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Plasma flow versus magnetic feature-tracking speeds in the Sun
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ABSTRACT
We simulate the magnetic feature-tracking (MFT) speed using axisymmetric advective–
diffusive transport models in both one and two dimensions. By depositing magnetic bipolar
regions at different latitudes at the Sun’s surface and following their evolution for a prescribed
meridional circulation and magnetic diffusivity profiles, we derive the MFT speed as a func-
tion of latitude. We find that in a one-dimensional surface-transport model the simulated MFT
speed at the surface is always the same as the meridional flow speed used as input to the
model, but is different in a two-dimensional transport model in the meridional (r, θ ) plane.
The difference depends on the value of the magnetic diffusivity and on the radial gradient of
the latitudinal velocity. We have confirmed our results with two different codes in spherical
and Cartesian coordinates.
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1 IN T RO D U C T I O N

At the solar surface, magnetic features are, apart from active regions
and sunspots, observed in the form of small magnetic elements of
both polarities which appear at all latitudes. Tracking the motion of
such a structure individually, one finds in general a poleward migra-
tion which is suggestive of a poleward meridional flow at and just
beneath the Sun’s surface. However, Doppler measurements1 of the
poleward flow speed at the surface reveal a systematic difference
from the speed inferred from magnetic feature tracking (MFT): at
low and mid latitudes, the latter is observed to be lower than the
Doppler speed, but similar to it at high latitudes (see fig. 10 of Ulrich
2010). Sunspots are usually discarded in such an analysis (Komm,
Howard & Harvey 1993; Hathaway & Rightmire 2010) because
their motion may be affected by their strong magnetic fields. To un-
derstand the physical origin of these differences, Dikpati, Gilman &
Ulrich (2010) performed a simple test using a two-dimensional (ax-
isymmetric) advective–diffusive flux-transport model. They showed
in simulations that, due to diffusive transport, the MFT speed can
indeed be different from that of the meridional flow fed into the
model. They attributed this difference to the latitudinal gradient of
the radial component of the magnetic field, directed towards the
equator at the equatorward side of a bipolar region and towards the
pole at its poleward side. They concluded that magnetic features

�E-mail: guerrero@nordita.org
1 Local helioseismology inversions, e.g. ring diagram analysis (Haber et al.
2002) or time–distance helioseismology (Zhao & Kosovichev 2004; Zhao
et al. 2011), in general tend to agree with the Doppler results.

drift polewards with a net speed that is lower than the flow speed at
low latitudes and higher at high latitudes.

In non-axisymmetric two-dimensional (θ , φ) surface-transport
models (e.g. Baumann et al. 2004; Wang, Robbrecht & Sheeley
2009; Sheeley 2010), one could likewise suppose that diffusion
is the only agent that can prevent magnetic features from simply
being advected with the meridional flow. However, a difference be-
tween Doppler and MFT speeds has never been discussed for those
models.

In this Letter, we use both one-dimensional (latitudinal) and
two-dimensional (axisymmetric) advective–diffusive flux-transport
models to clarify to what extent the value of the magnetic diffu-
sivity and its radial gradient influence such a difference. Moreover,
we will study the role of the radial gradient of the latitudinal flow
velocity.

2 MO D E L S A N D M E T H O D S

For the sake of simplicity, we consider the evolution of azimuthally
averaged, purely poloidal, i.e., meridional fields. Quite generally,
studying averaged fields requires the inclusion of an additional
mean electromotive force E in the induction equation. Its major
constituents are often described by the α effect, turbulent pumping
and turbulent diffusivity ηt (see e.g. Moffatt 1978). However, only
the latter will be taken into account here and assumed to be isotropic,
yet possibly depending on depth. We do not claim that all other
turbulence effects, like dynamo waves or pumping, are negligible,
but prefer to clarify the origin of the speed deviations in question
by considering the effects in isolation. Thus, we focus here on the
competition between diffusion and advection.
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Our model is kinematic and we consider axisymmetric solutions
of the induction equation in spherical coordinates (r, θ , φ):

∂B
∂t

= ∇ × (U × B − ηT∇ × B), ∇ · B = 0, (1)

with the total (molecular plus turbulent) magnetic diffusivity ηT =
η + ηt and the prescribed velocity U , i.e. we disregard the back-
reaction of the magnetic field on to U . The computational domain
spans over a spherical half-shell Rb ≤ r ≤ R, 0 ≤ θ ≤ π/2 (i.e.
from the pole to the equator), where R is the solar radius and the
base of the convection zone is at Rb = 0.7R. The total diffusivity
ηT is, unless specified otherwise, constant across the domain and
considered a free parameter of the model.

For the one-dimensional version of the model, we solve the radial
part of equation (1) for Br at r = R, as done in several surface-
transport models (see e.g. DeVore, Sheeley & Boris 1984; Baumann
et al. 2004):

∂Br

∂t
= − 1

R sin θ

∂

∂θ

[
sin θ

(
UθBr − ηT

R

∂Br

∂θ

)]
. (2)

Note that this equation is subject to the simplifying assumption
Bθ � Br at the surface (see the appendix of DeVore et al. 1984),
the consequences of which will be assessed later when discussing
our results. We solve equation (2) by using a second-order finite
difference scheme with 512 grid points.2 The time integration is
performed with an implicit (Crank–Nicholson) method.

For the two-dimensional version, we solve instead of equation (1)
the corresponding equation for the φ component of the vector po-
tential A = Aêφ , where B = ∇ × A, and

∂A

∂t
= −1

s
(U · ∇)(sA) + ηT

(
∇2 − 1

s2

)
A, s = r sin θ, (3)

again utilizing finite differences (Lax–Wendroff scheme for first and
centred second-order scheme for second derivatives). For all sim-
ulations we use 4002 grid points. A convergence analysis revealed
that for the global evolution of the magnetic field a resolution of
1282 grid points is already sufficient. However, a smoother profile
of the estimated tracer velocity is obtained with the higher resolu-
tion. Time integration is done with the alternating direction implicit
method (for details see Guerrero & Muñoz 2004).

In modelling the meridional velocity U , we start with the corre-
sponding mass flow ρU which is assumed steady and has thus to
obey ∇ · (ρU) = 0 because of mass conservation. Hence, it can be
derived from a stream function ψ by ρU = ∇ × (ψ êφ). Following
Dikpati et al. (2010), we assume an adiabatic density profile:

ρ(r) = ρ0(R/r − 0.97)1.5, (4)

where ρ0 is specified such that ρ(R) = 5 × 10−3 g cm−3. For the
stream function, we choose the ansatz ψ = −ψ0F (r)∂θG(θ ) with

F (r) =
(

R

r
− 0.97

)n[
1 −

( r

R

)k
][(

Rb

R

)k

−
( r

R

)k

]
, (5)

G(θ ) = P2(cos θ ) + mP4(cos θ ), (6)

where Pl is the Legendre polynomial of order l. F(r) guarantees
vanishing Ur at the boundaries r = Rb, R assumed impenetrable.
The first factor in F(r), resembling the density profile, is necessary
to avoid local extrema of Uθ within the domain. This can be achieved
by n = 0.8 . . . 1.2, depending on the value of k. Apart from that, the
exponents n and k are free parameters determining the steepness of

2 Same results are obtained for resolutions from 128 to 1024 grid points.

Figure 1. Solid lines: radial profile of Uθ (r, 57◦) for different k as indicated
in the legend, n = 0.8, cf. equation (5). Broken lines: Cartesian velocity
profile, Uy(x, Ly/2), cf. equation (11).

the radial Uθ profile. For fixed n, lower (higher) values of k result
in a flatter (steeper) profile (see Fig. 1).

Tuning the exponent n allows adjusting the Uθ gradient just at
the surface without changing it very strongly deeper down. So n
can be employed for ensuring the stress-free boundary condition
(∂rUθ )(R, θ ) = Uθ (R, θ )/R, usually imposed in, e.g., mean-field
hydrodynamic models of stellar rotation and in direct numerical
simulations of convection. Here, it can be expressed in the form
hr(R) = 1, where hr(r) is the normalized radial gradient of Uθ ,
hr (r) = r(d ln F/dr). For simplicity, we have ignored this condition
in most of our calculations and fixed n = 0.8. However, we have
checked the influence of having the stress-free condition obeyed on
our results in a number of cases with different values of n.

Further, the choice of m = −0.2 results in a latitudinal surface
profile Uθ (R, θ ) which resembles Doppler velocity observations (see
e.g. Ulrich 2010), in particular the position of the surface maximum
of Uθ (R, θ ) is fairly well reproduced. ψ0 is adjusted such that this
maximum is U0 = 2500 cm s−1.

The initial magnetic field of a bipolar region is modelled as
a flux loop in a meridional plane corresponding to two rings of
concentrated magnetic flux on the surface of the sphere. We describe
it by the vector potential

A = A0 exp

[
−

(
θ − θi

wθ

)2
]

exp

[
−

(
r − R

wr

)2
]

êφ, (7)

where θ i is the initial latitudinal location of the centre of the bipolar
region. The initial separation between the positions at which Br

assumes its extrema at the surface, that is the ‘spot separation’, is
�

√
2 wθ , whereas the depth to which the loop extends is controlled

by wr. We assume wθ = 0.02 (2.3◦) and wr = 0.04R throughout
this Letter. For the corresponding field geometry, see Fig. 2.

Magnetic boundary conditions are chosen to be consistent with
a perfect conductor in r ≤ Rb and to ensure continuity of B with

Figure 2. Bipolar region according to equation (7) for θ i = 45◦. θ± is the
position of the centre of the poleward (positive) and equatorward (negative)
spot, respectively. Colour coding: Br/max(Br).
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an external potential field at r = R. Comparisons with the simpler
normal field condition r × B = 0 instead of the potential field
condition showed no notable difference in the results. At the equator,
B is assumed to be antisymmetric.

Both models were run over the model time interval T , being
typically two weeks, for 20 equidistant initial latitudes θ i of the
bipolar region between 5◦ and 85◦. For measuring the latitudinal
surface drift velocity of the flux loop, averaged over T , two different
methods were employed. In the first one, the position θ0, at which the
normal magnetic field Br vanishes (i.e. the place where A peaks), was
followed. In the second, we trace the positions of the local maximum
and minimum of Br within the loop, θ+ and θ−, respectively. The
averaged latitudinal velocity was then defined as V 0 = R[θ0(T ) −
θ0(0)]/T in the first case and as the average of the two values
V ± = R[θ±(T ) − θ±(0)]/T , that is

V = (V + + V −)/2, (8)

in the second. We assign V 0 to the average colatitude [θ0(T) +
θ0(0)]/2, but V to the average [θ+(T) + θ−(T) + θ+(0) + θ−(0)]/4.
As the profiles V (θ ) and V 0(θ ), obtained directly in this way, turned
out to be rather wiggly, we assumed for simplicity that a reasonably
smooth fitting function is given by V̂ G(θ ) (see equation 6), with the
amplitude V̂ as single fit parameter. That is, we assumed that the
tracking velocity V has (up to some factor) the same θ dependence
as the flow speed at the surface, Uθ (R, θ ). For the highest diffusivity
used and for starting latitudes θ i closest to the equator, the influence
of this reflecting boundary becomes notable. This influence leads
to an unrealistically low velocity of the equatorward (negative) spot
which, in turn, corrupts V . We use instead V 0 there.

3 R ESULTS

3.1 One-dimensional model

In simulations with high diffusivity, ηT = 1012 cm2 s−1, we find that
the speed of the poleward (equatorward) spot, V +(V −), is larger
(smaller) than the fluid velocity (see Fig. 3). However, the average
velocity V matches the fluid velocity Uθ fairly well. The velocity of
the centre of the bipolar region, V 0, also coincides with it. For even
higher values of ηT, V + and V − deviate stronger from Uθ , but the
average continues to agree with it. For evolution times shorter than
two weeks (e.g. one week or less), the curve for V is more wiggly.
However, it always follows the flow. These results agree with those
of the two-dimensional (θ , φ) model of Wang et al. (2009), where

Figure 3. Tracking velocities for the one-dimensional model equation (2)
with ηT = 1012 cm2 s−1. Solid line: flow velocity Uθ (R); filled and open
circles: V + and V − , respectively; diamonds: average V = (V + + V −)/2.

the poleward spots of the bipolar regions move faster than the fluid
for a similar value of ηT (see their fig.15).

3.2 Two-dimensional model

Next, we study the evolution of a two-dimensional bipolar region
by solving equation (3) using equation (7) as initial condition. As a
representative case, Fig. 4 shows the evolution of a bipolar region
initially located at θ i = 45◦, using k = 6 with either ηT = 109 (left)
or 1012 cm2 s−1 (right).

In contrast to the one-dimensional model, where the profile V (θ )
turns out to be independent of ηT, we find here a significant depen-
dence. For small values of ηT, the ‘frozen-in’ condition is fulfilled
and thus the magnetic field lines appear indeed attached to the
plasma flow. (The systematic offset between V and Uθ for ηT → 0,
visible in Figs 5 and 6, is mainly due to the discretization errors.)
For larger ηT (�3 × 1011 cm2 s−1), however, the diffusion time-
scale becomes similar to or even smaller than the advection time-
scale, and then there is an increasing departure from the ‘frozen-
in’ state. This becomes clear in Fig. 5, where V (θ ) is shown for
108 ≤ ηT ≤ 3 × 1012 cm2 s−1. In general, its deviation from Uθ

increases everywhere with growing ηT, while for each ηT it adopts
its largest value at intermediate latitudes of ≈ 57◦ where Uθ peaks.
Note that the simple fit based only on the amplitude, using the
function G from equation (6), works remarkably well.

The top panel of Fig. 6 visualizes the dependence of V on the
radial variation of Uθ , i. e. on the index k in equation (6). We
present V at the latitude where Uθ peaks (θ ≈ 57◦) as a function of

Figure 4. Magnetic field (solid lines) after two weeks of evolution of a
bipolar region initially at θ i = 45◦ (see Fig. 2). Colour coding: Br/max[Br(t =
0)]. Left: ηT = 109 cm2 s−1; right: ηT = 1012 cm2 s−1.

Figure 5. Tracking velocity V (θ ) for 108 ≤ ηT ≤ 3 × 1012 cm2 s−1, k = 6.
Solid/black: flow velocity Uθ (R, θ ). Symbols: V according to equation (8),
omitted for ηT = 108 cm2 s−1 as mostly coinciding with those for ηT =
1010 cm2 s−1; symbol for ηT = 3×1012 cm2 s−1, θ = 85◦ shows V 0. Lines:
fit to G in equation (6) with amplitude as fit parameter, m = −0.2 fixed.
Colours/symbols/line styles correspond to different ηT according to legend.

C© 2012 The Authors, MNRAS 420, L1–L5
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



L4 G. Guerrero et al.

Figure 6. Upper panel: maximum tracking velocity V versus ηT for differ-
ent values of k in equation (6). Solid lines/filled circles correspond to the
spherical model (values taken from fit curves). Broken lines/squares corre-
spond to the Cartesian model (C); dashed/filled squares: density according
to equation (4), dot–dashed/open squares: constant density. Lower panel,
lines/closed circles: fractional speed difference, [Uθ (R) − V ]/Uθ (R), ver-
sus the normalized radial gradient of Uθ , hr(r), averaged over r/R = 0.97
. . . 1. Open circles: stress-free boundary condition ensured in the profile (5)
by (n, k) = (0.954, 4) for 〈hr〉 ≈ 12 and (1.194, 10) for 〈hr〉 ≈ 17.5.

ηT for k varying from 0.5 to 10. To minimize the effect of numerical
noise, we have taken V from fit curves. For k = 0.5 (yellow line),
V does not depend on ηT up to 1011 cm2 s−1. Beyond this value,
V starts to decrease. For increasing k the curves depart from the
‘frozen-in’ domain at decreasing values of ηT being as small as
≈ 3 × 109 cm2 s−1 for k = 10. The bottom panel of the same figure
shows the fractional velocity difference, [Uθ (R)−V ]/Uθ (R), again
taken at θ = 57

◦
, as a function of the normalized radial gradient of

Uθ , hr(r), averaged over the interval r = 0.97R , . . ., R, where the
major part of the magnetic flux is residing. Note that for the highest
diffusivity, 3 × 1012 cm2 s−1, V is reduced by ≈ 45 per cent at 〈hr〉
≈ 33. Employing our results for interpreting the data given in fig. 10
of Ulrich (2010), we find that their speed reductions of about 30 per
cent do occur in our model, either for ηT = 3×1012 cm2 s−1 and 〈hr〉
≈ 20 or for ηT = 1012 cm2 s−1 and 〈hr〉 ≈ 33. In the bottom panel
of Fig. 6, some results are shown with the profile (5) adjusted to the
stress-free boundary condition by fine tuning of n. Obviously, there
is only a slight reduction of the velocity difference in comparison
with the unadjusted profile.

3.3 Dependency on ηT(r)

Having examined the influence of the radial profile of Uθ on V , one
must ask whether also the radial profile of ηT has an effect. However,
abandoning the assumption of its constancy, that is, of the homo-
geneity of the turbulence behind it, isotropy becomes questionable,
too. We postpone the inclusion of anisotropy until reliable data for

Figure 7. Top: profiles of ηT used. Bottom: corresponding tracking veloci-
ties V for ηT(R) = 1012 cm2 s−1, k = 6. Coloured lines: fits to equation (6).
Solid/black: flow velocity Uθ (R). Filled (open) symbols: V +(V −).

the tensor describing the part ηijk∂kBj of the mean electromotive
force, say, from convection simulations and the test-field method
(see e.g. Käpylä, Korpi & Brandenburg 2009) are available.

From an observational point of view, the ηT profile is unknown.
Hence, the profiles so far considered in dynamo models are to
some extent arbitrary. For instance, Dikpati & Gilman (2001) and
Guerrero & de Gouveia Dal Pino (2007) have used a step function,
with values of 1010 cm2 s−1 in the bulk of the convection zone and
≈1012 cm2 s−1 for supergranular diffusion within the so-called near-
surface shear layer. On the other hand, Pipin et al. (2011) considered
a mixing length theory (MLT) estimate of ηt. Here we consider both
a step and an MLT profile defined by the following expressions (see
the top panel of Fig. 7):

η
step
T = ηcz + ηs − ηcz

2

[
1 + erf

(
r − 0.96R

0.02R

)]
, (9)

with ηs = 1012 cm2 s−1 and ηcz = 10−2ηs, and

ηMLT
T = ηrz + ηcz − ηrz

2

[
1 + erf

(
r − 0.71R

0.02R

)]

+ ηs − ηcz

2

[
1 − erf

(
r − 0.93R

0.04R

)]
, (10)

where ηrz = 108 cm2 s−1, ηs = 1013 cm2 s−1 and ηcz = 10−1ηs.
We have performed numerical experiments with k = 6 for Uθ and

a fixed surface value ηT(R) = 1012 cm2 s−1. The results, displayed
in the bottom panel of Fig. 7, do not show marked differences
between the three diffusivity profiles considered, and the fitted MFT
velocity profiles are nearly identical with that for η = constant.
However, the separation between poleward and equatorward spots is
smaller for the model with the step profile. The model with constant
ηT exhibits an intermediate separation, whereas in the model with
the MLT profile the dispersion increases.

3.4 Comparison with Cartesian geometry

To assess the influence of the curvature in our spherical model,
we have repeated some of the simulations in a two-dimensional
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(Lx × Ly) Cartesian box with aspect ratio (R − Rb) : R π/2 and the
simplified circulation velocity,

U = 1

ρ
∇ × (ψ êz), ψ = ψ0

x

Lx

(
x

Lx

− 1

)
y

Ly

(
y

Ly

− 1

)
, (11)

with (x, y) corresponding to (r, θ ), respectively, ρ set either con-
stant or to ρ(x + Rb) from equation (4), and ψ0 again adjusted to
yield 2500 cm s−1 for the maximum surface velocity. Instead of the
vacuum boundary condition at r = R, the simpler normal field con-
dition êx × B = 0 was imposed at x = Lx . These simulations were
performed with the PENCIL CODE,3 which uses sixth-order explicit
finite differences in space and third-order accurate time stepping
method. For these runs we use 5122 grid points.

The results, here with constant ηT, for both choices of ρ, are
represented by broken lines in Fig. 6. The corresponding profiles
Uy(x, Ly/2) are shown in Fig. 1 with the same line styles. Clearly,
these findings agree with those of the spherical model, showing
that the value of ηT, at which the frozen-in condition starts to fail,
depends crucially on the radial (x) gradient of Uy and varies here
by about two orders of magnitude.

4 D I S C U S S I O N A N D C O N C L U S I O N S

Through one- and two-dimensional advective–diffusive models, we
have investigated the differences between the surface meridional
flow speed obtained from Doppler measurements and that inferred
from MFT. In the one-dimensional simulations, the average veloc-
ity of the magnetic tracers always coincides with that of the flow,
independently of the value of ηT. In the two-dimensional models,
on the other hand, flow and feature-tracking velocities may diverge
at higher diffusivities, for which the ‘frozen-in’ condition does no
longer hold. Further, the difference between these velocities de-
pends on the radial gradient of the latitudinal velocity: the steeper
the profile Uθ , the larger the difference. Using a different code, we
have verified that these results apply also in Cartesian geometry. To
understand this dependence, we refer to the induction equation (for
simplicity in Cartesian coordinates), taken at the surface x = Lx (or
r = R), where Ux = ∂yUx = 0, so

∂Bx

∂t
= − ∂

∂y
(UyBx) + ηT

(
∂2Bx

∂x2
+ ∂2Bx

∂y2

)
, (12)

∂By

∂t
= ∂

∂x
(UyBx − UxBy) + ηT

(
∂2By

∂x2
+ ∂2By

∂y2

)
. (13)

Note that Bx is apparently decoupled from By, but at the price of
being coupled to its second vertical derivative. In the case of small
ηT (i.e. diffusion time larger than advection time), the evolution of
Bx is governed by the first, advective, term in equation (12). In this
case, the magnetic field lines follow the fluid velocity locally (see
curved magnetic field lines in the left-hand panel of Fig. 4). In the
case of larger ηT (diffusion time similar to or shorter than advection
time), the diffusion term in equation (12) plays a significant role in
the field evolution. The dependence on ∂2

xBx can be eliminated by

3 http://pencil-code.googlecode.com/

the solenoidal condition ∂xBx + ∂yBy = 0, by which the coupling
between the two equations becomes obvious. Because By depends
explicitly on ∂xUy , the surface speed of Bx will clearly be modified
by the fluid motion deeper down in the subsurface layers. When
ignoring By from the beginning, however, as done in DeVore et al.
(1984), and many surface-transport models afterwards, this influ-
ence will be lost. In spherical coordinates, the surface induction
equation for Br exhibits an analogous dependence on Bθ , hence the
same argument is valid.

Based upon our results for the difference between flow and MFT
speeds, one might think of inferring the thickness of the layer where
the flow is polewards. This value, however, would depend on the
surface diffusivity and on ∂rUθ , both of which are poorly known.
Hathaway (2011) has inferred an extreme flow pattern with a very
shallow poleward flow (≈35 Mm deep) which nevertheless can be
brought into agreement with our findings, requiring a large radial
gradient of Uθ , 〈hr (r)〉 � 20 (cf. Fig. 6). Furthermore, surface
flux-transport models in two dimensions (θ , φ), which disregard the
radial derivatives in Br, are probably overestimating the importance
of advection in their results.
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