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Kinetic helicity decay in linearly forced turbulence

A. Brandenburg1,2,� and A. Petrosyan3,4

1 NORDITA, AlbaNova University Center, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden
2 Department of Astronomy, AlbaNova University Center, Stockholm University, SE 10691 Stockholm, Sweden
3 Space Research Institute of the Russian Academy of Sciences Profsoyuznaya 84/32, Moscow 117997, Russia
4 Moscow Institute of Physics and Technology, State University, Institutsky lane 9, Dolgoprudny 141700, Russia

Received 2012 Feb 24, accepted 2012 Mar 9
Published online 2012 Apr 5

Key words hydrodynamics – stars: interiors – turbulence

The decay of kinetic helicity is studied in numerical models of forced turbulence using either an externally imposed
forcing function as an inhomogeneous term in the equations or, alternatively, a term linear in the velocity giving rise to
a linear instability. The externally imposed forcing function injects energy at the largest scales, giving rise to a turbulent
inertial range with nearly constant energy flux while for linearly forced turbulence the spectral energy is maximum near
the dissipation wavenumber. Kinetic helicity is injected once a statistically steady state is reached, but it is found to decay
on a turbulent time scale regardless of the nature of the forcing and the value of the Reynolds number.
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1 Introduction

The physical properties of astrophysical turbulence are of-
ten studied by solving the hydrodynamic equations in a pe-
riodic domain with an assumed forcing function. In partic-
ular, isotropic homogeneous turbulence is often studied as a
proxy of turbulence in more complicated situations, where
specific concepts and general aspects are harder to isolate.
An important concept is that of the forward cascade of ki-
netic energy to smaller scales. This leads to a k−5/3 en-
ergy spectrum, where k is the wavenumber. Many flows of
geophysical and astrophysical relevance are subject to ro-
tation and stratification and can therefore attain kinetic he-
licity. Closure calculations (André & Lesieur 1977), direct
numerical simulations (Borue & Orszag 1997; Brandenburg
& Subramanian 2005a), as well as shell model calculations
(Chkhetiani 1996; Ditlevsen & Giuliani 2001a,b; Stepanov
et al. 2009) show an approximate k−5/3 scaling for the ki-
netic helicity, suggesting that kinetic helicity too is subject
to a forward cascade toward smaller length scales. On the
other hand, kinetic helicity is conserved by the quadratic in-
teractions and might therefore play an important role in the
inviscid limit. Although this is also the case in ideal magne-
tohydrodynamics (MHD), where magnetic helicity is also
conserved by the quadratic interactions, there is a signifi-
cant difference. In the ideal case of small magnetic diffu-
sivity, magnetic helicity can only evolve on resistive time
scales. This can have profound effects on the saturation be-
havior of large-scale dynamos (Brandenburg 2001).

As mentioned above, in a polytropic flow, the quadratic
interactions conserve kinetic helicity, 〈ω · u〉, where ω =
∇ × u is the vorticity, u the velocity, and angular brackets
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denote volume averaging over a closed or periodic domain.
This conservation property becomes evident when writing
the Navier-Stokes equation in the form
∂u

∂t
=u×ω−∇P +f+ν[ 13∇(∇·u)−∇×∇×u+G],(1)

where P = 1
2u2 + h is the sum of specific turbulent pres-

sure, u2/2, and specific enthalpy, h = c2
s ln ρ. Furthermore,

ρ = const is the density, and f is a forcing function. In
the absence of forcing, f = 0, kinetic helicity is just sub-
ject to viscous decay, because the nonlinear term u × ω is
perpendicular to ω, i.e., we have
d

dt
〈ω · u〉 = −2ν〈q · ω〉, (2)

where q = ∇ × ω is the curl of the vorticity. In the ideal
case, ν = 0, we have 〈ω · u〉 = const. However, in fluid
dynamics the ideal case is hardly representative of the limit
of large Reynolds numbers, where ν → 0. Indeed, for a
self-similar decay of kinetic energy, the wavenumber of the
energy-carrying eddies, kf , decreases with time such that
νk2

f t ≈ const. This implies that the rate of energy de-
cay, ν〈ω2〉, is essentially independent of ν and hence in-
dependent of the Reynolds number. Given that 〈u2〉 is re-
lated to the kinetic energy, which is also independent of the
Reynolds number, we expect that the ratio
〈ω2〉/〈u2〉 ≡ k2

Tay, (3)
which is related to the Taylor micro-scale wavenumber
kTay , should be proportional to Re, and therefore

kTay ∼ Re1/2. (4)
However, for helical flows the rate of kinetic helicity

dissipation is proportional to ν〈q · ω〉. Thus, if we define
〈q · ω〉/〈ω · u〉 ≡ k2

eff , (5)
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we see that kinetic helicity dissipation is related to kinetic
energy by altogether 3 wavenumber factors. If all these fac-
tors scale like in Eq. (4), we may expect the rate of kinetic
helicity dissipation to diverge with decreasing ν like ν−1/2.
This is in stark contrast to the related case of magneto-
hydrodynamic turbulence where, following similar reason-
ing, the magnetic helicity dissipation converges to zero like
η1/2 as the magnetic dissipation η goes to zero (Branden-
burg & Subramanian 2005b); see also the appendix of Bran-
denburg & Käpylä (2007) for a clear exposition of these dif-
ferences.

A problem with the simple argument above is that in
cases of practical relevance the forcing function f usually
breaks kinetic helicity conservation. This is particularly ev-
ident for the so-called linear forcing model of Lundgren
(2003), where

f = Au (6)

is a positive multiple of the velocity vector. In that case we
have
d

dt
〈ω · u〉 = 2A〈ω · u〉 − 2ν〈q · ω〉, (7)

so that 〈ω · u〉 could even exhibit exponential growth. An
aim of this paper is thus to investigate to what degree ki-
netic helicity is conserved in forced turbulence using both
the linear forcing model and compare it with the more tra-
ditional stochastic forcing in a narrow wavenumber band.
Another motivation is the fact that, by analogy, magnetic he-
licity turned out to be of crucial importance in understand-
ing the saturation properties of helically forced dynamos in
periodic domains (see, e.g., Brandenburg 2001). We study
the kinetic helicity evolution by monitoring the response to
adding a large-scale helical component to the flow for both
types of forcing.

2 Method

In the following we present results obtained by solving the
compressible hydrodynamic equations with an imposed ran-
dom forcing term and an isothermal equation of state, so
that the pressure p is related to ρ via p = ρc2

s , where cs is
the isothermal sound speed. We thus deviate from the con-
ceptually simpler incompressible case. The reason for do-
ing this is that we are mainly interested in astrophysical ap-
plications where the gas is compressible. Furthermore, we
expect that for small Mach numbers, compressible and in-
compressible cases become nearly identical. However, this
is only partially true, as the zero-Mach number limit may
not be uniform and may not commute with the small-scale,
long-time or zero-viscosity limits.

In the following we use an isothermal equation of state
for a monatomic gas for which the bulk viscosity vanishes,
so the hydrodynamic equations for ρ and u take the form

∂ρ

∂t
= −∇ · ρu, (8)

∂u

∂t
= −u ·∇u− c2

s∇ ln ρ + f + ρ−1
∇ · 2ρνS, (9)

where Sij = 1
2 (ui,j + uj,i) − 1

3δij∇ · u is the traceless
rate of strain tensor, ν is the kinematic viscosity, and f is
a forcing function that is either given by the linear forcing
model using Eq. (6) with a positive constant A, or, alterna-
tively, it is given by a random forcing function consisting of
plane transversal waves with random wave vectors k such
that |k| lies in a band around a given forcing wavenumber
kf . The vector k changes randomly from one time step to
the next, so f is δ correlated in time. The forcing ampli-
tude is chosen such that the Mach number, Ma = urms/cs,
is about 0.1. Here, urms = 〈u2〉1/2 is the root-mean-square
(rms) velocity. We use triply-periodic boundary conditions
in a Cartesian domain of size L3. The smallest wavenumber
that fits into the computational domain is k1 = 2π/L.

For the linear forcing model we choose for the ampli-
tude A/csk1 = 0.02, while for the random forcing function,
f is of the form

f(x, t) = Re{Nfk(t) exp[ik(t) · x + iφ(t)]}, (10)

x is the position vector and

fk = (k × e) /
√

k2 − (k · e)2, (11)

where e is an arbitrary unit vector not aligned with k; note
that |fk|2 = 1. The wave vector k(t) and the random phase
−π < φ(t) ≤ π change at every time step. For the time-
integrated forcing function to be independent of the length
of the time step δt, the normalization factor N has to be
proportional to δt−1/2. On dimensional grounds it is chosen
to be N = f0cs(kfcs/δt)1/2, where f0 is a nondimensional
forcing amplitude, which is chosen to be f0 = 0.02. For
the monochromatically forced simulations we choose kf =
1.5 k1. For the linear forcing module, on the other hand, we
compute kf is the integral scale from the resulting kinetic
energy spectrum (see below).

Our simulations are characterized by the value of the
Reynolds number,

Re = urms/νkf . (12)

where the wavenumber kf is either the forcing wavenum-
ber in the case of monochromatic random forcing, or it is
evaluated as the wavenumber of the energy-carrying eddies,

k−1
f =

∫
k−1E(k) dk

/∫
E(k) dk , (13)

with E(k) being the kinetic energy spectrum, which is here
normalized such that∫
∞

0

E(k) dk = 1
2 〈u2〉. (14)

It turns out the in the former case of monochromatic ran-
dom forcing, the definition (13) agrees well with the a pri-
ori chosen forcing wavenumber. We plot energy spectra as
a function of k in units of the dissipation wavenumber,

kd = (ε/ν3)1/4. (15)
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Fig. 1 Kinetic energy spectra compensated with k5/3ε−2/3 for a
range of different Reynolds numbers and numerical resolutions up
to 512

3 mesh points.

Here, ε = ν〈ω2〉 is the rate of energy dissipation. We also
analyze spectra of kinetic helicity, F (k), which are normal-
ized such that∫
∞

0

F (k) dk = 〈ω · u〉. (16)

We note that the kinetic helicity spectrum can have either
sign and its modulus obeys the well-known realizability
condition, |F (k)| ≤ 2kE(k) (Moffatt 1969).

In the statistically steady state, the kinetic helicity fluc-
tuates around zero. We consider the evolution of kinetic he-
licity after adding an instantaneous finite perturbation in the
form of a Beltrami field,

u → u + ε cs(sin kz, coskz, 0), (17)

where ε is a nondimensional input parameter. In all cases we
choose k = k1, i.e., we perturb the system with a wave on
the scale of the domain. We express time in units of turnover
times, so that turmskf is a nondimensional time.

The simulations have been carried out using the PENCIL
CODE1 which is a high-order finite-difference code (sixth
order in space and third order in time) for solving the com-
pressible hydrodynamic equations.

3 Results

3.1 Linear forcing model

In Fig. 1 we show compensated spectra of kinetic energy
for different values of the Reynolds number. The spec-
tra collapse onto each other in the dissipation range if the
wavenumber is scaled with kd. With increasing Reynolds
number the spectra begin to sketch out a continuation to-
ward smaller wavenumber k. Note that in the linear forcing
model, energy is being injected at all length scales and not
just at the largest scale of the domain. This is a property that
may also be responsible for the fact that the effective driv-
ing scale tends to be smaller than in otherwise equivalent

1 http://pencil-code.googlecode.com/

Fig. 2 Evolution of the normalized kinetic helicity for different
values of Re after adding a Beltrami field perturbation at t = t∗.

monochromatically forced simulations (Rosales & Mene-
veau 2005).

In the statistically steady state, the kinetic helicity fluc-
tuates around zero. However, after adding a finite perturba-
tion in the form of Eq. (17), the helicity begins to grow for
about 5 turnover times, δturmskf ≈ 5. After that time there
is a systematic decline of the kinetic helicity. By inspecting
the results for different values of Re, we see that the time
it takes for the kinetic helicity to relax to previous levels
becomes longer as the Reynolds number is increased from
44 to 125; see Fig. 2. However, for Re = 300, which is
our largest Reynolds number for which we have performed
experiments with added Beltrami fields, the decline of he-
licity has happened on a similar time scale as for Re = 70.
This suggests that there may not be a systematic Reynolds
number dependence of kinetic helicity decay.

It should be noted that during the first 2–3 eddy turnover
times after adding the Beltrami field perturbation, the ki-
netic helicity shows an exponential increase; see also Fig. 3.
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Fig. 3 Evolution of the kinetic helicity for different values of ε
after adding the Beltrami field perturbation at t = t∗.

This is connected with the fact that in the absence of any
other effective damping, Eq. (7) would imply an exponen-
tial growth of 〈ω · u〉 ∝ expλt with growth rate

λ = 2(A− νk2
eff), (18)

where keff quantifies the involvement of high wavenum-
bers in the expression for the kinetic helicity dissipation;
see Eq. (5).

One would expect strong perturbations to survive this
exponential growth for longer, but this is not the case, as
is demonstrated in Fig. 3 where we show the evolution of
the kinetic helicity for different values of ε after adding the
Beltrami field perturbation. The reason for the subsequent
decay of magnetic helicity lies in the fact that keff scales
like keff ∝ Re1/2, so the rate of kinetic helicity dissipation
remains significant even in the limit Re → ∞, i.e. ν → 0.
This is quantified in terms of keff , whose scaling will with
Reynolds number will be considered below.

3.2 Monochromatic random forcing

In order to see whether the results presented above are a spe-
cial consequence of the linear forcing model, we now per-
form simulations using the more traditional monochromatic
forcing in a narrow wavenumber interval. In Fig. 4 we show
energy spectra for different Reynolds numbers. The results
suggest that the decline in spectral power toward the small-
est wavenumbers seen in Fig. 1 for the linear forcing model
is now absent. In other words, while in Fig. 4 we clearly see
that the compensated energy spectrum is flat, this is not the
case in Fig. 1 for the linear forcing model. However, there
is still an uprise near 0.1 kd that one may generally asso-
ciate with the bottleneck effect (Falkovich 1994; Dobler et
al. 2003).

Next, we study the effect of adding a helicity perturba-
tion also in this case. Figure 5 gives time series for three val-
ues of Re. There is no evidence for a prolonged relaxation to
zero. The reason for this could be that a helical wave cannot
interact with itself; see a corresponding discussion follow-
ing Eq. (11) of Kraichnan (1973). This also suggests that
kinetic helicity conservation in the inviscid case, ν = 0, is

Fig. 4 Kinetic energy spectra compensated with k5/3ε−2/3 for
a range of different Reynolds numbers and numerical resolutions
using monochromatic forcing.

of no relevance to the inviscid limit, ν → 0, in which case
the kinetic helicity dissipation diverges. This behavior was
less clear in the previous case with the linear forcing model.
This might either be a matter of coincidence, but it could
also be a consequence of the linear forcing model which
has exponentially growing solutions.

The time series in Fig. 5 reveals another interesting as-
pect in comparison to Fig. 2 for the linear forcing model in
that the level of fluctuations of 〈ω ·u〉 is generally larger for
the monochromatic forcing function than for the linear forc-
ing model. Furthermore, the time series show much stronger
short-term fluctuations while for the linear forcing model
the time traces of 〈ω · u〉 are smoother.

In Table 1 we summarize integral and dissipation wave-
numbers as well as the normalized energy fluxes for both
linear and monochromatic random forcings. In wind tunnel
turbulence one usually expresses the energy flux in units
of a quantity Cε = u′3/L, where u′ = urms/

√
3 is the one-

dimensional rms velocity and L = 3π/4kf is the custom-
ary definition of the integral scale. The standard result of
Cε ≈ 0.5 (Pearson et al. 2004) corresponds then to ε ≈
0.04kfu

3
rms. Comparing the normalized energy fluxes for

linear and monochromatic random forcings we see hardly
any differences. This suggests that the nature of the forcing
in hydrodynamic turbulence might not be of great qualita-
tive importance, although it is still possible that the bottle-
neck effect (Falkovich 1994; Dobler et al. 2003) near the
dissipative scale might be connected with the nature of the
forcing at large scales (Davidson 2004).

In Table 1 we also list the values of kTay and keff , as
defined in Eqs. (3) and (5). Both wavenumbers are clearly
proportional to Re1/2, as can be seen from Fig. 7, where we
plot the Reynolds number dependence of the ratios kTay/k1

and keff/k1 for linear and monochromatic forcings.
To compare the linearly and monochromatically forced

turbulence simulations in real space, we present in Fig. 6
visualizations of the logarithmic density on the periphery
of the computational domain. The logarithmic density is a
convenient scalar quantity characterizing the pressure fluc-
tuations resulting from the Reynolds stress. These visualiza-
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Table 1 Summary of the normalized characteristic wavenumbers k̃f = kf/k1, k̃d = kd/k1, kTay = kTay/k1, and k̃eff = keff/k1, for
linear and monochromatic forcings. The numerical resolution is given in the second column.

Linear Forcing Monochromatic Forcing
Re Res. k̃f k̃d k̃Tay k̃eff ε/kfu

3
rms k̃f k̃d k̃Tay k̃eff ε/kfu

3
rms

40 64
3 1.6 15 3 3 0.080 1.6 12 2 3 0.072

70 128
3 1.9 23 4 5 0.069 1.9 20 3 4 0.052

130 128
3 2.0 40 6 6 0.073 1.9 34 4 7 0.045

300 256
3 2.2 79 9 7 0.067 2.8 68 7 8 0.028

600 512
3 2.2 133 13 10 0.069 1.2 130 8 3 0.064

Fig. 5 Evolution of the normalized kinetic helicity using the
monochromatic forcing scheme for different values of Re after
adding a Beltrami field perturbation at t = t∗.

tions look rather similar in the two cases, suggesting that the
slight difference seen in the power spectra in Figs. 1 and 4 is
hard to discern in such images. In fact, upon closer compar-
ison of just the cases with the highest resolution we see that
both kinetic energy and kinetic helicity spectra agree almost
perfectly (Fig. 8), except that in the linear forcing model
the kinetic energy spectrum has dropped significantly at the
smallest wavenumber, which is not the case for monochro-
matic random forcing.

Fig. 6 (online colour at: www.an-journal.org) Visualization of
the logarithmic density (proportional to logarithmic pressure fluc-
tuations) on the periphery of the domain for linear and random
forcings. In both cases we have Re ≈ 600 at a resolution of 512

3

mesh points.

4 Conclusions

The linear forcing model is based on the driving of turbu-
lence by a linear instability instead of a forcing function that

www.an-journal.org c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



200 A. Brandenburg & A. Petrosyan: Kinetic helicity decay

Fig. 7 (online colour at: www.an-journal.org) Scaling of
kTay/k1 (solid lines) and keff/k1 (dashed lines) with Re for linear
(filled symbols) and monochromatic (open symbols and red lines)
forcings. The dotted line indicates Re1/2 scaling.

is independent of the flow. This type of forcing might be
more physical, because it does not change abruptly and de-
pends on the local flow properties. Nevertheless, both types
of forcing are Galilean invariant. This would change if the
flow-independent monochromatic forcing were no longer δ
correlated in time. A disadvantage of linearly forced tur-
bulence is that energy injection occurs at all wavenum-
bers. Our simulations show that the energy spectrum is
perhaps slightly shallower than with the flow-independent
monochromatic forcing function. Part of this is explained by
the bottleneck effect (Falkovich 1994; Dobler et al. 2003),
and that the energy spectra compensated by k5/3 show a
stronger uprise toward the dissipation wavenumber. It is un-
clear whether this result would persist at larger resolution.

The linear forcing model has the interesting property of
amplifying not only kinetic energy, but also kinetic helic-
ity. Indeed, at early times, just after having injected kinetic
helicity into the system, the coherent helical part continues
to increase exponentially, but the flow soon breaks up into
smaller eddies, giving rise to enhanced effective dissipation.
For practical applications, it should be noted that the lin-
ear forcing model has the disadvantage that the initial expo-
nential growth of kinetic energy and kinetic helicity might
prevail for too long. This will be the case when the initial
random perturbations are too weak to perturb the flow suf-
ficiently. In that case, the kinetic energy would quickly in-
crease to large values without producing three-dimensional
turbulence.

With regards to geophysical and astrophysical applica-
tions we can say that in a turbulent system, kinetic helic-
ity is no longer a conserved quantity, even though it would
be if ν = 0 were strictly true. The latter requirement is of
course not really possible in a turbulent system, because
kinetic energy would then accumulate at the smallest pos-
sible scale resolved within the hydrodynamics framework
and kinetic energy would not be able to decay, which is
unphysical. While this should not be surprising, it is im-

Fig. 8 (online colour at: www.an-journal.org) Comparison of
compensated kinetic energy and helicity spectra for the linear forc-
ing model (solid line) and the monochromatic random forcing
function (dashed). In those patches where the kinetic helicity is
negative, the modulus of the value is plotted as a dotted line (red
for the linear forcing model and blue for the monochromatic ran-
dom forcing function).

portant to remember that this is quite different in the case
of magnetohydrodynamics, where magnetic helicity dissi-
pation really does go to zero in a turbulent system – even for
finite (but small) values of the magnetic diffusivity. At the
same time, magnetic energy dissipation does stay finite and
is able to accomplish magnetic reconnection on the small-
est resolved scales of the turbulent cascade (Galsgaard &
Nordlund 1996; Lazarian & Vishniac 1999).

This paper has also shown that, regardless of the na-
ture of the forcing, there are fairly strong helicity fluctua-
tions. They appear to be coherent over many turbulent eddy
timescales. One may wonder how generic such fluctuations
are and if such fluctuations could be relevant for say the
incoherent dynamo effects that have been investigated by
several authors in recent years (Vishniac & Brandenburg
1997; Sur & Subramanian 2009; Heinemann et al. 2011;
Mitra & Brandenburg 2012; Richardson & Proctor 2010). It
will therefore be interesting the associate the kinetic helicity
fluctuations with those of α, which have already been deter-
mined in simulations of turbulent shear flows (Brandenburg
et al. 2008).
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2008, ApJ 676, 740
Chkhetiani, O.G.: 1996, JETP Lett. 63, 808
Davidson, P.A.: 2004, Turbulence: An Introduction for Scientists

and Engineers, Oxford University Press, Oxford
Ditlevsen, P.D., Giuliani, P.: 2001a, Phys. Rev. E 63, 036304
Ditlevsen, P.D., Giuliani, P.: 2001b, Phys. Fluids 353, 550

Dobler, W., Haugen, N.E.L., Yousef, T.A., Brandenburg, A.: 2003,
Phys. Rev. E 68, 026304

Falkovich, G.: 1994, Phys. Fluids 6, 1411
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