Run A6.

The horizontal fluxes, Fθ and Fφ are negligibly small in
comparison to the radial flux Fr in the slow rotation regime
(Run A1). The latitudinal flux is consistent with zero for all
depths in Run A1 (see Fig. 13). For intermediate rotation
(Runs A2–A4) the latitudinal flux is mostly equatorward. For the
most rapidly rotating cases the sign changes so that in Runs A6,
C1, and D2, F̃y is mostly poleward in the convection zone. The
magnitude of the latitudinal flux also increases so that the max-
imum values, which are located near the surface, can become
comparable with the radial flux. The azimuthal flux is also small
and always negative, i.e., in the retrograde or westward direc-
tion, in accordance with the results of Rüdiger et al. (2005a) and
Brandenburg et al. (2009).

In some of the panels in Fig. 13 we also present results from
Cartesian simulations (see the red and blue symbols) from the
same depth. As discussed above, the fluxes are larger in this ge-
ometry, due to which we have scaled the fluxes down by a fac-
tor of four in this figure. We find that the latitude profiles of
the radial and latitudinal heat fluxes in the Cartesian simulations
are in rather good agreement with the spherical results. This is
more clear in the rapidly rotating cases cE1–cE4 in comparison
to Run A6 (see the right panels of Fig. 13), where the large peak
of Fr at the equator, and the sharp peak of Fθ at low latitudes are
reproduced.

We find that the latitudinal entropy profiles show a local
maximum (slow and intermediate rotation) or a minimum (rapid
rotation) at the equator, see Fig. 14 and the bottom panels of
Fig. 15. The entropy profiles in the most rapidly rotating simu-
lations (Run A6 and B3) are similar to that obtained by Miesch
et al. (2000) but differs from the more monotonic profiles of e.g.
Brun et al. (2002) and the lower Mach number case Run C1.
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Fig. 13. Turbulent heat fluxes F̃r (top panel), F̃θ (middle), and F̃φ (bot-
tom) from the runs indicated in the legend in the top panel. The sym-
bols included in the top and middle panels correspond to vertical and
latitudinal fluxes from Runs cA1–cA4 (blue squares) and cE1–cE4 (red
diamonds) scaled down by a factor of four (see the text for details). The
data for Runs C1 and D2 are scaled up by a factor of four.

3.4. Large-scale flows

The rotation profiles from the runs in Set A are shown in Fig. 16.
For slow rotation (Runs A1–A2), a clear large-scale radial shear,
almost independent of latitude, develops. This is an old result
going back to Kippenhahn (1963) that is expected for turbulence
whose vertical motions dominate over horizontal ones (Rüdiger
1989). Such a result has been obtained in many mean-field mod-
els (e.g. Brandenburg et al. 1990) and simulations since then
(Brun & Palacios 2009, who refer to such flows as shellular).
However, the Ω-profiles in these runs are clearly different at

high latitudes, which is probably an artefact due to the latitu-
dinal boundaries. As the Coriolis number is increased, the ra-
dial shear remains negative, equatorial deceleration grows, and
the isocontours of Ω tend to align more with the rotation vector
(Runs A3–A4) – in accordance with the Taylor-Proudman theo-
rem. Similar anti-solar rotation profiles have been reported also
by Rieutord et al. (1994), Dobler et al. (2006), Brown (2009),
and Chan (2010). Such rotation profiles are usually the result
of strong meridional circulation (Kitchatinov & Rüdiger 2004)
which is consistent with the present results. Run A5 represents
a transitory case where bands of faster and slower rotation ap-
pear, whereas in Run A6 a solar-like equatorial acceleration is
seen. Similar transitory profiles have recently been reported by
Chan (2010). The rotation profile in Run A6 is dominated by
the Taylor-Proudman balance and the latitudinal shear is con-
centrated in a latitude strip of ±30◦ about the equator. SimilarΩ-
profiles have been obtained earlier from more specifically solar-
like simulations (e.g., Brun & Toomre 2002; Brun et al. 2004;
Brown et al. 2008; Ghizaru et al. 2010).

In the slow rotation regime (Runs A1–A2) the kinetic en-
ergy of meridional circulation and differential rotation are com-
parable and comprise a few per cent of the total kinetic energy
(Cols. 9 and 10 in Table 1). Increasing the Coriolis number
further, increases the fraction of kinetic energy in the differen-
tial rotation whereas that of the meridional circulation remains
at first constant (Runs A3–A4), and finally drops close to zero
(Runs A5–A6). In the three most rapidly rotating cases the dif-
ferential rotation comprises more than 80 per cent of the total ki-
netic energy. We also find that the meridional circulation shows a
coherent pattern only for intermediate rotation rates (Runs A3–
A5) where a single counter-clockwise cell per hemisphere ap-
pears. In Run A6 the meridional flow is concentrated in a num-
ber of small cells in accordance with earlier results (e.g., Miesch
et al. 2000; Brun & Toomre 2002). We note that the rotation pro-
files in Runs B3, C1, and D2 are similar to that in Run A6.

The surface differential rotation of stars can be observa-
tionally studied using photometric time series (e.g. Hall 1991)
or with Doppler imaging methods (for a review, see Collier-
Cameron 2007). The amount of surface differential rotation has
been determined for some rapidly rotating pre- or main-sequence
stars with varying spectral type (F, G, K, and M), systemati-
cally showing solar-type differential rotation pattern with a faster
equator and slower poles. The strength of the differential rotation
shows a clear trend as function of the effective temperature, the
shear being larger for hotter stars (see Fig. 1 of Collier-Cameron
2007). Analysis of photometric time series, interpreting the pe-
riod variations seen in the light curve analysis being due to dif-
ferential rotation (e.g. Hall 1991), have established a relation
ΔΩ/Ω0 ≈ Ω−n, with the values of n ≈ 0.8–0.9. The observa-
tional results are in rough agreement with theoretical predictions
(e.g. Kitchatinov & Rüdiger 1999), the theory predicting slightly
weaker differential rotation in the rapid rotators than the actually
observed values.

We parameterise the differential rotation in our simulations
with the quantity

kΩ ≡ Ωeq −Ωpole

Ωeq
=
ΔΩ

Ωeq
, (45)

where Ωeq = Ω(r4, θ = 90◦) and Ωpole = Ω(r4, θ = θ0). The
results for the runs with Co � 0 listed in Table 1 are shown in
Fig. 17. We find that the anti-solar differential rotation peaks at
Co ≈ 1 and that kΩ turns positive for roughly Co ≈ 3. The val-
ues in the rapid rotation (kΩ ≈ 0.2) end are comparable with the

A162, page 12 of 17

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201015884&pdf_id=13


P. J. Käpylä et al.: Reynolds stress and heat flux in spherical shell convection

Fig. 14. Specific entropy in the upper part of the convectively unstable layer in Runs B1 (left), D1 (middle), and D2 (right). The φ-extent is
duplicated fourfold for visualization purposes.

Fig. 15. Top row: radial profiles of entropy from six colatitudes as indicated by the legend in the leftmost panel from Runs A1 (left column), A4
(middle column), and A6 (right column). Bottom row: latitudinal entropy profiles for the same runs as in the upper row at three radial positions
indicated by the legend in the left panel. The red and blue dashed curves in the lower right panel show data at r = 0.9R from Runs C1 and D2,
respectively.

Sun (see also Chan 2010). It is not clear, however, how realistic
it is to compare the current simulations with observations, i.e.
even to argue that slowly rotating stars have anti-solar differen-
tial rotation. It is clear that in the Sun the Coriolis number, and
the radial length scale of convection, vary much more than in the
current models so that it is not possible to reproduce equatorial
acceleration and surface shear layer self-consistently in a sin-
gle simulation. The situation may be different in slow rotators
but observing their differential rotation is much more difficult.
However, investigating the scaling of kΩ in the rapid rotation
regime is likely worth pursuing (see also Brown et al. 2008).

4. Conclusions

The present results have demonstrated that the basic properties
of Reynolds stress and turbulent heat flux found in Cartesian
simulations are reproduced by simulations in spherical shells and
wedges. This includes the signs of the off-diagonal components

of Qi j. In particular, the vertical stress, Qrφ, is negative in both
hemispheres when Co is small, but becomes positive near the top
(and possibly also deeper down) when Co is large. This trend
is well reproduced by the Cartesian simulations where Qxz is
also negative for small Co, but becomes positive near the top
when Co is large. These results coincide with earlier findings of
Käpylä et al. (2004), Chan (2001), and Robinson & Chan (2001).

The horizontal stress Qθφ, with the counterpart Qyz in the
Cartesian model, is found to be positive in the northern hemi-
sphere and have local maxima near the top and bottom of the do-
main. In spherical runs Qθφ is found to change sign near the poles
for intermediate rotation. For rapid rotation, Qyz reaches a max-
imum near the top (or surface) around ±7◦ latitude – in agree-
ment with earlier results (e.g., Chan 2001; Hupfer et al. 2005).
We show that large-scale velocities due to the banana cells near
the equator are the main contribution to Qyz in Cartesian calcu-
lations. The spherical simulations reproduce such a sharp peak
in the regime Co � 1, the peak being limited to a radially narrow
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Fig. 16. Azimuthally averaged flows from the runs in Set A. The con-
tours show Ω = uφ/(r sin θ)+Ω0 and the white arrows denote the merid-
ional circulation.

Fig. 17. Differential rotation parameter kΩ according to Eq. (45) from
Sets A (stars), B (diamonds), Run C1 (cross), and Runs D1 and D2
(triangles). The dotted horizontal line indicates the zero level.

region near the bottom of the domain. We find that the results for
the Reynolds stress are weakly dependent on the Reynolds and
Mach numbers.

Furthermore, we find that Qrθ is positive in the northern
hemisphere, although for large values of Co the sign changes at
the bottom of the convection zone. For the largest value of Co,
Qrθ is negative throughout the entire convection zone. A similar
trend is seen in the Cartesian simulations, where Qxy is mostly
positive but becomes negative near the bottom of the convection

zone when rotation becomes strong enough, in accordance with
Käpylä et al. (2004).

The radial heat flux shows a strong dependence on latitude
only when rotation is fairly rapid, i.e. Co � 1. This is associated
with regions of the convection zone where the radial entropy gra-
dient is decreased or even becomes positive. A partial explana-
tion is that our setup (with a polytropic index of n = 1) is such
that roughly 80 per cent of the energy is transported by radia-
tive diffusion (cf. Brandenburg et al. 2005), making convection
more easily suppressed than in a system where convection trans-
ports a larger fraction. The latitudinal heat flux is equatorward
for slow rotation and changes sign around Co ≈ 1. A poleward
heat flux is often used in breaking the Taylor-Proudman balance
(e.g. Brandenburg et al. 1992). Longitudinal heat flux is mostly
in the retrograde direction irrespective of the rotation rate.

The turbulent heat conductivity χt is comparable to the first-
order smoothing estimate with Strouhal number of the order of
unity. The off-diagonal component χθr is typically an order of
magnitude smaller than the diagonal component χt in the rapid
rotation regime. Similar results have been obtained previously
from local convection simulations (e.g. Pulkkinen et al. 1993)
and forced turbulence (Brandenburg et al. 2009). In mean-field
models where anisotropic heat transport is invoked to break the
Taylor-Proudman balance, the anisotropic part is typically of
the same order of magnitude as the isotropic contribution (e.g.
Brandenburg et al. 1992). It is conceivable that the anisotropic
contribution increases when the fraction of convective energy
flux is increased. However, such a study is not within the scope
of the present paper.

As discussed in Sect. 3.1, the components of the Reynolds
stress have contributions from diffusive and non-diffusive com-
ponents. In future work we hope to be able to separate these two
contributions, but in order to compare with earlier work, we have
restricted ourselves to studying the components of the Reynolds
stress directly. By making reasonable assumptions about the tur-
bulent viscosity, it is indeed possible to obtain the relevant com-
ponents of the Λ-effect, as was done by Pulkkinen et al. (1993).
This is also true of global models, which also yield directly the
global flow properties that can then be compared with corre-
sponding mean field models, as was first done by Rieutord et al.
(1994). In a steady state, the Reynolds stress from the mean flow
must then balance both the viscous stress and the Reynolds stress
from the fluctuations, as was demonstrated also by Miesch et al.
(2008). Such results are, however, dependent on the particular
properties of the model.

In the present paper we find that in the slow and intermediate
rotation regimes the differential rotation is anti-solar: the equator
is rotating slower than the high latitudes. Such rotation profiles
also coincide with the occurrence of coherent meridional circu-
lation that is concentrated in a single counter-clockwise cell. In
the rapid rotation regime, solar-like equatorial acceleration is ob-
tained, but the differential rotation is confined to latitudes ±30◦
and the isocontours are aligned with the rotation vector.

To reproduce the solar rotation profile at least two major ob-
stacles remain. Firstly, the Taylor-Proudman balance must be
broken. A possibility is to use subgrid-scale models where the
present results for anisotropic heat transport can work as a guide.
Secondly, the Coriolis number should decrease near the surface
so that the transport of angular momentum is inward near the sur-
face, leading to a surface shear layer as in the Sun. Here we can
again introduce a subgrid-scale Reynolds stress guided by the
present results. Studying such models, however, is postponed to
future papers.

A162, page 14 of 17

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201015884&pdf_id=16
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201015884&pdf_id=17


P. J. Käpylä et al.: Reynolds stress and heat flux in spherical shell convection

Acknowledgements. We thank Dhrubaditya Mitra for useful discussions and an
anonymous referee for critical comments on the paper. The computations were
performed on the facilities hosted by CSC – IT Center for Science Ltd. in Espoo,
Finland, who are administered by the Finnish Ministry of Education. We also
acknowledge the allocation of computing resources provided by the Swedish
National Allocations Committee at the Center for Parallel Computers at the
Royal Institute of Technology in Stockholm and the National Supercomputer
Centers in Linköping. This work was supported in part by Academy of Finland
grants 121431, 136189 (P.J.K.), and 112020 (M.J.K.), the European Research
Council under the AstroDyn Research Project 227952 and the Swedish Research
Council grant 621-2007-4064.

References

Brandenburg, A. 2005, ApJ, 625, 539
Brandenburg, A., Moss, D., Rüdiger, G., & Tuominen, I. 1990, SoPh, 128, 243
Brandenburg, A., Moss, D., & Tuominen, I. 1992, A&A, 265, 328
Brandenburg, A., Chan, K. L., Nordlund, Å., & Stein, R. F. 2005, AN, 326, 681
Brandenburg, A., Rädler, K.-H., Rheinhardt, M., & Käpylä, P. J. 2008, ApJ, 676,

740
Brandenburg, A., Svedin, A., & Vasil, G. M. 2009, MNRAS, 395, 1599
Bessolaz, N., & Brun, A. S. 2011, ApJ, 728, 115
Brown, B. P. 2009, Ph.D. Thesis, Univ. Colorado, 184
Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J. 2008,

ApJ, 689, 1354
Brummell, N. H., Hurlburt, N. E., & Toomre, J. 1998, ApJ, 493, 955
Brun, A. S., & Palacios, A. 2009, ApJ, 702, 1078
Brun, A. S., & Rempel, M. 2009, Spa. Sci. Rev., 144, 151
Brun, A. S., & Toomre, J. 2002, ApJ, 570, 865
Brun, A. S., Miesch, M. S., & Toomre, J. 2004, ApJ, 614, 1073
Chan, K. L. 2001, ApJ, 548, 1102
Chan, K. L. 2007, AN, 328, 1059
Chan, K. L. 2010, in Solar and Stellar Variability: Impact on Earth and Planets

Proceedings, ed. A. G. Kosovichev, A. H. Andrei, & J.-P. Rozelot, Proc.
IAUS, 264, 219

Chatterjee, P., & Antia, H. M. 2009, ApJ, 707, 208
Chou, D.-Y., LaBonte, B. J., Braun, D. C., & Duvall, T. L., Jr. 1991, ApJ, 372,

314
Collier-Cameron, A. 2007, AN, 328, 1030
DeRosa, M. L., Gilman, P. A., & Toomre, J. 2002, ApJ, 581, 1356
Dobler, W., Stix, M., & Brandenburg, A. 2006, ApJ, 638, 336
Ghizaru, M., Charbonneau, P., & Smolarkiewicz, P. K. 2010, ApJ, 715, L133
Hall, D. S. 1991, The Sun and Cool Stars: activity, magnetism, dynamos, Lect.

Notes Phys., 380, 353
Hathaway, D. H., Beck, J. G., Bogart, R. S., et al. 2000, Sol. Phys., 193, 299
Hupfer, C., Käpylä, P. J., & Stix, M. 2005, AN, 326, 223

Hupfer, C., Käpylä, P. J., & Stix, M. 2006, A&A, 459, 935
Hurlburt, N. E., Toomre, J., & Massaguer, J. M. 1984, ApJ, 282, 557
Käpylä, P. J., & Brandenburg, A. 2008, A&A, 488, 9
Käpylä, P. J., Korpi, M. J., & Tuominen, I. 2004, A&A, 422, 793
Käpylä, P. J., Korpi, M. J., Brandenburg, A., Mitra, D., & Tavakol, R. 2010a,

AN, 331, 73
Käpylä, P. J., Brandenburg, A., Korpi, M. J., Snellman, J. E., & Narayan, R.

2010b, ApJ, 719, 67
Kippenhahn, R. 1963, ApJ„ 137, 664
Kitchatinov, L. L., & Rüdiger, G. 1993, A&A, 276, 96
Kitchatinov, L. L., & Rüdiger, G. 1999, A&A, 344, 911
Kitchatinov, L. L., & Rüdiger, G. 2004, AN, 325, 496
Kitchatinov, L. L., Pipin, V. V., & Rüdiger, G. 1994, AN, 315, 157
Krause, F., & Rädler, K.-H. 1980, Mean-field Magnetohydrodynamics and

Dynamo Theory (Oxford: Pergamon Press)
Lavely, E. M., & Ritzwoller, M. H. 1992, Phil. Trans. Roy. Soc. Lon. A, 339,

431
Miesch, M. S., Elliott, J. R., Toomre, J., et al. 2000, ApJ, 532, 593
Miesch, M. S., Brun, A. S., & Toomre, J. 2006, ApJ, 641, 618
Miesch, M. S., Brun, A. S., DeRosa, M. L., & Toomre, J. 2008, ApJ, 673, 557
Mitra, D., Tavakol, R., Brandenburg, A., & Moss, D. 2009, ApJ, 697, 923
Moffatt, H. K. 1978, Magnetic field generation in electrically conducting fluids

(Cambridge: Cambridge Univ. Press)
Pulkkinen, P., Tuominen, I., Brandenburg, A., Nordlund, Å., & Stein, R. F. 1993,

A&A, 267, 265
Rempel, M. 2005, ApJ, 622, 1332
Rieutord, M., Brandenburg, A., Mangeney, A., & Drossart, P. 1994, A&A, 286,

471
Robinson, F. J., & Chan, K. L. 2001, MNRAS, 321, 723
Rüdiger, G. 1980, GAFD, 16, 239
Rüdiger, G. 1982, AN, 303, 293
Rüdiger, G. 1989, Differential Rotation and Stellar Convection: Sun and Solar-

type Stars (Berlin: Akademie Verlag)
Rüdiger, G., & Hollerbach, R. 2004, The Magnetic Universe (Weinheim: Wiley-

VCH)
Rüdiger, G., & Kitchatinov, L. L. 2007, in The Solar Tachocline, ed. D. W.

Hughes, R. Rosner, & N. O. Weiss (Cambridge University Press), 128
Rüdiger, G., Egorov, P., Kitchatinov, L. L., & Küker, M. 2005a, A&A, 431, 345
Rüdiger, G., Egorov, P., & Ziegler, U. 2005b, AN, 326, 315
Snellman, J. E., Käpylä, P. J., Korpi, M. J., & Liljeström, A. J. 2009, A&A, 505,

955
Thompson, M. J., Christensen-Dalsgaard, J., Miesch, M., & Toomre, J. 2003,

ARA&A, 41, 599
Yoshimura, H. 1975, ApJ, 201, 740
Yousef, T. A., Heinemann, T., Schekochihin, A. A., et al. 2008a, PRL, 100,

184501
Yousef, T. A., Heinemann, T., Rincon, F., et al. 2008b, AN, 329, 737

Pages 16 to 17 are available in the electronic edition of the journal at http://www.aanda.org

A162, page 15 of 17

http://www.aanda.org


A&A 531, A162 (2011)

Appendix A: Dependence on domain size

Above we have shown that we can recover many earlier results
obtained in full spherical shells with wedges that span 150◦ in
latitude and 90◦ in longitude. This gives at least a fourfold ad-
vantage in terms of computation time in comparison to a full
shell. However, it is important to study the range within which
we can still recover the same results as with larger wedges. In or-
der to study this we perform two additional sets of runs that are
listed in Table A.1. In Set E we vary the longitudinal extent from
22.5◦ to full 360◦, with Δθ = 150◦ in all models. In Set F we
keep the longitudinal extent fixed at Δφ = 90◦ and vary the lati-
tudinal extent between 60◦ and 170◦. As our base model we take
Run A5 with fairly rapid rotation and complicated large-scale
flows in the saturated state.

Figure A.1 shows the latitudinal profiles of the off-diagonal
components of the Reynolds stress from the middle of the
convectively unstable layer and the rotation profiles as functions
of radius from three latitudes from Set E and Run A5. The
Reynolds stresses are very similar in the latitude range ±45◦ in
runs with Δφ = 90◦ or larger. Somewhat larger differences are
seen near the latitudinal boundaries. Runs E1 and E2 with the
smallest longitude extents show the same qualitative behaviour
for stress components Qrθ and Qθφ but not for Qrφ. The rotation
profiles for Runs A5, E3, and E4 with Δφ = 90◦−270◦ are very
similar. The most obvious deviations from the trend occur again
for Runs E1 and E2 where the radial gradient of Ω is negative at

the equator as opposed to the other runs where a positive gradi-
ent is found for r/R > 0.8. Surprisingly, Run E5 with a full 360◦
longitude extent also deviates from the trend seen in the interme-
diate φ-extents: the qualitative trend of Ω is similar but the mag-
nitude of the differential rotation is reduced. This is due to a non-
axisymmetric m = 2 mode which is excited in this simulation.
Large-scale hydrodynamical non-axisymmetries have been re-
ported from rapidly rotating convection (e.g. Brown et al. 2008).
However, it is not clear whether the non-axisymmetry in our
Run E5 is due to the same mechanism because of the slower
rotation.

Comparing simulations with different latitudinal extents
(Fig. A.2), we find that domains confined between ±45◦ latitude
still reproduce the essential features of the solutions. This is par-
ticularly clear for the Reynolds stresses which are very similar
in the latitude range ±45◦ from the equator, with only Run F1
showing qualitatively different results in this range. There are
also some differences at high latitudes between Runs A5 and F4.
The rotation profiles are also very similar in the range ±30◦ with
the exception of Run F1. Run A5 also shows a deviating profile
at high latitudes.

These results suggest that a 90◦ longitude and 150◦ latitude
extent is sufficient to capture the main features of the solutions
at larger domains. The cost of this is that some features which
are not of primary interest in the present study, such as the large-
scale non-axisymmetric modes, are omitted.
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Table A.1. Summary of the runs with varying Δθ and Δφ.

Run Grid θ1 Δθ Δφ Ra Ma Re Co Ether Ekin Emer/Ekin Erot/Ekin ΔΩ/Ωeq

A5 128 × 256 × 128 15◦ 150◦ 90◦ 3.1 × 106 0.022 36 2.56 0.111 9.9 × 10−4 0.002 0.949 −0.37

E1 128 × 256 × 32 15◦ 150◦ 22.5◦ 3.1 × 106 0.019 31 2.91 0.113 7.0 × 10−4 0.009 0.963 −0.43
E2 128 × 256 × 64 15◦ 150◦ 45◦ 3.1 × 106 0.020 33 2.77 0.112 7.7 × 10−4 0.008 0.946 −0.35
E3 128 × 256 × 256 15◦ 150◦ 180◦ 3.1 × 106 0.022 37 2.47 0.113 1.1 × 10−3 0.002 0.941 −0.41
E4 128 × 256 × 384 15◦ 150◦ 270◦ 3.1 × 106 0.023 39 2.36 0.111 8.3 × 10−4 0.002 0.902 −0.29
E5 128 × 256 × 512 15◦ 150◦ 360◦ 3.1 × 106 0.025 41 2.23 0.112 4.0 × 10−4 0.001 0.659 −0.05

F1 128 × 96 × 128 60◦ 60◦ 90◦ 3.1 × 106 0.033 31 2.92 0.115 1.3 × 10−4 0.001 0.644 +0.12
F2 128 × 160 × 128 45◦ 90◦ 90◦ 3.1 × 106 0.020 32 2.82 0.114 4.7 × 10−4 0.004 0.899 −0.13
F3 128 × 192 × 128 30◦ 120◦ 90◦ 3.1 × 106 0.021 34 2.68 0.113 4.3 × 10−4 0.004 0.885 −0.08
F4 128 × 288 × 128 5◦ 170◦ 90◦ 3.1 × 106 0.020 34 2.71 0.113 3.7 × 10−4 0.006 0.882 −0.07

Fig. A.1. Off-diagonal Reynolds stresses from the middle of the convection zone (upper row), and Ω as a function of radius at θ = 90◦ (lower row,
left panel), θ = 60◦ (middle panel), and θ = 30◦ (right panel) for Runs E1–E5 and A5. Linestyles as indicated in the legend in the lower middle
panel.

Fig. A.2. Same as Fig. A.1 but for Runs F1–F4 and A5. The left panel on the lower row shows Ω from θ = 45◦. Linestyles as indicated in the
legend in the lower left panel
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