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Dynamics of saturated energy condensation in two-dimensional turbulence
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In two-dimensional forced Navier-Stokes turbulence, energy cascades to the largest scales in the system to
form a pair of coherent vortices known as the Bose condensate. We show, both numerically and analytically,
that the energy condensation saturates and the system reaches a statistically stationary state. The time scale of
saturation is inversely proportional to the viscosity and the saturation energy level is determined by both the
viscosity and the force. We further show that, without sufficient resolution to resolve the small-scale enstrophy
spectrum, numerical simulations can give a spurious result for the saturation energy level. We also find that
the movement of the condensate is similar to the motion of an inertial particle with an effective drag force.
Furthermore, we show that the profile of the saturated coherent vortices can be described by a Gaussian core with
exponential wings.
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I. INTRODUCTION

Two-dimensional (2D) hydrodynamic turbulence is funda-
mentally different from its three-dimensional counterpart. In
2D, small vortices can merge to form bigger coherent vortices.
This is because the equations of ideal hydrodynamics in two
dimensions have, in addition to energy, also enstrophy as a
conserved quantity. With an external force at an intermediate
scale and viscous dissipation, energy inversely cascades to
larger length scales and enstrophy directly cascades to smaller
length scales [1–3].

Let us now consider 2D turbulence in a finite domain of
size L. The smallest wave number allowed in this system is
k1 ≡ 2π/L. Due to the inverse cascade, energy piles up at k1

provided there is no large-scale friction. This phenomenon,
sometimes called Bose condensation in 2D turbulence (see
Fig. 1), was first predicted by Kraichnan [1]. It was studied
numerically by Hossain et al. [4], Smith and Yakhot [5], [6],
Chertkov et al. [7] and experimentally by Paret and Tabeling
[8], Xia et al. [9].

Following standard convention, we refer to the modes at
|k| = k1 as the condensate in this paper. For a fixed nonzero
viscosity ν the energy of the condensate vortices cannot grow
without limit but saturate [10,11]. The saturation occurs at time
scales of the order of 1/νk2

1 . This is an unusual example of
viscous effects playing an important role in fluid turbulence at
large length scales. In this paper we show, by direct numerical
simulations (DNS), that the saturation value of the condensate
energy is not only determined by viscosity but also by the
forcing wave number ki. Furthermore, we will demonstrate
that the direct enstrophy cascade must be well resolved for
accurate numerical determination of the saturation.

Motivated by the analogy between the formation of
large-scale structures in two-dimensional turbulence and
the large-scale dynamo process in three-dimensional helical
magnetohydrodynamic turbulence [12], we propose a simple
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three-scale model which is able to capture the important
aspects of our numerical results. We further show that the
Lagrangian dynamics of the condensate vortices can be
described by Langevin equations for particles with inertia.
Finally, we measure the profile of the saturated coherent
vortices, which consist of the condensate and its higher
harmonics. The vorticity at the cores are well fitted by a sharp
Gaussian, while the wings fall off exponentially.

II. NUMERICAL SIMULATIONS

Let ψ be the 2D (scalar) stream function. The velocity is
then u = (∂yψ, − ∂xψ) and the z component of the vorticity

FIG. 1. (Color online) Pseudocolor plot of vorticity showing Bose
condensation. Red (the top-left vortex) and blue (the bottom-right
vortex) represent positive and negative vorticity in physical space,
respectively. The color scale is shown in the color bar on the right,
which is chosen to make the fluctuation visible. The vorticity is
normalized so that max |ω| = 1.
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TABLE I. List of simulations: The first 13 simulations are used to verify our three-scale model (16). The last row describes 16 restart-runs
which are initially in saturated states. They are used to verify the properties of �r2. The details of the simulations are described in Sec. II.

Inputs Predictions Results

Name ν ki kd τE E∞ Resolution τ̃E Ẽ∞ Ẽ∞/E∞ Notes

a16 10−3 16 80 500 405 5122 483 323 0.80
a24 10−3 24 91 500 356 5122 520 281 0.79
a32 10−3 32 100 500 308 5122 582 234 0.76
b16f 5 × 10−4 16 113 1000 891 5122 – – – single-precision, crashed
b16 5 × 10−4 16 113 1000 891 5122 922 696 0.78
b24 5 × 10−4 24 129 1000 832 5122 947 643 0.77
b32 5 × 10−4 32 142 1000 772 5122 970 580 0.75
c16 2 × 10−4 16 178 2500 2373 10242 2223 1818 0.76
c32 2 × 10−4 32 224 2500 2226 10242 2287 1714 0.77
c64 2 × 10−4 64 283 2500 1928 10242 2409 1385 0.72
c64b 2 × 10−4 64 283 2500 1928 5122 1985 791 0.41 converge to wrong answer
d16 10−4 16 252 5000 4859 10242 4145 3581 0.74
d32 10−4 32 317 5000 4691 10242 4006 3349 0.72
pathi 5 × 10−4 32 142 1000 308 5122 – 580 0.75 restart from saturated b32

is ω = −∇2ψ . We solve the 2D incompressible Navier-Stokes
equations in the vorticity–stream-function formulation, that is,

∂tω − J (ψ,ω) = ν∇2ω + g, (1)

where the Jacobian determinant is given by

J (ψ,ω) = (∂xψ)(∂yω) − (∂xω)(∂yψ). (2)

We use periodic boundary conditions with L = 2π so k1 = 1,
and denote the Fourier transform of ω by ωk.

In Eq. (1), g is the z component of the curl of an external
force. Using 〈 · 〉 to denote ensemble averages, the Fourier
transform of the force gk is taken to be random and white-in-
time with zero means and variance

〈g∗
k(s) · gk(t)〉 = f 2

i k2
i δ(t − s). (3)

It is achieved by choosing a random phase for gki at each time
step. In the above expression, fi is the forcing amplitude and
ki is the forcing wave number. To ensure isotropy, we select k
randomly in a shell with radius ki and then round it off to the
nearest grid point in Fourier space. The effective width of the
shell is approximately k1. For this force, the average rates of
energy and enstrophy inputs are, respectively, f 2

i and f 2
i k2

i .
We use a spectral Galerkin scheme in space and a

low-storage third-order Runge-Kutta Crank-Nicolson time
stepping scheme [13]. The time steps �t are chosen with a
Courant number of 0.5. The nonlinear term is treated explicitly
and the diffusion term is treated implicitly. The stochastic
forcing is integrated by the Euler-Maruyama method [14].
We use N × N grid points with the Galerkin cutoff at kG ≡
�(N − 1)/3	 + 0.99, where � · 	 denotes the floor function.
The value 0.99 is chosen such that the comparison k2 � k2

G
is accurate enough even in single precision with N ∼ 2048,
although almost all simulations in this paper are done with
double precision.

Our code is implemented in CUDA C and runs on graph-
ics processing units (GPUs), which are massively parallel
“stream” processors. With an nVidia Tesla C2050 graphic
card, our code is over an order of magnitude faster than codes

running on a single CPU core. Because of communication
overhead, our code outperforms distributed-memory parallel
codes running on 32 cores. This speedup allows us to integrate
the problem over very long code time and study the saturation
of the condensate vortices. We have released our Spectral
Galerkin 2D code (SG2) as an open-source project under the
GNU General Public License version 3. The project is hosted
by the Google Code [15].

III. RESULTS

We have performed a series of simulations as shown in
Table I with different sets of input parameters ν and ki. In
all of them, the initial conditions are ωk(t = 0) = 0. We set
the forcing amplitude at fi = 1 and choose the forcing wave
number ki so that k1 � ki � kd. The dissipation wave number
kd is given by

kd ≡ η1/6ν−1/2, (4)

where η is the forward enstrophy flux. Further details of the
runs are given in Table I.

In our simulations, energy inverse cascades to small Fourier
modes till k1 and forms a condensate at this mode. We plot
the total energy E(t) for simulations a16–d32 in Fig. 2. The
different colors and line styles represent different choices
of viscosity ν (see labels) and forcing scale ki (see legend).
The blue squares and green diamonds correspond to a single
precision (b16f) and an underresolved (c64b) simulations,
which we will comment in Sec. IV. For intermediate time,
the growth of energy of this condensate is consistent with
earlier results [7]. Nevertheless, the asymptotic E(t) becomes
independent of time in all the cases. This saturation happens at
a time scale determined by the viscous time at the largest length
scale (i.e., τν = 1/νk2

1). This requires very long integration
times and hence has not been explored by earlier simulations.
We are able to reach such late times by virtue of using a GPU
code.
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FIG. 2. (Color online) Unnormalized energy evolution in sim-
ulations a16–d32. The thick red (lowermost), green, blue, and
black (uppermost) curves are for different viscosity ν (see labels)
while solid, dashed, and dotted styles denote different forcing wave
number ki (see legend). The green diamonds and blue squares are for
simulations b16f and c64b, respectively. They correspond to single
precision and underresolved simulations.

At later times, most of the total energy comes from the
energy of the condensate. Further understanding of the growth
and saturation of the condensate can be obtained by studying
the energy spectrum. We compute the shell-integrated energy
spectrum Ek in simulation c32 at t = 1000 using a fixed bin
size �k = k1. The result is plotted as the thick solid curve in
Fig. 3. The condensate is well developed but not fully saturated.
The dashed and dotted lines in the figure are proportional to
k−5/3 and k−3, respectively. Although the inertial ranges are
narrow, the inverse energy cascade and forward enstrophy
cascade are consistent with spectral slope −5/3 and −3.
However, the condensate strongly deviates the inverse cascade
spectrum at large scale. This additional feature motivates us to
introduce a simple three-scale model.

A. Energy and enstrophy evolution

Given the energy spectrum Ek , the total energy, enstrophy,
and palinstrophy can be computed by the one-dimensional
integrals E = ∫

Ekdk, Z = ∫
k2Ekdk, and P = ∫

k4Ekdk,
respectively. Together with the average energy and enstrophy
input, the evolution of these quantities is governed by the
following equations

∂tE = −2νZ + f 2
i , (5)

∂tZ = −2νP + f 2
i k2

i . (6)

Our three-scale model is constructed in the following
fashion. We refer to the corresponding wave-number ranges
as zones (i) through (iii) as shown in Fig. 3. (i) At the wave
number of the box k1 we have the condensate modes, which
contain most of the energy at saturation. We use the shorthand
E(t) to denote the time-dependent energy at this Fourier mode.
(ii) In the range k1 < k � ki, the energy inverse cascades
from the forcing wave number ki and forms an Ek ∼ k−5/3

spectrum. Note that the enstrophy spectrum Zk = k2Ek peaks
at the forcing wave number ki. (iii) The forward enstrophy

FIG. 3. Energy spectrum in simulation c32. The thick solid curve
is the energy spectrum Ek computed at t = 1000 with bin size �k =
k1. The dashed line shows k−5/3 while the dotted line is proportional
to k−3. The gray areas, which represent our three-scale model,
are drawn in proper scales. The condensate at zone (i) contains a
large amount of energy. The broken power law in zones (ii) and (iii)
have slopes −5/3 and −3, respectively. See Sec. III A for details of
the model.

cascade in the small scales gives the spectrum Ek ∼ k−3 with
a sharp cutoff at |k| = kd. It is necessary to assume this cutoff
to prevent the ultraviolet divergence of the total enstrophy and
palinstrophy, although not total energy.

Let us now denote by E the energy in the |k| = k1 mode
(i.e., the condensate) and by E′ the energy of the rest of
the system (i.e., E = E + E′). Following standard mean-field
theory, we call them, respectively, the mean and fluctuating
parts, even though E′ contributes to the coherent structure as
we will show in Sec. III C. Similar notations are applied to the
enstrophy and palinstrophy too. We can then split the energy
equation (5) into two parts, namely,

∂tE = −2νk2
1E + ε, (7)

∂tE
′ = −2νZ′ + f 2

i − ε, (8)

where ε is the inverse energy transfer rate to the condensate.
Similarly, with the help of Eq. (7), we can rewrite Eq. (6) as

∂tZ
′ = −2νP ′ + f 2

i k2
i − k2

1ε. (9)

The last term k2
1ε describes the enstrophy transfer rate to the

condensate. Its existence implies that, although most of the
enstrophy is transferred toward smaller scales, there is a small
leakage toward the largest scale.

Equations (7) through (9) are exact but not closed. Hence,
it is not yet possible to solve them simultaneously. We
parametrize the fluctuating palinstrophy and enstrophy by γ

and  such that

P ′ ≡ P − k4
1E = γ k2

dZ
′, (10)

Z′ ≡ Z − k2
1E = k2

i E
′. (11)

Substituting the above equations into Eqs. (8) and (9) we obtain
two simultaneous equations. We then eliminate ε between
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them to obtain a dynamical equation for Z′, which can be
solved to obtain

Z′(t) = Z′
∞[1 − e−(t−t0)/τZ′ ], (12)

where we have used the initial condition Z′(t0) = 0 and

Z′
∞ ≡ f 2

i

2ν

k2
i − k2

1

γ k2
d − k2

1

, (13)

with characteristic time scale

τZ′ ≡ 1

2νk2
i

k2
i − k2

1

γ k2
d − k2

1

. (14)

Now note that the enstrophy saturation time scale τZ′ ≈
1/2νγ k2

d is substantially faster than the energy saturation time
scale, which is of the order of νk2

1 . Hence, for simplicity, we
can replace ε by its value at late time in Eq. (7), which can be
obtained by replacing Z′ by Z′

∞ in Eq. (8),

ε∞ ≡ lim
t→∞ ε(t) = f 2

i − 2νZ′
∞ = f 2

i
γ k2

d − k2
i

γ k2
d − k2

1

. (15)

Substituting this back into Eq. (7) and solving for E, we obtain

E(t) = E∞[1 − e−(t−t0)/τE ], (16)

where we have used the initial condition E(t0) = 0. This
solution saturates to

E∞ ≡ f 2
i

2νk2
1

γ k2
d − k2

i

γ k2
d − k2

1

(17)

with a characteristic time scale

τE ≡ 1/2νk2
1 . (18)

In the saturation level (17), the first part f 2
i /2νk2

1 can be
easily derived by dimensional arguments while the correction
factor (γ k2

d − k2
i )/(γ k2

d − k2
1) < 1 comes from our three-scale

model. This result is consistent with the energy bounds
derivation by Eyink [10].

To obtain the values of E∞, we need to solve for kd and
γ . For the former, we combine definition (4) and the forward
enstrophy flux in Eq. (9) to obtain

kd = f 1/3
i

(
k2

i − k2
1

)1/6
ν−1/2. (19)

For the latter, we assume that in the inverse cascade Ek ∼
k−5/3, and in the direct cascade Ek ∼ k−3. These two power
laws must match at k = ki. Using these, we can compute the
dimensionless number

γ ≈ 2

3 + 4 ln(kd/ki)
� 1. (20)

With this, the model no longer has any free parameter.
In Fig. 4, we replot E(t) with the vertical axis normalized
by E∞ and also scale the time axis by τE . This collapses
all the different time traces, thus providing support to our
three-scale model. Note that the nontrivial correction factor
given in Eq. (17) is necessary to obtain this collapse. Note also
that, the expressions for E∞ and Z′

∞ (but not the time scales)
can be derived directly by demanding that we reach a stationary
state at late times. Imposing the conditions ∂tE = ∂tZ = 0 to
Eqs. (5) and (6), Eqs. (17) and (13) follow immediately.

FIG. 4. (Color online) Normalized energy evolution in simula-
tions a16–d32. The thick red, green, blue, and black curves (all under
the “Simulations” label) are for different viscosity (see also labels in
Fig. 2) while solid, dashed, and dotted styles denote different forcing
wave number ki (see legend). We normalize the energy and time using
the results from our three-scale model. Almost all the curves collapse
onto each other. The gray solid curve, green diamonds, and blue
squares are the theoretical prediction b16f and c64b, respectively.

Although all the results from different simulations collapse
onto each other, this collapsed curve lies systematically below
the analytical solution shown as light gray curve in Fig. 4. To
estimate this discrepancy, we fit the numerical curves by the
form of Eq. (16) to find numerical values of the total energy
and the saturation time scale. These values are compared with
their theoretical prediction in Table I. The time scales agree to
a good accuracy. The ratios between the theoretical E∞ and
the fitted Ẽ∞ are listed in the tenth column of Table I. The
average of these ratios (not including b16f, c64b, and pathi)
is ζ ≡ 〈Ẽ∞/E∞〉 ≈ 0.76. We speculate that this systematic
difference exists because we have ignored the feedback of the
condensate to the spectrum in our three-scale model. We will
discuss this speculation with more details in Sec. IV.

Comments on the remaining run in Table I are now in
order. The blue squares are for the c64b run. Although they
look perfectly reasonable, the resolution of the simulation
5122, which gives kG ≈ 170, is too low to resolve the actual
enstrophy dissipation wave number kd = 283. Because spec-
tral Galerkin methods have very little numerical dissipation,
the forward cascaded enstrophy cannot be removed, which
artificially increases Z′

∞ and decrease ε∞. Hence, the steady
state energy E∞ converges to an (incorrect) lower value. In
the language of numerical analysis, this is an inconsistent
numerical solution.

The green diamonds in Fig. 4 are for the b16f run, which
uses single-precision floating-point numbers to represent ωk

instead of double precision. The numerical solution behaves
properly at the beginning, but starts to diverge from the true
solution around t = 1000 = τE . This is not surprising because
the relative round-off error of single-precision numbers is
about ∼ 10−7. A random walk of round-off error in ωk leads to
a linear grow of error in the energy. Indeed, there are roughly
107 steps by the time we reach t = τE , which gives the order
of unit error seen in the figure. To date, a significant fraction of
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FIG. 5. Unfolded trajectory of the positive condensate vortex in
simulation path100. The computational domain is [0,2π )2 (see gray
box near the origin). We first unfold the trajectory into R2 and then
shift the initial position to the origin.

scientific computing in GPUs are done with single precision.
This turns out to be insufficient for our purpose.

B. Movement of condensate vortices

After studying the saturation level and time scale, we focus
on the movement of the condensate vortices at late times. The
last row in Table I represents 16 different simulations path85–
path100. The superscripts in the names have the following
meaning. For pathi we pick the ith output file of b32 and
restart the simulation each time with a different realization of
the random force. In other words, for the ith run the random
number generators are started with seed i. We then evolve the
solutions for another t = 10τE . Because b32 has reached a
saturated state long before the 85th output, the energy levels
remain almost constant in all these simulations. The result is
an ensemble of 16 saturated solutions [16].

The positions of the condensate vortices are simply given
by the phases of the k1 modes. We unfold the trajectories
from the computational domain [0,2π )2 into R2 and shift
their starting points to the origin. We label the x and y

displacements, respectively, by �x and �y and plot such a
trajectory (for path100) in Fig. 5. The small gray box near
the origin shows the size of the original domain [0,2π )2. With
the unfolded trajectories we compute the displacement square
�r2 = �x2 + �y2 for all 16 pathi runs. For each simulation,
we plot a gray curve in Fig. 6. The thick solid curve shows
their (ensemble) average. In the following, we describe a way
to model the motion of this condensate.

We define the “mean” vorticity by

ω(x) ≡
∑

|k|=k1

ωke
ik·x, (21)

so the fluctuating vorticity is ω′ = ω − ω. Averaging the
Navier-Stokes equation, we obtain

∂tω + ∇ · (u ω) = −∇ · F + ν∇2ω. (22)

In the above equation, F ≡ u ω − u ω is the space-dependent
mean vorticity flux. Note that the forcing g is at small wave

FIG. 6. The gray curves are the displacement square �r2 for all
16 pathi runs. The thick solid curve shows their average. The dashed
curve, which is indistinguishable from the solid curve, is the solution
(35) with parameter ξ = 0.1.

numbers ki � k1, so its mean vanishes. It is straightforward to
show that the nonlinear term ∇ · (u ω) vanishes identically.
Both the creation and the movement of the condensate,
therefore, must be due to the flux F .

We now model this mean vorticity flux using the usual
technique of mean-field theory

F i = αi ω + βij ∂jω. (23)

The transport coefficients αi is usually referred to as the
kinetic anisotropic alpha effect [17–19], and βij is a negative
eddy diffusivity tensor. Both αi and βij are constants in
space because we consider only the k1 modes. The mean-field
equation then becomes

(∂t + αi∂i)ω = (νδij − βij )∂i∂jω. (24)

The coefficient αi cannot change the amplitude of the conden-
sate. It can be thought of as the Lagrangian velocity of the pair
of condensate vortices. The inverse energy cascade, therefore,
must be described by antidiffusion.

Expanding ∇ · F , there are only two independent Fourier
coefficients, Fx,k1 x̂ and Fy,k1 ŷ, that enter the mean-field
equation (the first subscript denotes component, the second
one denotes wave vector). Comparing to our parametrization
(23),

αx = Re
Fx,k1 x̂

ωk1 x̂
, αy = Re

Fy,k1 ŷ

ωk1 ŷ
, (25)

βxx = Im
Fx,k1 x̂

k1ωk1 x̂
, βyy = Im

Fy,k1 ŷ

k1ωk1 ŷ
. (26)

It is clear that 〈βxx〉 = 〈βyy〉 = ν at saturation.
The value of α, however, is much more difficult to obtain

because there is no constraint by conservation laws. We can
only perform a rough estimate: The flux F is a convolution
in Fourier space. Given that k2

1E∞/Z′
∞ � 1, the condensate-

fluctuation interaction dominates, so

F ∼ u√
2k1

ω, (27)
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where u√
2k1

represents the typical value of a bandpass filtered
velocity. Comparing the estimate with Eq. (25) and employing
the results from our three-scale model we obtain

〈α2〉 ∼ k1E
√

2k1
≈ f 2

i

2νk2
d

(
ki

k1

)2/3

= f
4/3
i

2k
2/3
1

. (28)

Note that the same argument leads to 〈β2〉 ∼ k−2
1 〈α2〉. Fortu-

nately, it does not contradict 〈β〉 = ν.
Let us now take α to be statistically independent of ω.

Equation (24) then becomes the equation of a passive scalar
advected by a random velocity α. As α has a stationary variance
(28), its simplest model would be an Ornstein-Uhlenbeck
process [20–22]

∂tα = −α/τα + φ. (29)

In the above phenomenological equation, 1/τα is an effective
drag coefficient and φ is an effective stochastic forcing.
Because α is at a scale close to the condensate, we model
the effective forcing φ by Gaussian white noise with zero
mean and variance equal to ξ ε. Here ξ is a tunable parameter
and ε is the mean energy input to the condensate. Standard Itō
calculus gives

〈α(t)〉 = α(0)e−t/τα , (30)

〈α(s) · α(t)〉 = α(0)2e−(t+s)/τα

+ ξf 2
i

γ k2
d − k2

i

γ k2
d − k2

1

τα[e−(t−s)/τα − e−(t+s)/τα ],

(31)

where the second equation is only valid for s < t .
By requiring 〈α(t)2〉 = 〈α2〉 for arbitrary large t , we can

solve for the time scale

τα = 1

2ξf
2/3
i k

2/3
1

γ k2
d − k2

1

γ k2
d − k2

i

. (32)

Furthermore, starting with an expected initial condition
α(0)2 = 〈α2〉 allows us to simplify the correlation to

〈α(s) · α(t)〉 = 〈α2〉e−(t−s)/τα . (33)

The displacement of the condensate can now be solved by
using the simple equation

∂t r = α. (34)

The motion of an inertial particle in a fluid with Stokes drag is
described by the same pair of equations [Eqs. (29) and (34)].
The role of effective velocity is played by α and the effective
Stokes time is given by τα .

Let �r(t) ≡ r(t) − r(0) be the displacement from the
initial position, we have

〈�r(t)2〉 = 2
∫ t

0
dt ′

∫ t ′

0
ds ′〈α(s ′) · α(t ′)〉

= 2〈α2〉τα[t + τα(e−t/τα − 1)]. (35)

Its asymptotic behavior is

〈�r(t)2〉 ≈
{〈α2〉 t2, t < τα,

2〈α2〉ταt, t > τα.
(36)

The early time behavior is completely determined by 〈α2〉
while the free parameter ξ controls only the Brownian motion
of the condensate at late time.

The dashed curve in Fig. 6 is Eq. (35) with a parameter
ξ = 0.1, which corresponds to τα = 6.384. It is practically
indistinguishable from the thick curve, except at very late
times (�t > 3000). Note that at short times the condensate
movement is independent of ξ . Hence the agreement between
the thick solid and dashed curves for �t < τα provides support
to our phenomenological model. Although we are not able to
derive ξ , the late time agreement suggests that the condensate
motion is Brownian for �t > τα .

C. Shape of coherent vortices

We can invert the procedure of computing the vortex
trajectory to hold fixed the positive condensate vortex at the
origin of the computational domain. In Fig. 7, the noisy gray
curves show ten different profiles of the condensate along the
x axis (with y = 0). Performing an average over 1000 such
profiles, we obtain the black solid curve. To avoid confusion,
we refer to this mean profile as the pair of coherent vortices
and denote it by ω̃, while the name condensate vortices is kept
for ω [see definition (21)]. The function ω̃(x,0) can be well
approximated by a sharp Gaussian core (fitted by the dashed
curve) and exponential wings (fitted by the dotted curve) as
shown in the figure. There is no preference between positive
and negative vorticity so ω̃ must change sign in the domain,
which implies faster than exponential fall off for |x| ∼ L/2.
This nontrivial shape cannot be fully described by the four
modes with |k| = k1.

Nevertheless, it is possible to describe ω̃ by a small number
of Fourier coefficients. We find the Fourier coefficients of
the coherent vortices satisfying |ω̃k| � 10−3|ω̃k1 | and list the

FIG. 7. We apply coordinate transformations to shift the center
of the positive condensate vortex to the origin in simulation c32. The
noisy gray curves show the vorticity at several different snapshots
along the x axis (with y = 0). The black solid curve is an average
over 1000 such profiles. It consists of a sharp Gaussian core (dashed
curve) and exponential wings (dotted curve), although for |x| � π/2 it
falls off superexponentially. The open circles show the reconstruction
from the Fourier coefficients listed in Table II.
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TABLE II. The “upper triangular” part of the Fourier coefficients
of the coherent vortices, which are real because of Hermitian
symmetry. The lower triangle and other quadrants are given by
ω̃kx ,ky

= ω̃±ky ,±kx
because of parity and discrete rotational symmetry.

Coefficients that do not satisfy |ω̃k| � 10−3|ω̃k1 | are omitted in the
table. We can reconstruct the shape of both the exponential wings
and fast fall off in Fig. 7 (see open circles in the figure) by using
the shown coefficients. The sharp Gaussian core, however, requires
higher wave numbers to be represented correctly. The omitted values
exhibit an interesting pattern that can be derived by symmetry, see
Sec. III C for details.

ky

kx 0 1 2 3 4 5 6 7 8 9 10

0 28.38 5.03 1.65 0.79 0.45
1 10.37 2.24 1.05 0.61 0.32
2 2.54 1.43 0.72 0.41
3 1.75 0.8 0.52 0.14
4 0.85 0.6 0.32
5 0.64 0.38
6 0.4

“upper triangular” part in Table II. The shown values are real
because of Hermitian symmetry. The lower triangle and other
quadrants are given by ω̃kx ,ky

= ω̃±ky ,±kx
because of parity and

discrete rotational symmetry. The open circles in Fig. 7 show
the reconstructed profile from these coefficients. Despite the
fact that we only have a few modes, the approximation is
extremely good in both the exponential wings and the far tails
where the power falls off more rapidly. The sharp Gaussian
core, however, requires higher wave numbers to be represented
correctly because of its short length scale.

The omitted values in the table exhibit an interesting pattern.
The Fourier coefficients with even kx + ky are significantly
smaller than the ones with odd kx + ky . This is because the
coherent vortices follow the same symmetry properties of the
condensate

ω̃(x,y) =
flip sign along diagonals︷ ︸︸ ︷

ω̃(x + L,y + L)︸ ︷︷ ︸
strictly periodic

= −ω̃(x + L/2,y + L/2). (37)

Fourier transforming the above equation, we immediately
obtain the condition

ω̃kx ,ky
= −ω̃kx ,ky

(−1)kx+ky . (38)

Hence the coherent vortices can only occupy modes with odd
kx + ky .

The above property has interesting implication for the
energy spectrum of 2D turbulence. We graphically represent
the Fourier amplitudes in the inset of Fig. 8. The most energetic
k1 modes, which correspond to the value 28.38 in Table II,
are marked with filled circles. Their “higher harmonics,” with
value 10.37, are in dark gray, which form the second peak with
radius

√
5k1 in the integrated spectrum as shown by the solid

histogram. Other omitted modes with even kx + ky are marked
as open circles, which form a spectral valley in the spectrum.

The spectral valley and the second peak next to the
condensate in Fig. 8 are, to our knowledge, not seen in previous

FIG. 8. The solid and dotted histogram are the energy spectra
Ek of the full (ω) and the coherent (ω̃) vorticity in simulation c32 at
t = 10 000. The spectral bins have even width in log-scale. The valley
and second peak right next to the condensate mode are physical. The
valley corresponds to the |k| = √

2k1 and 2k1 modes, which have even
kx + ky (open circles in inset). The second peak corresponds to the
|k| = √

5k1 modes, which are the first harmonics of the condensate
(gray circles in inset).

numerical studies such as [5–7,11]. It is possible that these
earlier studies have not reached the late saturated stage we
study, or perhaps because evenly spacing bins “wash” out the
spectra as in Fig. 3. In the later case, reducing the bin size to
k1/2 should make the spectral valley and second peak visible,
although the spectrum may become noisier. The spectrum
obtained from atmospheric data [23] or from direct numerical
simulations with Ekman friction [24] would also not have
these features as in those cases energy from the large scales
is removed by friction. Nevertheless, we should remark that
in Fig. 3 of Hossain et al. [4] there is an indication of such a
second peak, although the authors did not comment on it.

As we show by the symmetry argument, the nontrivial shape
of the coherent vortices is responsible for these additional
spectral features. To verify this, we plot the energy spectrum
of ω̃ by a dashed histogram in Fig. 8. The tight agreement
between the solid and dotted histograms in small wave number
strongly support our claim.

IV. DISCUSSION

In this paper, we use a three-scale model to derive the
saturation time scales and saturation levels of the condensate
and turbulent fluctuation in 2D hydrodynamic turbulence. This
requires integrating the 2D Navier-Stokes equations for a
very long time. This has been made possible by virtue of
the high performance of the GPUs. We use the Ornstein-
Uhlenbeck process as a phenomenological model to describe
the movement of condensate vortices. In terms of the saturation
time scales τE and τZ′ , the DNS agree quite well with the
analytical predictions. The saturation levels are, however,
off by a constant factor ζ = 0.76. We speculate that this
disagreement is because our three-scale model ignores the
nontrivial shape of the coherent vortices. The higher harmonics
of the condensate modify the spectra at small wave number
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and affect the saturation level. We have checked that it is
not possible to remedy this problem by just changing k1 in
our model to an effective wave number kcond � k1. A more
sophisticated model is needed.

Before we conclude, we should point out that the direct
(forward) enstrophy flux

ηdir ≡ η∞ ≈ f 2
i

(
k2

i − k2
1

)
(39)

is smaller than the enstrophy input f 2
i k2

i in our three-scale
model. There is no inconsistency here. Their difference is
simply the (very small) inverse enstrophy leakage

ηinv ≡ f 2
i k2

i − ηdir ≈ f 2
i k2

1 (40)

that we commented on for Eq. (9). The property ηinv � ηdir

is nothing magical. It is simply a consequence of the broken
power law in our three-scale model.

Similarly, we can check how the direct (forward) energy
leakageεdir compares with the inverse cascade εinv. Recalling
that ε is only the inverse energy transfer rate at k1, we need to
add the contribution from 2νZ′,

εinv ≡ ε + 3νγZ′
∞ ≈ f 2

i

[
1 −

(
1 − 3

2
γ

)
k2

i

γ k2
d

]
, (41)

εdir ≡ 4νγ ln
kd

ki
Z′

∞ ≈ f 2
i

(
1 − 3

2
γ

)
k2

i

γ k2
d

. (42)

Using the original definition (20), it is easy to verify that
1 − 3γ /2 � 1, which allows us to conclude εinv � εdir. Most
of the input energy is inversely cascaded and dissipated at the
condensate. Note that the above approximations are made at
the same order. The fact that εinv + εdir = f 2

i holds, therefore,
shows the consistence of our model.

Finally, our work stresses the fact that, as in three-
dimensional turbulence [25], the order of taking the limit of
long time (t → ∞) and small viscosity (ν → 0) is also crucial
in 2D turbulence. Specifically, taking the limit ν → 0 first
leads to a (linear) divergence in time

lim
t→∞

(
lim
ν→0

E
) = lim

t→∞ f 2
i t. (43)

We must take the limits in the correct order, which is,

lim
ν→0

(
lim
t→∞ E

) = lim
ν→0

(
f 2

i

2νk2
1

γ k2
d − k2

i

γ k2
d − k2

1

)

= lim
ν→0

f 2
i

2νk2
1

. (44)

The system can then reach a steady state as long as the viscosity
remains nonzero, even without the Ekman term.
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