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Certain aspects of the mean-field theory of turbulent passive scalar transport and of mean-field electrodynamics
are considered with particular emphasis on aspects of compressible fluids. It is demonstrated that the total
mean-field diffusivity for passive scalar transport in a compressible flow may well be smaller than the molecular
diffusivity. This is in full analogy to an old finding regarding the magnetic mean-field diffusivity in an electrically
conducting turbulently moving compressible fluid. These phenomena occur if the irrotational part of the motion
dominates the vortical part, the Péclet or magnetic Reynolds number is not too large, and, in addition, the
variation of the flow pattern is slow. For both the passive scalar and the magnetic cases several further analytical
results on mean-field diffusivities and related quantities found within the second-order correlation approximation
are presented, as well as numerical results obtained by the test-field method, which applies independently
of this approximation. Particular attention is paid to nonlocal and noninstantaneous connections between the
turbulence-caused terms and the mean fields. Two examples of irrotational flows, in which interesting phenomena
in the above sense occur, are investigated in detail. In particular, it is demonstrated that the decay of a mean scalar
in a compressible fluid under the influence of these flows can be much slower than without any flow, and can
be strongly influenced by the so-called memory effect, that is, the fact that the relevant mean-field coefficients
depend on the decay rates themselves.
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I. INTRODUCTION

Many investigations of transport processes in turbulently
moving fluids have been done in the framework of the
mean-field concept. A simple example is the transport of a
passive scalar quantity like the number density of particles
in a turbulent fluid [1–5]. Another important example is the
magnetic-field transport in electrically conducting turbulent
fluids. The widely elaborated mean-field electrodynamics, or
magnetofluiddynamics, delivers in particular the basis of the
mean-field theory of cosmic dynamos [6,7].

The original equation governing the behavior of a passive
scalar in a fluid contains a diffusion term with a diffusion
coefficient, say κ . In the corresponding mean-field equation
there appears, in the simple case of isotropic turbulence, the
effective mean-field diffusivity κ + κt in place of κ , where κt

is determined by the turbulent motion and therefore sometimes
called the “turbulent diffusivity.” Likewise, the induction equa-
tion governing the magnetic field in an electrically conducting
fluid contains a diffusion term with the magnetic diffusivity η.
In the mean-field induction equation there appears, again for
isotropic turbulence, η + ηt in place of η, where ηt is again
determined by the turbulent motion and sometimes called the
“turbulent magnetic diffusivity.”

At first glance it seems plausible that turbulence enhances
the effective diffusion, corresponding to positive κt and ηt .
In a compressible fluid, however, this is not always true. A
counterexample for the magnetic case has been long known.
Represent the velocity in the form u = ∇ × ψ + ∇φ by a
vector potential ψ satisfying the gauge condition ∇ · ψ = 0
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and a scalar potential φ. Let uc, λc, and τc be a characteristic
magnitude, length, and time, respectively, of the velocity field.
Assume that the magnetic Reynolds number ucλc/η is small
compared to unity and that τc considerably exceeds the free-
decay time λ2

c/η of a magnetic structure of size λc. Then it
turns out [7–10] that

ηt = 1

3η
(ψ2 − φ2). (1)

That is, negative ηt are certainly possible if the part of u
determined by the potential φ dominates. Then, the mean-field
diffusivity is smaller than the molecular one. This surprising
result deserves more thorough examination, which is indeed
one of the motivations behind this paper. Here it will be shown
that a result analogous to (1) applies to κt , too. These results
apply not only to turbulence in the narrow sense, but also to
other kinds of random and even nonrandom (including steady)
flows.

Results of that kind might be of some interest for the
turbulence in the interstellar medium. It is widely believed
that it is mostly driven by supernova explosions [11–14]. In
this case the driving force, and so the flow, too, could have
noticeable irrotational parts, i.e., parts that are described by
gradients of potentials. However, when rotation or shear is
important, or the Mach number is close to or in excess of unity
and the baroclinic effect present, vorticity production becomes
progressively more important—even when the forcing of the
flow is purely irrotational [15].

Another possible application of such results could be in
studies of the very early Universe, where phase transition
bubbles are believed to be generated in connection with the
electroweak phase transition [16,17]. The relevant equation
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of state is that of an ultrarelativistic gas with constant sound
speed c/

√
3, where c is the speed of light. This is a barotropic

equation of state, so the baroclinic term vanishes. Hence, there
is no obvious source of vorticity in the (nonrelativistic) bulk
motion inside these bubbles so that it should be essentially
irrotational. This changes, however, if there is a magnetic field
of significant strength, because the resulting Lorentz force is
in general not a potential one.

In Sec. II of this paper we give an outline of the mean-field
theory of passive scalar transport, prove the passive-scalar
version of relation (1), and derive some further results in the
framework of the second-order correlation approximation. We
also give an analogous outline of mean-field electrodynamics
and present some specific results. In Sec. III we formulate
the mean-field concept for the case of nonlocal relationships
between the turbulence-dependent terms in the mean-field
equations and the mean fields, and we explain the test-field
method for the determination of transport coefficients. In
Sec. IV we then present analytical and numerical results
for two simple models which reflect mean-field properties of
irrotational flows. Finally a discussion of our findings is given
in Sec. V.

II. OUTLINE OF MEAN-FIELD THEORIES

A. Passive scalar transport

Let us focus attention on passive scalars C which describe
the concentration of, e.g., dust or chemicals per unit volume
of a fluid. We assume that C satisfies

∂tC + ∇ · (UC) − ∇ · (κ∇C) = 0, (2)

where U is the fluid velocity and κ a diffusion coefficient,
which in general depends on both the mass density � and the
temperature T . In the case of an incompressible isothermal
fluid, Eq. (2) applies with κ independent of position so that
∇ · (κ∇C) turns into κ	C. We want, however, to include
compressible fluids, too. We may justify (2), e.g., if C describes
the concentration of an admixture of light particles in a
compressible isothermal fluid. The diffusion coefficient is
then given by κ = f (T )/�, with some function f ; see [18],
Chap. 11, p. 39. We expect the validity of (2) with some
dependency of κ on � also in more general cases. In a flow
of such a fluid, its density, even when uniform initially, will
in general become position dependent in the course of time.
For the sake of simplicity we shall nevertheless ignore any
consequence of inhomogeneous density. Hence, our results are
applicable only for either the limited time interval or the limited
velocity amplitude range for which the density inhomogeneity
is still negligible. Overcoming these limitations requires a
theory which includes momentum and continuity equations
and is beyond the scope of this paper.

With this in mind we consider, in what follows, κ always
as independent of position, and replace (2) by

∂tC + ∇ · (UC) − κ	C = 0. (3)

We further assume that the fluid motion and therefore also C

show turbulent fluctuations, define mean quantities like C or
U by a proper averaging procedure which ensures the validity

of the Reynolds rules, and put C = C + c and U = U + u.
The evolution of C is then governed by

∂tC + ∇ · (U C) + G − κ	C = 0 (4)

with

G = ∇ · F , F = uc . (5)

For c we have

∂tc + ∇ · [uC + Uc + (uc)′] − κ	c = 0, (6)

where (uc)′ stands for uc − uc. Clearly, F is a functional of
u, U , and C in the sense that F at a given point in space and
time depends in general on u, U , and C at other points, too.
This functional is linear in C.

Let us, for simplicity, consider the case U = 0 and assume
that u corresponds to homogeneous turbulence. Until further
notice we adopt the assumption that C varies only weakly in
space and time so that F , at a given point in space and time,
can be simply represented as a function of C and its first spatial
derivatives, i.e., ∇C, taken just at this point. We will refer to
this assumption as “perfect scale separation.” We may then
conclude that

F i = γ
(C)
i C − κij

∂C

∂xj

, (7)

with γ
(C)
i and κij being coefficients determined by u, which

are independent of position.1

Clearly, γ (C)
i gives the velocity of advection of C, and κij is

a contribution to the total mean-field diffusivity tensor, which
is then equal to κδij + κij . From (7) we conclude that

G = γ
(C)
i

∂C

∂xi

− κij

∂2C

∂xi∂xj

. (8)

Of course, κij may be assumed to be symmetric in i and j .
For isotropic turbulence we have γ

(C)
i = 0 and κij = κtδij with

some constant coefficient κt so that

F = −κt∇C, (9)

and consequently

G = −κt	C. (10)

Although we have defined u as the turbulent velocity, only
its statistical symmetry properties like homogeneity or isotropy
have in fact been utilized. Here and later in this paper, the term
“turbulence” should, accordingly, be understood in a wider
sense, including random or even nonrandom flows with such
properties.

1Consequently, a spatially constant C is not influenced by u and thus
stationary; nevertheless it causes a fluctuation c that is, for stationary
u, again stationary. Hence, there is then a nontrivial stationary
solution of (2) with constant average. For potential flows u = ∇φ

it can be given explicitly as C = C0 exp(φ/κ). We thank our referee
for having made us aware of it.
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In specific calculations often the second-order correlation
approximation (SOCA) is used. It consists in neglecting the
term (uc)′ in Eq. (6) for c, so that this equation turns into

∂tc − κ	c = −∇ · (uC). (11)

The applicability of this approximation is restricted to not too
large velocities u. If we characterize the velocity field again by
a typical magnitude uc and by typical length and time scales λc

and τc, respectively, we may define the parameter qκ = λ2
c/κτc,

which gives the ratio of the free-decay time λ2
c/κ to τc; further,

the Péclet number Pe = ucλc/κ and the Strouhal number St =
ucτc/λc. Note that qκ = Pe/St. A sufficient condition for the
applicability of SOCA in the case qκ � 1 reads St � 1; in the
case qκ � 1 it reads Pe � 1.

B. Diffusivity in a special case

Let us focus attention on homogeneous isotropic turbulence
and determine κt in a limiting case. Since κt depends neither
on C nor on position, we may choose simply C = G · x with
a constant G so that ∇C = G, and consider at the end only
x = 0. We represent u in the form

u = ∇ × ψ + ∇φ, ∇ · ψ = 0, (12)

by a vector potential ψ and a scalar potential φ, and set further

ψ = ∇ × χ , φ = −∇ · χ , (13)

where we utilized the freedom in defining the new vector
potential χ such that both ψ and φ are now derived from this
single quantity. We then have

u = −∇2χ . (14)

We further assume that u varies so slowly in time that we may
consider it as independent of t . Finally we adopt SOCA so that
(11) applies. We may write it in the form

	(κc − X) = 0 (15)

with

X = −χ · G − 2∇� · G + φ G · x, 	� = φ. (16)

From (15) we conclude that

c = 1

κ
X + c0, (17)

where c0 is some constant. Calculating then F at x = 0 we
obtain

F i = − 1

κ
(uiχk + 2ui∂�/∂xk)Gk. (18)

Due to the isotropy of the turbulence we have

uiχk = 1
3 u · χ δik, ui∂�/∂xk = 1

3 u · ∇� δik. (19)

Using (12) and (13) and considering the homogeneity of the
turbulence, we find

u · χ = ψ2 + φ2, u · ∇� = −φ2. (20)

Consequently we have

F = − 1

3κ
(ψ2 − φ2)G. (21)

Comparing this with (9), we obtain

κt = 1

3κ
(ψ2 − φ2), (22)

a result in full analogy to (1). For an incompressible flow κt

can never be negative, while it can never be positive for an
irrotational flow.

C. Relations for transport coefficients

We consider now homogeneous, but not necessarily
isotropic turbulence and use a Fourier transformation of the
form

F (x,t) =
∫∫

F̂ (k,ω) exp(ik · x − iωt) d3k dω. (23)

Further we adopt SOCA. Then standard derivations (see, e.g.,
[7]) yield

γ
(C)
i = −

∫∫
ikk

κk2 − iω
Q̂ik(k,ω) d3k dω, (24)

κij =
∫∫ (

Q̂ij (k,ω) + Q̂ji(k,ω)

2(κk2 − iω)

−2κ[Q̂ik(k,ω)kj + Q̂jk(k,ω)ki]kk

(κk2 − iω)2

)
d3k dω, (25)

where Q̂ij (k,ω) is the Fourier transform of the correlation
tensor Qij (ξ ,τ ), defined by

Qij (ξ ,τ ) = ui(x,t) uj (x + ξ ,t + τ ). (26)

Since Qij (ξ ,τ ) is real, we have Q̂ij (k,ω) = Q̂∗
ij (−k, − ω),

where the asterisk means complex conjugation.
We recall here Bochner’s theorem (see, e.g., [7], Chap. 6),

according to which, for any homogeneous turbulence,
Q̂ij (k,ω) is positive semidefinite, that is,

Q̂ij (k,ω) Xi X∗
j � 0 (27)

for any complex vector X .
Assume first incompressible turbulence, that is, ∇ · u = 0.

Then we have

Q̂ij kj = 0, Q̂ij ki = 0. (28)

In this case, (24) yields γ
(C)
i = 0 (even if the flow is not

isotropic), and (25) turns into

κij = 1

2

∫∫
1

κk2 − iω

(
Q̂ij (k,ω) + Q̂ji(k,ω)

)
d3k dω.

(29)

From (27) and (29) we may conclude that κij is positive
semidefinite. If the flow is statistically isotropic we have
κij = κtδij and we may conclude that κt is non-negative.

Assume next irrotational turbulence, that is, u = ∇φ with
any potential φ. Then we have

Q̂ij (k,ω) = kikj R̂(k,ω) (30)
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with some real function R̂ related to φ. Owing to (27), R̂ must
be non-negative (cf. [7], Chap. 6). With (24), (25), and (30)
we find

γ
(C)
i = −

∫∫
ikiR̂(k,ω)k2

κk2 − iω
d3k dω, (31)

κij = −
∫∫

(3κk2 + iω)kikj R̂(k,ω)

(κk2 − iω)2
d3k dω. (32)

For statistically isotropic flows R̂ depends only via k on k.
Hence, we obtain as expected γ

(C)
i = 0 and

κt = −1

3

∫∫
(3κk2 + iω)k2R̂(k,ω)

(κk2 − iω)2
d3k dω. (33)

Assume now in addition that the variations of u in time are
slow. Then R̂ is markedly different from zero only for very
small ω. Consequently, κt is nonpositive.

D. Magnetic-field transport

We now consider a magnetic field B in a homogeneous
electrically conducting fluid and assume that it is governed by

∂t B − ∇ × (U × B) − η∇2 B = 0, ∇ · B = 0, (34)

with U being again the velocity and η the magnetic diffusivity
of the fluid. Focusing attention on a turbulent situation, we
define again mean fields, in particular B and U , and put B =
B + b and U = U + u. Then we have

∂t B − ∇ × (U × B + E) − η∇2 B = 0, ∇ · B = 0, (35)

where

E = u × b (36)

and

∂t b − ∇ × [U × b + u × B + (u × b)′]−η∇2b = 0,

∇ · b = 0. (37)

Here (u × b)′ means u × b − u × b. The mean electromotive
force E due to the fluctuations u and b is a functional of u, U ,
and B, which is linear in B.

Let us restrict ourselves again to U = 0. Assuming perfect
scale separation, defined analogously to the passive scalar case
considered before, we may conclude that

E i = aijBj − ηij (∇ × B)j − cijk(∇B)sjk, (38)

where (∇B)sjk = 1
2 (∂Bj/∂xk + ∂Bk/∂xj ). Here aij , ηij , and

cijk are quantities determined by u. [Instead of the traditional
bijk we use here ηij = 1

2 bimnεjmn and cijk = − 1
2 (bijk +

bikj ).]2

In this context SOCA consists in dropping the term (u × b)′
in (37) so that

∂t b − η∇2b = ∇ × (u × B), ∇ · b = 0. (39)

2In analogy to what was noted for the passive scalar case, stationary
solutions of (34) with constant mean parts of B are conceivable.

Sufficient conditions under which this applies are again
analogous to those explained below (11). We have only to
replace the parameter qκ by qη = λ2

c/ητc and the Péclet
number Pe by the magnetic Reynolds number Rm = ucλc/η.
Note that qη = Rm/St.

The relevant relations for aij , ηij , and cijk , derived un-
der SOCA for homogeneous turbulence, are given in the
Appendix. Let us restrict ourselves here to homogeneous
nonhelical turbulence. Then the correlation tensor Q̂ij may
not contain any pseudoscalar or any other pseudoquantity. As
a consequence, the symmetric part of aij and the antisymmetric
part of ηij are equal to zero, and we have

aij = εijkγ
(B)
k ,

(40)

γ
(B)
i = 1

2

∫∫
ikk

Q̂ik(k,ω) + Q̂ki(k,ω)

ηk2 − iω
d3k dω,

and

ηij = 1

2

∫∫ (
[2δij δkl − (δikδjl + δjkδil)]Q̂kl(k,ω)

2(ηk2 − iω)

− η[2δij kk − (kiδjk + kj δik)]klQ̂kl(k,ω)

(ηk2 − iω)2

)
d3k dω. (41)

Moreover, cijk is equal to zero.
Consider now incompressible turbulence, for which (28)

applies. Then we have, even in the anisotropic case, γ
(B)
i = 0

[see also [7], Chap. 7.1, statement (i)]. Furthermore,

ηij = 1

4

∫∫
[2δij δkl − (δikδjl + δjkδil)]Q̂kl(k,ω)

ηk2 − iω
d3k dω,

(42)

which, together with (27), implies that ηij is positive semidef-
inite. If the turbulence is in addition isotropic, we have
ηij = ηtδij with

ηt = 1

3

∫∫
Q̂kk(k,ω)

ηk2 − iω
d3k dω. (43)

Like κt , ηt also has to be non-negative [see also [7], Chap. 7.4,
Eq. (7.47)].

Consider next irrotational turbulence, for which (30) ap-
plies. Then,

γ
(B)
i =

∫ ∫
ikik

2R̂(k,ω)

ηk2 − iω
d3k dω, (44)

ηij = −1

2

∫ ∫
(ηk2 + iω)(k2δij − kikj )R̂(k,ω)

(ηk2 − iω)2
d3k dω.

(45)

If the variations of u in time are slow, R̂ is markedly different
from zero only for small ω. Then it can be readily shown that
ηij is negative semidefinite. In the isotropic case, R̂ depends,
as already noted above, only via k on k. Therefore we have,
independent of the time behavior of u, γ

(B)
i = 0 and

ηt = −1

3

∫∫
(ηk2 + iω)R̂(k,ω)k2

(ηk2 − iω)2
d3k dω. (46)

If then the time variations of u are slow, ηt has to be nonpositive
[see also [7], Chap. 7, Eq. (7.51)].
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III. GENERALIZATIONS AND TEST-FIELD PROCEDURE

A. Lack of scale separation

In applications, the assumption of perfect scale separation,
used so far, might be violated; see, e.g., [19]. We now
relax it. Considering first again the passive scalar case we
admit now a dependence of F , at a given point in space,
on C (or its derivatives) at other points, that is, we admit
a nonlocal connection between F and C. For the sake of
simplicity, however, we assume until further notice that F ,
at a given time, is only connected with C (or its derivatives)
at the same time, that is, we remain with an instantaneous
connection between F and C. Again, we restrict ourselves to
homogeneous turbulence.

We further assume here, again for simplicity, that mean
fields are defined as averages over all x and y. Hence, they
depend on z and t only.

In what follows it is then sufficient to consider the z

component of F only. As a straightforward generalization
of the relation for F z contained in (7), with derivatives with
respect to z only, we now write

F z(z,t) =
∫ (

γ (C)
z (ζ ) C(z − ζ,t) − κzz(ζ )

∂C(z − ζ,t)

∂z

)
dζ,

(47)

with two functions γ (C)
z (ζ ) and κzz(ζ ), which are assumed to

be symmetric in ζ , and with the integration being over all ζ .
(In the case of inhomogeneous turbulence, γ (C)

z and κzz would
also depend on z.) With the specifications γ (C)

z (ζ ) = γ (C)
z δ(ζ )

and κzz(ζ ) = κzzδ(ζ ), where γ (C)
z and κzz on the right-hand

sides are understood as constants, we return just to the relation
for F z given by (7). Utilizing integrations by parts, we may
rewrite (47) as

F z(z,t) =
∫

�(ζ )C(z − ζ,t) dζ (48)

with

�(ζ ) = γ (C)
z (ζ ) − ∂κzz(ζ )

∂ζ
. (49)

In what follows, it is convenient to work with a Fourier
transformation defined by

F (ζ ) = 1

2π

∫
F̃ (k) exp(ikζ ) dk. (50)

[Apart from the fact that here only a function of the single
variable ζ is considered, this definition differs from (23) also
by the factor 1/2π on the right-hand side.] Equation (48) is
then equivalent to

F z(z,t) = 1

2π

∫
�̃(k)C̃(k,t) exp(ikz) dk, (51)

and (49) implies

γ̃ (C)
z (k) = Re[�̃(k)], κ̃zz(k) = −k−1Im[�̃(k)]. (52)

For γ (C)
z and κzz on the right-hand sides of (7) and (8) we have

then

γ (C)
z = γ̃ (C)

z (0), κzz = κ̃zz(0). (53)

Let us admit that F z, at a given time, depends on C (and
its spatial derivatives) not only at this but also at earlier times.
This noninstantaneous connection between F z and C can be
described as a memory effect; see, e.g., [20]. We then have to
generalize (47) such that

F z(z) =
∫∫ (

γ (C)
z (ζ,τ ) C(z − ζ,t − τ )

− κzz(ζ,τ )
∂C(z − ζ,t − τ )

∂z

)
dζ dτ (54)

with γ (C)
z and κzz symmetric in ζ and equal to zero for τ < 0;

the integration is then over all ζ and τ � 0. It is straightforward
to generalize the relations (48) to (53) in that sense. Then,
Fourier transforms with respect to ζ and τ occur, and γ̃ (C)

z and
κ̃zz depend not only on k but also on an additional variable ω.

The generalizations explained here can easily be extended
to the magnetic case discussed in Sec. II D. Then, γ (B)

z , ηxx ,
and ηyy occur as functions of ζ , or of ζ and τ , and their Fourier
transforms γ̃ (B)

z , η̃xx , and η̃yy as functions of k, or of k and ω.

B. Test-field procedure

In Sec. II we have presented results for quantities like γ
(C)
i

or κij which apply only under SOCA. As soon as we are able to
solve equations like (6), e.g., numerically, we may determine
these quantities, or γ̃ (C)

z and κ̃zz introduced in the preceding
section, also beyond this approximation. A proper tool for
that is the test-field method, first developed in mean-field
electrodynamics [21,22]. We apply the ideas of this method
here first to the passive scalar case. As in the preceding section
we assume again that the mean fields are defined by averaging
over all x and y and relax spatial scale separation, but ignore
at first scale separation in time, that is, the memory effect.

Suppose that we have solved (6) for two different test fields
C, say

C
c = C0 cos kz and C

s = C0 sin kz (55)

with given C0 and k, and calculated the corresponding F z,
say F c

z(z) and F s

z(z). Specifying (47) to F c

z and F s

z and
considering that, due to (50) and the assumed symmetry of
γ (C)

z (ζ ) and κzz(ζ ) in ζ ,

∫
γ (C)

z (ζ ) cos kζ dζ = γ̃ (C)
z (k),

(56)∫
κzz(ζ ) cos kζ dζ = κ̃zz(k),

we find

F c

z(z) = C0
[
γ̃ (C)

z (k) cos kz + κ̃zz(k) k sin kz
]
,

(57)
F s

z(z) = C0
[
γ̃ (C)

z (k) sin kz − κ̃zz(k) k cos kz
]
.
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This in turn leads to

γ̃ (C)
z (k) = 1

C0

[
F c

z(z) cos kz + F s

z(z) sin kz
]
,

(58)

κ̃zz(k) = 1

C0k

[
F c

z(z) sin kz − F s

z(z) cos kz
]
.

Note that, although constituents of the right-hand sides depend
on z, the left-hand sides do not.

If the memory effect is taken into account, Eq. (6) has to
be solved with time-dependent test fields C. Let us define
such fields by multiplying the right-hand sides in (55) by a
factor eiωt . Integrate then the relevant equations numerically
with any initial condition until all transient parts of the
solutions have disappeared. For steady flows, the remaining
solutions then show the same harmonic time variation as the
test fields (approximately possible also for unsteady flows).
That is, the same time-dependent factors occur on both sides
of the equations analogous to (57) and can be removed.
These equations then allow the determination of γ̃ (C)

z (k,ω)
and κ̃zz(k,ω), that is, the Fourier transforms of γ (C)

z (ζ,τ ) and
κzz(ζ,τ ). Of course, γ̃ (C)

z (k,ω) and κ̃zz(k,ω) are in general
complex. We may also replace the factor eiωt by eσ t with a
complex σ . Instead of the Fourier transformation with respect
to time we have then to use a Laplace transformation.

A test-field procedure, as described here for passive scalars,
can also be established for the magnetic case as discussed
in Sec. II D. It allows then the calculation of quantities like
γ (B)

z , ηxx , and ηyy or their Fourier or Laplace transforms. Such
procedures have already been used elsewhere (e.g., [20,22]).

For the numerical computations presented below we use
the PENCIL CODE [23], where the test-field methods both for
passive scalars and for magnetic fields have already been
implemented [4]. All results presented in this paper have been
obtained with a version of the code compatible with revision
16408.

IV. EXAMPLES AND ILLUSTRATIONS

A. Three-dimensional flow

In an attempt to model properties of homogeneous isotropic
irrotational turbulence we wish to consider first a steady
potential flow. Thus, we choose

u = ∇φ, (59)

φ = u0

k0
cos k0(x + χx) cos k0(y + χy) cos k0(z + χz). (60)

Here, u0 and k0 are positive constants and χx , χy , and χz

are understood as random phases. Of course, this steady flow
must lead to growing inhomogeneities of the mass density.
Therefore the applicability of our results is restricted to a
limited time range; see the discussion below (2).

Starting from original fields C and B, which may depend on
x, y, z, and t , and also on χx , χy , and χz, we define mean fields
C and B by averaging over all x and y and, in addition, over χz.
Consequently, mean fields no longer depend on x, y, or χz, but
they may depend on z and t . Clearly, the Reynolds averaging
rules apply exactly. For mean quantities determined by u only,

averaging over x and y is equivalent to averaging over χx

and χy . Therefore, such quantities can also be understood as
averages over χx , χy , and χz. Clearly, u2 is independent of x,
y, and also of z.

From (59) and (60), we conclude that

urms = 1

2

√
3

2
u0 (61)

and we define a wave number kf of u by

kf =
√

3k0. (62)

In what follows, κt and ηt , as well as κ̃t and η̃t , will be expressed
in units of κt0 and ηt0, given by

κt0 = ηt0 = urms

3kf

. (63)

Furthermore, we define the Péclet number Pe and the magnetic
Reynolds number Rm by

Pe = urms

κkf

, Rm = urms

ηkf

. (64)

Calculations in the framework of SOCA under the assump-
tion of perfect scale separation yield

κt = −κt0Pe, ηt = −ηt0Rm. (65)

Clearly, κt and ηt are nonpositive. If scale separation is, in the
sense of (47), relaxed, we obtain

κ̃t (k) = −κt0Pe f (k/kf ), η̃t (k) = −ηt0Rm f (k/kf ),

f (v) = 1 − v2

1 + (2/3)v2 + v4
. (66)

In all following discussions we consider k as positive. Like κt

and ηt , also κ̃t and η̃t are negative as long as k/kf < 1.
In what follows, we present results for the quantities κ̃t and

η̃t obtained by the test-field procedure described in Sec. III B,
utilizing numerical integrations of Eq. (6) for c or Eq. (37) for
b. Averaging over χz was performed by averaging over z.

Figure 1 shows κ̃t /κt0 as well as η̃t /ηt0 for a small value
of k/kf , at which these quantities should be very close to
κt/κt0 and ηt/ηt0, as functions of Pe and Rm, respectively.
(These values could also be obtained with a test field that is
independent of z and another one linear in z.) In agreement
with the results presented in Sec. II and with (65), κt and ηt are
negative for not too large values of Pe and Rm, respectively.
Remarkably the functions κ̃t (Pe) and η̃t (Rm) coincide formally
for small values of Pe and Rm only, but are otherwise clearly
different from each other. In particular, η̃t remains negative, at
least for Rm � 70, while κ̃t becomes positive for Pe � 2. The
total diffusivities, η + η̃t and κ + κ̃t , are always found to be
positive.

Figures 2 and 3 show examples of the dependence of κ̃t /κt0

and η̃t /ηt0 on k/kf . Again, κ̃t and η̃t with Pe = 0.35 and
Rm = 0.35, respectively, that is, in the validity range of SOCA,
take coinciding negative values in the limit of small k/kf .
However, κ̃t and η̃t become positive for large values of k/kf ,
regardless of the values of Pe and Rm. The dependence of κ̃t

on Pe and that of η̃t on Rm are in general clearly different from
each other.
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FIG. 1. κ̃t /κt0 and η̃t /ηt0 as functions of Pe and Rm, respectively,
for the model given by (59) and (60); k/kf = 1/10

√
3 ≈ 0.06. The

dotted line on the lower left gives SOCA result and the shaded area on
the lower right marks the regime where the total diffusivities would
become negative.

The results regarding negative contributions of κt to
the mean-field diffusivity for passive scalars, or negative
contributions of ηt to the magnetic mean-field diffusivity, have
been found under the assumption that the velocity u is steady
or varies only weakly in time. In order to see the influence of
the variability of u we consider now a renovating flow. It is
assumed that, during some time interval, a steady flow as given
by (60) with some values of χx , χy , and χz exists, and likewise
in the following interval, but with randomly changed χx , χy ,
and χz, and so forth. Hence, there is no correlation between
the flows in the different intervals. It is further assumed that
all intervals are equally long. Denoting their durations by τ ,
we define now the dimensionless parameters

qκ = (
κk2

f τ
)−1

, qη = (
ηk2

f τ
)−1

. (67)

Steadiness of the velocity corresponds to qκ = qη = 0.
Figure 4 shows the dependency of κ̃t /κt0Pe on qκ and that

of η̃t /ηt0Rm on qη for k/kf = 1/
√

3 ≈ 0.6. We see that κ̃t

and η̃t are no longer negative if qκ and qη exceed 0.2 and 0.3,
respectively.

FIG. 2. κ̃t /κt0 versus k/kf for some values of Pe.

FIG. 3. η̃t /ηt0 versus k/kf for some values of Rm.

B. Plane-wave-like flow

With the idea of establishing a simple model reflecting
features of homogeneous anisotropic turbulence, we remain
with (59), that is u = ∇φ, but replace (60) by

φ = u0

k0
cos[k0(sx + z) − ω0t − χ ]. (68)

If s = 0, the velocity u corresponds to a sound wave traveling
in the z direction, with wavelength and frequency determined
by k0 and ω0 and with a phase angle χ . We assume, for
simplicity, k0 > 0 and ω0 � 0 so that the wave travels in the
positive z direction. If we admit nonzero values of s, the wave
propagates no longer in the z direction, but in the direction of
the vector (s,0,1). For ω0 = 0 the velocity u does not depend
on time, that is, we have a “frozen-in” wave.

Similarly to the preceding example, we define mean fields
here by averaging over all x and y and, if the original field
depends on χ , also over χ . Then, mean fields may depend
only on z and t . Again, the Reynolds averaging rules apply
exactly. If an original field is determined by u only and s is
unequal to zero, averaging over x is equivalent to averaging
over χ .

FIG. 4. κ̃t /κt0Pe and η̃t /ηt0Rm versus qκ or qη, respectively, for a
renovating flow with urmskf τ = 5.3 and k/kf = 1/

√
3 ≈ 0.6. In the

calculations, τ was held constant. Consequently, qκ = Pe/5.3 and
qη = Rm/5.3.
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Instead of (61) we now have

urms = u0

√
s2 + 1

2
, (69)

and instead of (62) and (63) we put

kf = k0, κt0 = ηt0 = urms

kf

, (70)

and we define Pe and Rm again according to (64). Finally we
set

qκ = ω0

κk2
0

, qη = ω0

ηk2
0

. (71)

Due to the definition of mean fields, which implies that C and
B do not depend on x and y, we also have (∇ × B)z = 0. In
addition, we assume that Bz = 0.

Adopting SOCA and assuming again perfect scale separa-
tion, we find

γ (C)
z = urmsPe g(s,qκ ),

γ (B)
z = urmsRm g(s,qη), (72)

g(s,q) = (1 + s2)q

(1 + s2)2 + q2
,

and

κzz = −κt0Pe h(s,qκ ),

ηxx = ηyy = −ηt0Rm h(s,qη), (73)

h(s,q) = (1 + s2)[(1 + s2)2 − 3q2]

[(1 + s2)2 + q2]2
.

In the case qκ = qη = 0, that is, for frozen-in waves, the γ (C)
z

and γ (B)
z vanish. This is due to the fact that, then, there is no

preference for the positive or negative z direction. For qκ �= 0,
however, γ (C)

z is positive so that C is advected in the positive
z direction. Further, κzz is negative for not too large qκ , but it
becomes positive for larger qκ . This applies analogously with
qη, γ (B)

z , and ηxx = ηyy .
Relaxing perfect spatial scale separation and assuming that

C and B vary in time as exp(σ t) with a real σ , we find further

γ̃ (C)
z = urmsPe g

(
s,qκ,k/kf ,σ/κk2

f

)
,

γ̃ (B)
z = urmsRm g

(
s,qη,k/kf ,σ/ηk2

f

)
, (74)

g(s,q,v,w) = q

2

(
1 + s2 + v

[(1 + v)2 + s2 + w]2 + q2

+ δ
1 + s2 − v

[(1 − v)2 + s2 + w]2 + q2

)
,

and

κ̃zz = −κt0Pe h
(
s,qκ,k/kf,σ/κk2

f

)
,

η̃xx = η̃yy = −ηt0Rm h
(
s,qη,k/kf ,σ/ηk2

f

)
, (75)

h(s,q,v,w) = − 1

2v

(
(1 + s2 + v)[(1 + v)2 + s2 + w]

[(1 + v)2 + s2 + w]2 + q2

− δ
(1 + s2 − v)[(1 − v)2 + s2 + w]

[(1 − v)2 + s2 + w]2 + q2

)
.

The factor δ is in general equal unity but equal to zero if
1 − v = s = w = q = 0, that is, if the following denominator

FIG. 5. Dependence of γ̃ (C)
z /urmsPe and κ̃zz/κt0Pe on qκ as well

as that of γ̃ (B)
z /urmsRm and η̃xx/ηt0Rm on qη for the model given by

Eq. (68) for k/kf = 0.1, s = 0.01, σ = 0, and three values of Pe or
Rm, respectively. Solid lines give SOCA results, symbols the values
obtained by the test-field method; dots correspond to γ̃ (C)

z /urmsPe
and κ̃zz/κt0Pe, open circles to γ̃ (B)

z /urmsRm, and η̃xx/ηt0Rm. Clearly,
γ̃ (C)

z /urmsPe and κ̃zz/κt0Pe coincide completely with γ̃ (B)
z /urmsRm and

η̃xx/ηt0Rm if Pe and Rm coincide.

vanishes. All coefficients γ
(C)
i , γ

(B)
i , γ̃

(C)
i , γ̃

(B)
i , κij , ηij , κ̃ij , and

η̃ij , which are not explicitly mentioned, are equal to zero.
Numerical calculations of γ̃ (C)

z and κ̃zz as well as γ̃ (B)
z

and η̃xx = η̃yy by the test-field method, without restriction
to SOCA, have been carried out with k/kf = 0.1 and some
specific values of Pe and Rm. Only cases with s �= 0 were
included, for which the χ and x averages are equivalent. Hence
the standard test-field procedure with horizontal averages
could be employed. Figure 5 shows these quantities for
s = 0.01 as functions of qκ or qη. The results for Pe = 0.1 and
Rm = 0.1 are in good agreement with our SOCA calculations,
that is, (74) and (75). Those for higher Pe and Rm clearly
deviate from them. Interestingly, the dependence of γ̃ (C)

z and
κ̃zz on Pe is always the same as those of γ̃ (B)

z and η̃xx or η̃yy

on Rm.
A remarkable feature of SOCA results (75) for κ̃zz, and

also for η̃xx = η̃yy , is that these quantities show singularities at
k/kf = 1 if qκ = qη = s = σ = 0. Nevertheless they are well
defined at this point; κ̃zz/κ = Pe2/4 and η̃xx/η = η̃yy/η =
Rm2/4 at k/kf = 1.
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FIG. 6. Dependence of κ̃zz/κ with Pe = 0.707 and qκ = σ = 0
on k/kf . Solid lines as well as the cross at k/kf = 1 result from
analytic SOCA calculations with s = 0. Symbols give numerical
results obtained with Eq. (6) using s = 0.01; filled circles, full
equation; open circles, SOCA, term (uc)′ dropped. Note the second
“resonance” at k/kf = 2.

Let us, in what follows, focus attention on passive scalars
only. Consider a mean scalar of the form C = F (t) cos kz with
F being positive. For qκ = 0, its time behavior is exclusively
determined by the quantity κ + κ̃zz. Clearly C is bound to
decay if κ + κ̃zz > 0. Now consider the dependence of κ̃zz

on k/kf for qκ = s = σ = 0, depicted in Fig. 6. If k/kf is
smaller than but close to unity, κ̃zz may, even for small Pe,
take arbitrarily large negative values, and κ + κ̃zz becomes
negative. This will then lead to a growth of the modulus of C.
Of course, this conclusion is drawn from a result obtained
under SOCA and may hence be questionable. Indeed, the
sufficient condition for the applicability of SOCA given so far,
Pe � 1, has been derived for k/kf � 1 only. If, by contrast,
k/kf ≈ 1, we find, when comparing the terms ∇ · (uc)′ and
κ	c in (6) under the assumption that c is dominated by
contributions with wave numbers k + kf and k − kf , for
qκ = σ = 0 and s � 1 the more stringent condition

Pe � 3
(1 − k/kf )2 + s2

1 − k/kf + s2
. (76)

It supports the doubts in the above conclusion concerning the
growth of the modulus of C.

The aforementioned SOCA calculations for s = 0 have
been extended by the inclusion of fourth-order terms in u,
that is, in Pe. Apart from some quantitative changes of κ̃zz/κ

in the neighborhood of k/kf = 1, which occur with larger Pe,
a new singularity emerges at k/kf = 2. As can be seen in
Fig. 6, the numerical (non-SOCA) calculations with s = 0.01
reflect this feature, too. They also give indications of a further
resonance at k/kf = 3 (not shown).

Figure 7 shows κ̃zz for steady test fields (that is, σ = 0)
with k/kf = 0.9 and s = 0.01 as a function of Pe. The
results clearly deviate from those obtained by SOCA as
soon as Pe exceeds, say, 0.2. Considering that κ + κ̃zz � 0
is equivalent to −κ̃zz/κt0 � 1/Pe, Fig. 7 tells us further that
κ + κ̃zz becomes very small with growing Pe, but suggests
that it remains positive. We may suppose that the modulus

FIG. 7. Dependence of κ̃zz/κt0 on Pe for k/kf = 0.9 and s =
0.01, σ = qκ = 0. The dashed line gives SOCA result and the shaded
area marks the range where the total diffusivity would become
negative.

of the considered C never grows but its decay becomes very
slow for large Pe. For example, for Pe = 1 we expect that
λ = −(κ + κ̃zz)k2 ≈ −0.1κk2, that is, the decay of C should
be about ten times slower than in the absence of any motion.

In these considerations, however, the memory effect, that
is, the dependence of the value of κ̃zz, relevant for the decay of
C, on the decay rate λ itself, has been ignored. As explained
in Sec. III B, we have to include this dependence by using
time-dependent test fields. Let us assume that they vary as
exp(σ t) but consider σ first as independent of λ. Then κ̃zz and
λ = −(κ + κ̃zz)k2 occur as functions of σ . Figure 8, obtained
by test-field calculations, shows this dependence of λ on σ .
If we then identify σ with λ we find, as indicated in Fig. 8,
λ ≈ −0.005κk2. That is, the decay of C is about 200 times
slower than in the absence of any motion.

In order to check this surprising result, we perform two-
dimensional direct numerical simulations based on Eq. (2)
with a flow given by (68) using k0 = 10k1, where k1 = 2π/Lz

is the smallest wave number in the z direction with extent Lz.
Our computational domain is periodic in both directions. We

FIG. 8. Dependence λ(σ ) = −[(κ + κ̃zz(k,σ )]k2 for Pe = 1.0,
k/kf = 9/10, s = 0.01, and qκ = 0. The curve representing
λ(σ )/κk2 intersects the dash-dotted line λ = σ at λ(σ )/κk2 =
−0.005, which is shown more clearly in the inset.
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FIG. 9. Direct simulation showing the decay of the amplitude F

of C(z) in units of its initial value F0. Parameters as in Fig. 8. The
inset shows the time dependence of the growth rate λ, leveling off at
λ ≈ −0.005κk2 after some initial adjustment time.

choose Lx = 10Lz so as to accommodate the variation in the
x direction with wave number k0s and s = 0.01. The initial
condition is C = C0 cos kz, with C0 > 0 and k = 9k1. We use
1282 mesh points and choose Pe = 1, which is clearly beyond
the applicability of SOCA; cf. Fig. 7.

As we expect that C = F (t) cos kz, we have identified
the maximum of the x average of C with respect to z with
F and determined the growth rate by calculating first its
instantaneous value λ(t) = d ln F/dt ; see Fig. 9. It turns out
that the average of λ over the time interval in which it is
approximately constant is in excellent agreement with the
test-field result λ ≈ −0.005κk2 described above. The snapshot
in Fig. 10 shows that C(x,z) varies mainly in the z direction
with the dominant wave number k = 9kf /10. In units of κk2,

FIG. 10. (Color online) Snapshot of C(x,z) for the simulation
shown in Fig. 9 at tκk2 = 17. Bright (yellow) shades indicate positive
values and dark (blue) shades negative values. The lower panel shows
C(x,z) with the correct aspect ratio of the box.

the free-decay rate of a mode with this wave number would
be 0.01, or 0.012, if the variation in x is taken into account.
Note, however, that the dominant constituent of C belongs,
by virtue of its x dependence, to the fluctuating field c and
that the actual decay rate of the mean field C is at least two
times smaller than the given free-decay rate. The fluctuations
are not decaying freely, but follow the mean field, and hence
adopt its decay rate. In this particular case, the rms values of
the fluctuations exceed those of the mean field by a factor of
14.

The question could be raised as to whether a resonance
effect in the above sense can also occur for solenoidal flows.
Numerical experiments with the (stationary) ABC flow (for its
definition see, e.g., [24]) indicate clearly that the decay of C

is always accelerated in the presence of this flow, irrespective
of the value of k/kf .

V. CONCLUSIONS

In this work we have shown that the turbulent diffusivity κt

for the concentration of a passive scalar in a potential flow can
be negative at low Péclet numbers. This result is analogous
to an earlier finding for the turbulent magnetic diffusivity ηt

in such a flow at low magnetic Reynolds numbers, originally
derived in the context of astrophysical dynamo theory. The
numerical calculations presented in this paper confirm Eq.
(1) quantitatively for an irrotational flow. We have not yet
considered the case of the combined action of solenoidal and
irrotational flows where the question arises of how strong the
solenoidal part has to be to render the turbulent diffusivities
positive. Our calculations also show that negative values of κt

do not occur for larger Péclet numbers, whereas negative ηt

may well exist for moderate to large Reynolds numbers. In
neither case have negative turbulent diffusivities yet been seen
in laboratory experiments. Nevertheless, for possible physical
applications of our results one may think of microfluidic
devices [25], in which the flow can be compressible [26] and
the Péclet number small.

In addition to the condition of small Péclet and magnetic
Reynolds numbers, there are also the requirements of good
scale separation and of slow temporal variations of the flow. If
these requirements are not obeyed, κt and ηt are no longer
necessarily negative – even at small values of Péclet and
magnetic Reynolds numbers. This may be the reason why
a reduction of the effective diffusivity has never been seen
in physically meaningful compressible flows and why Eq. (1)
is virtually unknown in the turbulence community. In fact,
previous attempts to verify this equation in simulations have
failed because of the fact that the time dependence has been
too vigorous in those flows [27].

The spatial structure of the flow does not appear to be
critical for obtaining a reduction of the effective diffusivity.
Even in a nearly one-dimensional flow, turbulent diffusivities
can become negative. However, in that case there are two new
effects. First, if the underlying flow pattern displays propagat-
ing wave motions, there can be transport of the mean scalar
in the direction of wave propagation—even in the absence
of any mean material motion. Again, this effect may have
applications to microfluidic devices. Second, the wave number
characteristics display a singular behavior under SOCA, but
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even beyond SOCA there can be a dramatic slowdown of
the decay by factors of several hundreds compared with
the molecular values. This result is completely unexpected
because no such behavior has ever been seen for any other
turbulent transport process. Furthermore, the memory effect
proves to be markedly important in such cases, so the
common assumption of an instantaneous relation between the
mean flux of the scalar and its mean concentration or the mean
electromotive force and the mean magnetic field breaks down
near the singularity.

In addition to finding out more about possible applications
of the turbulent transport phenomena discussed above, it would
be natural to study the possibility of similar processes for the
turbulent transport of other quantities including momentum
and heat or other active scalars. Further, a complementary
effort to determine the transport coefficients for turbulent
irrotational flows numerically would be of high interest,
the more as there are no simple analytical results available.
Supernova-driven turbulence in the interstellar medium would
of course be the most suggestive application.

Clearly, both analytical and numerical approaches using the
test-field method proved to be invaluable in that they are able
to predict unexpected phenomena that can then also be verified
using direct numerical simulations and in future hopefully also
laboratory experiments.
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APPENDIX: RELATIONS FOR ai j , ηi j , AND ci j k

Under SOCA we may derive, for homogeneous turbulence,

aij =
∫∫

i(εilmkj − εilj km)
Q̂lm(k,ω)

ηk2 − iω
d3k dω, (A1)

ηij = 1

2

∫∫ (
δij δlm − δimδjl − 2η(δij klkm − kikmδjl)

ηk2 − iω

)

× Q̂lm(k,ω)

ηk2 − iω
d3k dω, (A2)

cijk = −1

2

∫∫ (
2εimnδjk − (εimj δkn + εimkδjn)

− 2η
2εimnkj kk − (εimj kk + εimkkj )kn

ηk2 − iω

)

× Q̂mn(k,ω)

ηk2 − iω
d3k dω. (A3)
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RÄDLER, BRANDENBURG, DEL SORDO, AND RHEINHARDT PHYSICAL REVIEW E 84, 046321 (2011)

[22] A. Brandenburg, K.-H. Rädler, and M. Schrinner, Astron.
Astrophys. 482, 739 (2008).

[23] The PENCIL CODE is a high-order finite-difference
code (sixth order in space and third order in time);
http://pencil-code.googlecode.com.

[24] T. Dombre, U. Frisch, J. M. Greene, M. Hénon,
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