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The phenomenon of turbulent thermal diffusion in temperature-stratified turbulence
causing a non-diffusive turbulent flux (i.e., non-counter-gradient transport) of inertial
and non-inertial particles in the direction of the turbulent heat flux is found using
direct numerical simulations (DNS). In simulations with and without gravity, this
phenomenon is found to cause a peak in the particle number density around the
minimum of the mean fluid temperature for Stokes numbers less than 1, where the
Stokes number is the ratio of particle Stokes time to turbulent Kolmogorov time
at the viscous scale. Turbulent thermal diffusion causes the formation of inho-
mogeneities in the spatial distribution of inertial particles whose scale is large in
comparison with the integral scale of the turbulence. The strength of this effect is
maximum for Stokes numbers around unity, and decreases again for larger values.
The dynamics of inertial particles is studied using Lagrangian modelling in forced
temperature-stratified turbulence, whereas non-inertial particles and the fluid are de-
scribed using DNS in an Eulerian framework. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4733450]

I. INTRODUCTION

Transport and mixing of small particles (aerosols and droplets) in turbulent fluid flow is of
fundamental importance in a large variety of applications (environmental sciences, physics of the
atmosphere and meteorology, industrial turbulent flows and turbulent combustion).1–9 There are also
astrophysical applications, in particular in the context of protoplanetary accretion discs.10–13

Numerous laboratory4, 14–18 and numerical19–25 experiments as well as observations in
atmospheric7, 9, 26, 27 and astrophysical10–13, 28, 29 turbulent flows have shown different kinds of large-
scale and small-scale long-living inhomogeneities (clusters) in the spatial distribution of particles.
It is well known that turbulent diffusion causes the destruction of inhomogeneities in the spatial
distributions of particles when the scale of the inhomogeneities is larger than the turbulent integral
scale. But how can we explain the opposite process resulting in the formation of clusters of particles
at scales larger than the integral scale?

One of the mechanisms of formation of particle inhomogeneities in temperature-stratified tur-
bulence is the phenomenon of turbulent thermal diffusion.30, 31 This effect consists of a turbulent
non-diffusive flux of inertial particles in the direction of the turbulent heat flux, so that particles
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are accumulated in the vicinity of the mean temperature minimum. The particular form of the
flow field does not play any role in this effect. It is a purely collective phenomenon caused by
temperature-stratified turbulence resulting in a pumping effect, i.e., the appearance of a non-zero
mean effective velocity of particles in the direction opposite to the mean temperature gradient. A
competition between two different phenomena, namely, the turbulent thermal diffusion and ordinary
turbulent diffusion determines the conditions for the formation of large-scale particle clusters in the
vicinity of the mean temperature minimum. The characteristic scale of the particle inhomogeneity
formed due to turbulent thermal diffusion is much larger than the integral scale of the turbulence.
Furthermore, the characteristic time scale of the formation of the particle inhomogeneity is much
longer than the characteristic turbulent time, i.e., this is a mean-field effect.

Diffusive flux implies an effect that is determined by the second spatial derivative in the
equation for the particle number density. This is the standard diffusion term that determines the
counter-gradient transport in the particle flux. On the other hand, the non-diffusive flux implies a
non-gradient transport in the particle flux. It is determined, e.g., by the first spatial derivative in the
equation for the particle number density.

The phenomenon of turbulent thermal diffusion has been predicted theoretically30, 31 and de-
tected in different laboratory experiments in stably and unstably temperature-stratified turbulence
produced by oscillating grids or a multi-fan generator.32–36 This phenomenon is shown to be impor-
tant for atmospheric turbulence with temperature inversions37 and for small-scale particle clustering
in temperature-stratified turbulence,36 but it is also expected to be significant for different kinds
of heat exchangers, e.g., industrial boilers where Reynolds numbers and temperature gradients are
large.

In spite of the fact that turbulent thermal diffusion has already been found in different types of
laboratory experiments and atmospheric flows, this effect has never been studied in direct numerical
simulations. The main goal of this paper is to find turbulent thermal diffusion of non-inertial and
inertial particles in direct numerical simulations (DNS).

The paper is organized as follows. In Sec. II we discuss the physics of the phenomenon of
turbulent thermal diffusion. The numerical simulations for fluid, inertial and non-inertial particles,
and the results of direct numerical simulations are described in Sec. III. Motions of inertial particles
are determined using a Lagrangian framework (Secs. III B–III D), while non-inertial particles
are described using an Eulerian framework (Sec. III E). Discussion and conclusions are drawn in
Sec. IV.

II. PHYSICS OF TURBULENT THERMAL DIFFUSION

In this section we discuss the physics of the phenomenon of turbulent thermal diffusion. The
number density n p(t, r) of particles advected in a turbulent flow is determined by the following
classical advection-diffusion equation:38, 39

∂n p

∂t
+ ∇· (n pUp − D∇n p) = 0, (1)

where D is the coefficient of Brownian diffusion of particles and Up is the particle velocity, which
they acquire in a turbulent fluid velocity field U. To study the formation of large-scale inhomogeneous
particle structures, Eq. (1) for the particle number density is averaged over an ensemble of turbulent
velocity fields. Using a mean-field approach, we decompose the particle number density np into the
mean number density, N = n p and fluctuations n, where n = 0. We decompose the velocity field
in a similar fashion. We assume for simplicity vanishing mean particle velocity, Up = 0. Averaging
Eq. (1) over an ensemble of turbulent velocity fields we obtain an equation for the mean number
density of particles,

∂ N

∂t
+ ∇· [n Up − D ∇N

] = 0 , (2)

where n Up is the turbulent flux of particles. To obtain a closed mean-field equation one needs to
determine the turbulent flux of particles.
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Already simple arguments40 yield an estimate for the turbulent flux of particles n Up. Subtracting
the averaged Eq. (2) from Eq. (1) we obtain an equation for the fluctuations of the particle number
density, n = np − N,

∂n

∂t
+ ∇· [

n Up − n Up − D∇n
] = −∇· (N Up). (3)

The left hand side of Eq. (3) has the dimension n/τ , where the time τ can be identified with the
fluid turbulent integral timescale τ f for large fluid Reynolds numbers. (The subscript f stands for
forcing scale.) Replacing the left hand side of Eq. (3) by n/τ f we obtain the following estimate for
the fluctuations of the particle number density:

n ∼ −τf (∇· Up) N − τf (Up·∇)N . (4)

Multiply Eq. (4) by Up and average over an ensemble of turbulent velocity fields, we arrive at a
formula for the turbulent flux of particles,

n Up = N V eff − DT ∇N , (5)

where the first term on the right hand side of Eq. (5), N V eff , describes the turbulent flux of particles
due to turbulent thermal diffusion, and the effective velocity is

V eff = −τf Up (∇ · Up). (6)

The second term on the right hand side of Eq. (5), −DT ∇N , determines the flux of particles caused
by turbulent diffusion,

DT ∇N = τf (Up)i (Up) j ∇ j N ≈ τf Ui U j ∇ j N , (7)

where DT = τf Ui U j is the turbulent diffusion tensor and we have assumed here that the Stokes
number is small, so that Up ∼ U . For instance, for isotropic turbulence we have DT = DT δi j ,

where DT = τf U2/3. The turbulent flux of particles determined by Eqs. (5)–(7), coincides with that
derived using rigorous approaches.30, 31, 37, 41–44

A. Non-inertial particles

Let us first consider non-inertial particles advected by the fluid flow such that the particle
velocity coincides with the fluid velocity, Up = U . The equation for the mean number density, N,
of the non-inertial particles is

∂ N

∂t
+ ∇· [N V eff − (D + DT) ∇N

] = 0; (8)

see Eqs. (2) and (5)–(7). For low Mach numbers, using the anelastic approximation,
∇ · U ≈ −U · ∇ ln ρ, the effective velocity of non-inertial particles is given by

V eff
i = −τf Ui (∇ · U) = τf Ui U j ∇ j ln ρ, (9)

where ρ is the mean fluid density. When ∇ p = 0 and the anisotropy of the turbulence is weak, the
effective velocity of non-inertial particles is,

V eff = DT ∇ ln ρ = −DT ∇ ln T , (10)

where p is the mean fluid pressure and T is the mean fluid temperature. The steady-state solution of
Eqs. (8) and (10) for the mean number density of non-inertial particles is given by

Ñ (z) = [ρ̃(z)]
DT

D+DT , (11)

where Ñ = N/N0 is the non-dimensional mean number density of particles, ρ̃(z) = ρ/ρ0 is the
non-dimensional mean fluid density, and the subscripts 0 represent the values far from the cooling
zone. Equation (11) implies that small particles are accumulated in the vicinity of the maximum of
the fluid density.
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TABLE I. Mechanism of particle transport n U for non-inertial particles
along the direction of the mean fluid density gradient.

−−−−−−−→∇ρ

a b

Ux > 0 Ux < 0
∇· U < 0 ∇· U > 0
n > 0 n < 0
n Ux > 0 n Ux > 0

−−−−−−−→n U

Indeed, the non-diffusive flux of particles, N V eff , is directed toward the maximum of the fluid
density [see Eq. (10)]. The physics of the accumulation of non-inertial particles in the vicinity of
the maximum of the mean fluid density (or the minimum of the mean fluid temperature) can be
explained as follows (see Table I). Let us assume that the mean fluid density ρ2 at point 2 is larger
than the mean fluid density ρ1 at point 1. Consider two small control volumes “a” and “b” located
between these two points, and let the direction of the local turbulent velocity in volume “a” at some
instant be the same as the direction of the mean fluid density gradient ∇ ρ (i.e., along the x axis
toward point 2). Let the local turbulent velocity in volume “b” at this instant be directed opposite to
the mean fluid density gradient (i.e., toward point 1).

In a fluid flow with an imposed mean temperature gradient (i.e., an imposed mean fluid density
gradient), one of the sources of particle number density fluctuations, n ∝ −τf N (∇· U), is caused
by a non-zero ∇ · U ≈ −U · ∇ ln ρ �= 0 [see the first term on the right hand side of Eq. (4)]. Since
fluctuations of the fluid velocity U are positive in volume “a” and negative in volume “b,” we have
∇· U < 0 in volume “a,” and ∇· U > 0 in volume “b.” Therefore, the fluctuations of the particle
number density n ∝ −τf N (∇· U) are positive in volume “a” and negative in volume “b.” However,
the flux of particles n Ux is positive in volume “a” (i.e., it is directed toward point 2), and it is also
positive in volume “b” (because both fluctuations of fluid velocity and number density of particles
are negative in volume “b”). Therefore, the mean flux of particles n U is directed, as is the mean fluid
density gradient ∇ ρ, toward point 2. This forms large-scale heterogeneous structures of non-inertial
particles in regions with a mean fluid density maximum.

B. Inertial particles

Let us now discuss the transport of inertial particles. The non-diffusive mean flux of particles,
N V eff , toward the mean temperature minimum is the main reason for the formation of large-scale
inhomogeneous distributions of inertial particles in temperature-stratified turbulence. Indeed, an
equation for the mean number density, N, of inertial particles is given by

∂ N

∂t
+ ∇· [N (W g + V eff) − (D + DT) ∇N

] = 0 , (12)

where for inertial particles we have taken into account the effect of gravity, i.e., W g = τp g is the
terminal fall velocity of particles, g is the gravitational acceleration, and

V eff = −τf Up (∇ · Up) = −α DT ∇ ln T (13)

is the effective pumping velocity of particles due to turbulent thermal diffusion. For large Péclet
numbers the coefficient α is unity for non-inertial particles, while for inertial particles α depends
on τ p, the Mach number and the fluid Reynolds number,30, 31, 37 where τ p is the Stokes time that
describes particle-fluid interactions. The steady-state solution of Eqs. (12) and (13) for the mean
number density of inertial particles is given by

Ñ (z) = [T̃ (z)]−
αDT

D+DT exp

[
−

∫ z

z0

Wg

D + DT
dz′

]
, (14)
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TABLE II. Mechanism of particle transport n U p for inertial particles along
the direction of turbulent heat flux.

−−−−−−−→Uθ

a b

Upx > 0 Upx < 0
θ > 0 θ < 0
p > 0 p < 0
∇· Up < 0 ∇· Up > 0
n > 0 n < 0
n Upx > 0 n Upx > 0

−−−−−−−→n Up

where Wg = |W g| is the modulus of the terminal fall velocity, T̃ = T /T 0 is the non-dimensional
mean fluid temperature, and the subscripts 0 represent the values far from the cooling zone.
Equation (14) implies that small particles are accumulated in the vicinity of the mean tempera-
ture minimum.

In the following we explain the mechanism30, 31 of turbulent thermal diffusion for inertial
particles with material density ρp being much larger than the fluid density ρ. The inertia causes
particles inside the turbulent eddies to drift out to the boundary regions between eddies. This can
be seen by considering the equation of motion for particles, dUp/dt = −(Up − U)/τp, where, for
simplicity, the gravity force is neglected. The solution of the equation of motion for small Stokes
time reads45

Up = U − τp
dU
dt

+ O(τ 2
p ). (15)

For large Reynolds numbers, this yields,

∇· Up = ∇· U + τp

ρ
∇2 p + O(τ 2

p ), (16)

where p is the fluid pressure. For large Péclet numbers, when molecular diffusion of particles in
Eq. (1) can be neglected, it follows that ∇· Up ∝ −d ln n p/dt . Therefore, in regions with maxi-
mum fluid pressure (i.e., where ∇2 p < 0), there is accumulation of inertial particles, i.e., dn p/dt
∝ −N (τp/ρ) ∇2 p > 0. These regions have low vorticity, high strain rate, and maximum fluid pres-
sure. Similarly, there is an outflow of inertial particles from regions with minimum fluid pressure.

In homogeneous and isotropic turbulence without mean gradients of temperature, a drift from
regions with increased concentration of particles by a turbulent flow is equiprobable in all directions,
and the pressure (temperature) of the surrounding fluid is not correlated with the turbulent velocity
field. The only non-zero correlation is (U · ∇)p which contributes to the energy flux, while U p = 0.

In temperature-stratified turbulence, temperature and velocity fluctuations are correlated due to
a non-zero turbulent heat flux, U θ �= 0, where θ is the fluid temperature fluctuation. Fluctuations
of temperature cause pressure fluctuations, which result in fluctuations of the number density of
particles.

Increase of the pressure of the surrounding fluid is accompanied by an accumulation of particles,
and the direction of the mean flux of particles coincides with that of the turbulent heat flux. The
mean flux of particles is directed toward the minimum of the mean temperature, and the particles
tend to be accumulated in this region.30, 37, 41, 42 To demonstrate that the directions of the mean flux
of particles and the turbulent heat flux coincide, we assume that the mean temperature T2 at point 2
is larger than the mean temperature T1 at point 1 in Table II. We consider two small control volumes
“a” and “b” located between these two points; see Table II. Let the direction of the local turbulent
velocity in volume “a” at some instant be control volume “a” at some instant be the same as the
direction of the turbulent heat flux U θ (i.e., along the x axis toward point 1) and let the local turbulent
velocity in volume “b,” at the same instant, be directed opposite to the turbulent heat flux (i.e., toward
point 2).
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In temperature-stratified turbulence with a non-zero turbulent heat flux U θ , fluctuations of
pressure p and velocity U are correlated, and regions with a higher level of pressure fluctuations have
higher temperature and velocity fluctuations.46, 47 The fluctuations of temperature θ and pressure p in
volume “a” are positive because Ux θ > 0, and negative in volume “b”; see Table II. The fluctuations
of particle number density n are positive in volume “a” (because particles are locally accumulated
in the vicinity of the maximum of pressure fluctuations, dn/dt ∝ −N (τp/ρ) ∇2 p > 0), and they are
negative in volume “b” (because there is an outflow of particles from regions with low pressure).
The flux of particles n Upx is positive in volume “a” (i.e., it is directed toward point 1), and it is also
positive in volume “b” (because both fluctuations of velocity and number density of particles are
negative in volume “b”), where Upx is the particle velocity along the x axis. Therefore, the mean
flux of particles n U p is directed, as is the turbulent heat flux U θ , toward point 1. This causes the
formation of large-scale inhomogeneous structures in the spatial distribution of inertial particles in
the vicinity of the mean temperature minimum.

Note that turbulent thermal diffusion and turbulent diffusion are two principally different phe-
nomena. Turbulent diffusion is described by second-order spatial derivatives, while turbulent thermal
diffusion is determined by first-order spatial derivatives in the equation for the mean particle num-
ber density. In that sense turbulent thermal diffusion is a non-diffusive effect. Molecular thermal
diffusion of gases (also called the Soret effect) or thermophoresis of particles are also non-diffusive
effects because they are determined by first-order spatial derivatives. However, the mechanism of
turbulent thermal diffusion is principally different from molecular thermophoresis and molecular
thermal diffusion. Indeed, the phenomenon of turbulent thermal diffusion of inertial particles oc-
curs due to the combined action of turbulence effects and particle inertia effects, while molecular
thermophoresis is caused by purely kinetic effects related to the thermal motion of molecules. In a
stratified turbulent flow turbulent thermal diffusion and molecular thermophoresis occur simultane-
ously, although the effect of turbulent thermal diffusion for large Reynolds and Peclet numbers is
essentially stronger than the effect of molecular thermophoresis. In particular, the ratio of effective
velocity due to turbulent thermal diffusion and velocity caused by molecular thermophoresis is of
the order of the Reynolds number.37 In this estimate we have used the formula for the molecular
thermophoretic velocity,48 Vth ∼ ν |∇T |/T , and the formula for the effective velocity caused by
turbulent thermal diffusion.

In addition, there is also turbophoresis. This mean-field effect is related to particle inertia in
systems with non-uniform turbulence intensity causing an additional mean particle velocity.49, 50

The turbophoresis and turbulent thermal diffusion are distinct phenomena. The effective particle
velocity due to the phenomenon of turbulent thermal diffusion originates from the turbulent particle
flux, i.e., it describes a collective statistical phenomenon, while the mean particle velocity due to
turbophoresis originates directly from the expression for mean particle velocity.

III. DIRECT NUMERICAL SIMULATIONS

A. DNS model for the fluid

In this study, equations for the fluid are solved by employing DNS in an Eulerian framework.
All numerical simulations have been performed using the PENCIL CODE51 (for details of the code,
see Refs. 29 and 52). The set of compressible hydrodynamic equations is solved for the fluid density
ρ, the fluid velocity U, and the specific entropy s,

D ln ρ

Dt
= −∇· U, (17)

DU
Dt

= − 1

ρ
[∇ p − ∇·(2ρνS)] + f , (18)

T
Ds

Dt
= 1

ρ
∇ · K∇T + 2νS2 − cP(T − Tref), (19)
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FIG. 1. The velocity power spectrum is shown for the simulation with forcing at kf = 15 together with three simulations
with forcing at kf = 5 but for different Reynolds numbers.

where T = T0 exp(s/cV)(ρ/ρ0)γ−1 is the fluid temperature, γ = cP/cV is the ratio of specific heats
at constant pressure and volume, respectively, D/Dt = ∂/∂t + U · ∇ is the advective derivative, f
is the external forcing function, p = (cP − cV)ρT is the fluid pressure, ν is the kinematic viscosity,
and K is the thermal conductivity. The traceless rate of strain tensor is given by

Si j = 1

2
(Ui, j + U j,i ) − 1

3
δi j∇ · U,

where Ui, j = ∇ jUi. The last term in the entropy Eq. (19) determines the cooling, which causes a
temperature minimum at z = 0, where

Tref = T0 − δT exp(−z2/2σ 2),

and z is the vertical coordinate. Therefore, the temperature minimum is located at the center of the
box. Above the mean temperature minimum the turbulence is stably stratified, while below the mean
temperature minimum the turbulence is unstably stratified.

The size of the simulation domain is L in all three directions. The smallest wavenumber in the
domain, k1 = 2π /L. Wavenumbers are measured in units of k1, and lengths in units of k−1

1 . The width
of the cooling function is σ = 0.5/k1. Furthermore, the strength of the cooling function, δT, is such
that the relative contrast between temperature maximum and temperature minimum is ∼1.6. In all
simulations the Prandtl number Pr = ν/χ = 1, where χ = K/ρcP is the temperature diffusivity.

Turbulence in the simulation box is produced by the forcing function f, which is solenoidal
and non-helical, i.e., ∇ · f = f · ∇ × f = 0, and injects energy and momentum perpendicular to a
random wavevector whose direction changes every timestep, but its length is ∼kf (see Ref. 53). The
strength of the forcing is set such that the maximum Mach number is below 0.5.

In Fig. 1, velocity power spectra are shown for different simulations such that
∫

E(k, t)dk
= u2

rms. It can be seen that for the simulations with kf = 5 and Re ≥ 240 some inertial range scaling
is present. For the simulation with Re = 800 even some parts of the bottleneck can be seen.54 In
Fig. 2 the instantaneous velocity field is shown for the simulation with forcing at kf = 15 and Re =
800. In Fig. 3 urms is shown as a function of vertical position for the three spatial dimensions. The rms
velocity is calculated as follows (showing urms(x) as an example); urms(x) = ∑

j,k U(x, y j , zk)2/N j,k ,
where yj and zk are the y and z coordinates for grid point number j and k, respectively. Nj, k = jmaxkmax

is the total number of grid points in a given x plane.

B. Lagrangian model for inertial particles

The equation of motion of the inertial particles is solved numerically in a Lagrangian framework.
Particles are treated as point particles and we consider the one-way coupling approximation, i.e.,
there is an effect of the fluid on the particles only, while the particles do not influence the fluid
motions. This is a good approximation when the spatial density of particles is much smaller than the
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FIG. 2. The instantaneous velocity field in the xy plane for a simulation with forcing at kf = 15 and Re = 800.

fluid density. The particle equation of motion is

dUp

dt
= g − Up − U

τp
, (20)

where dX/dt = Up,

τp = m p

3π μ d (1 − fc)

is the Stokes time, mp = ρp (πd3/6) is the particle mass of the spherical form, d is the particle
diameter, ρp is the particle material density, μ = ρ ν is the dynamic viscosity, fc = 0.15Re0.687

p ,
and Rep = |Up − U |d/ν is the particle Reynolds number.3 The key parameter of the problem is
the Stokes number St = τp/τk which is based on the particle Stokes time and the Kolmogorov
timescale τk = τf/

√
Re, where τ f = 1/urmskf is the turbulent integral timescale, Re = urms/νkf is the

fluid Reynolds number and urms is the root mean square fluid velocity. The parameter fc is used for
inertial particles with Rep ≥ 1. Even though fc is indeed used for calculating the particle forces in
the simulations it is set to zero when calculating the Stokes number of a given particle size. This is
justified by the fact that for all particles considered here fc is always very small and, furthermore, the
Stokes number is only used for illustrative purposes. The ratio between the particle material density
and the fluid mass density is S = ρp/ρ0, and for all simulations S = 1000 outside the cooled zone.

To demonstrate robustness of the effect of particle accumulation in the vicinity of mean temper-
ature minimum we use three different models for the dynamic viscosity μ: (i) μ = μ∗

√
T (z)/T0,

where μ* = const; (ii) μ=const; (iii) μ = ρ(z) ν, where ν = const.

FIG. 3. The instantaneous x, y, and z profiles of urms for a simulation with forcing at kf = 5 and Re = 240.
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FIG. 4. Upper plot: vertical profile of the mean number density of inertial particles for different Stokes numbers for
simulations with kf = 5k1, Re = 240 in the case where the kinematic viscosity is kept constant and no gravity. Here, the
Stokes number St is based on the fluid density and temperature at the boundary. Lower plot: same as the upper plot, but
showing the particle number density only for the smallest Stokes numbers together with the fluid mass density.

For most of the simulations the number of Eulerian grid points are 1283, while the number of
Lagrangian particles is 5 × 105. It has been verified that increasing the number of grid points up to
5123 or the number of particles up to 107 has no effect on the results.

In simulations without gravity, periodic boundary conditions are used in all directions both
for the fluid and for the particles. When gravity is taken into account in the simulations, particles
are made elastically reflecting from the vertical boundaries. It has been checked that adding small
Brownian diffusion of particles does not affect the results.

In all our simulations, gravity is ignored in Eq. (18) for the fluid, but for the simulations presented
in Sec. III C it is included in Eq. (20) for particle motions. This situation has direct applications
to atmospheric turbulence with lower troposphere temperature inversions, where the density scale
height due to gravity is about 8 km, while the characteristic temperature inhomogeneity scale
inside the temperature inversions is about 500–800 m, and the integral scale of turbulence is about
50–100 m (see Ref. 2).

C. Inertial particles in the absence of gravity

Let us first discuss the results of the numerical simulations concerning the formation of the
inertial particle inhomogeneities in the absence of gravity. In Figs. 4 and 5 we plot the vertical
profile of the mean number density of particles for simulations with kf = 5k1, Re = 240, different
Stokes numbers, and different formulations for the dynamic viscosity. Inspection of these figures
shows that, for a wide range of Stokes numbers, the maximum in the particle number density is
located in the vicinity of the mean temperature minimum.

In the absence of gravity (Wg = 0), the parameter α is given by α = − ln Ñ/ ln T̃ ; see Eq. (14) for
DT � D. In Fig. 6 the Stokes number dependence of the parameter α is shown for different Reynolds
numbers and different forcing scales. It can be seen that the parameter α reaches its maximum value
for St∗ ≈ 0.2, while for Stokes numbers St > St∗, the value of α decreases monotonically. A critical
Stokes number, Stc, separating the large and small Stokes number regimes might be defined such
that α ≥ 1 for St < Stc, while for St > Stc the parameter α is decreasing steeply with increasing
Stokes number.

Since in the simulations the rms Mach number is not very small (around 0.2), the maximum
value of the parameter α is only slightly larger than 1. Indeed, the contribution of particle inertia
to the coefficient α for small Stokes numbers is determined by ∇· Up ∝ (τp/ρ) ∇2 p. On the other
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FIG. 5. The same as the upper plot of Fig. 4 but for the case where the dynamic viscosity is μ = μ∗
√

T (z)/T0, μ* is kept
constant, and the Stokes number St is based on the fluid density and temperature at the boundary.

hand, ∇2 p/ρ ∝ c2
s ∇2θ/T ∝ M−2 u2

rms ∇2θ/T , where M = urms/cs is the Mach number, and cs is
the speed of sound. The deviation of the parameter α from 1 is of the order of (see Ref. 36)

α − 1 ∝ τp

τf
M−2. (21)

In this estimate we took into account that |U ∇2θ | ∼ −2|U θ | and the turbulent heat flux is
U θ = −κT ∇T , where κT ∼ τf u2

rms and  = τ f urms.
Therefore, decreasing the Mach number causes α to increase due to particle inertia. For instance,

in atmospheric turbulence the Mach number is of the order of (0.1 − 3) × 10−3 and α is about 10 (see
Ref. 37). On the other hand, the observed effect of accumulation of inertial particles occurs only for
turbulent flows with large fluid Reynolds number. Decreasing the Mach number in the PENCIL CODE

will either result in a shorter time step or a lower Reynolds number. This implies that we cannot
easily reach at the same time small Mach numbers and large fluid Reynolds number. Therefore, the
observations of the accumulation of inertial particles in the parameter range α � 1 is not currently
possible with the PENCIL CODE.

The parameter α for the heavy particles decreases strongly with τp ∝ St (see Fig. 6 in the large
Stokes number regime). Furthermore, it is expected that, in the large Stokes number regime, α is
independent of Re for a particle as long as urms and kf are kept constant. This is due to the fact
that particles with τ p ∼ τ f are affected primarily by the largest turbulent eddies in the flow. This
is because the smaller turbulent eddies have turnover times much shorter than the particle’s Stokes
time, and they cannot accelerate the particles. Since the Stokes number is based on the Kolmogorov
time τ k, this implies that Stc ∝ √

Re, which is indeed what is found in Fig. 6.

FIG. 6. The parameter α versus the Stokes number St for different Reynolds numbers and forcing wavenumbers in the
absence of gravity. For the dashed-triple-dotted line the dynamic viscosity, μ, is kept constant while for the dotted line
named “temp” the dynamic viscosity μ = μ∗

√
T (z)/T0, where μ* is kept constant. For all other lines the dynamic viscosity,

μ = ρ(z)ν, where the kinematic viscosity ν is kept constant. Here, the Stokes number St is based on the values of fluid density
and temperature at the boundary.
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TABLE III. The coefficient α, the relative maximum of the particle number density and profile width for simulations with
kf = 5k1, Re = 240 and for different formulations of the dynamic viscosity: (i) in the model f1 the dynamic viscosity is
μ = μ∗

√
T (z)/T0, where μ* is constant; (ii) in the model f2 the dynamic viscosity is constant; (iii) in the model f3 the

dynamic viscosity μ = ρ(z) ν, where the kinematic viscosity ν is constant. The profile width LN is given at the level when
the number density is decreased in e times.

α Nmax/N0 Profile width
St f1 f2 f3 f1 f2 f3 f1 f2 f3

0.1 1.00 1.01 1.00 1.55 1.66 1.63 0.88 0.80 0.79
1 0.91 0.98 0.95 1.49 1.62 1.60 0.86 0.80 0.79
10 0.80 0.75 0.59 1.42 1.44 1.35 0.90 0.82 0.81
14 0.76 0.68 0.45 1.39 1.39 1.25 0.90 0.83 0.82

When experiencing a high fluid density, a particle in the large Stokes number regime will more
easily be accelerated by turbulence if the kinematic viscosity ν is constant than if the dynamic
viscosity μ = ρν is constant. This is due to the fact that for constant ν a high fluid density is
associated with a smaller Stokes number, while for constant μ the Stokes number is independent
of the fluid density. Due to this it is expected that particles with large Stokes numbers tend to
be more depleted from the high density regions when ν is constant than when μ is constant.
This explains why the simulation shown in Fig. 6 with constant μ has a much shallower fall-
off with increasing Stokes number in the large Stokes number regime than the simulations with
constant ν.

If the integral scale of turbulence is close to the scale of the thermal cooling layer, a particle
trapped inside a turbulent eddy might travel across the whole cooling zone during one eddy turnover
time. This will effectively smear out the peak of the particle number density, and consequently also
decrease the parameter α. For simulations with kf = 5k1, the integral scale is comparable to the
cooling scale, and the peak of α for kf = 5k1 is lower than for simulations with kf = 15k1 (see
Fig. 6). This trend is expected to continue for yet larger kf.

In addition, Fig. 6 shows that the difference in the parameter α determined for different
formulations of the dynamic viscosity μ, is very small for St  1, and it is small for St ∼ 1.
The real difference in the parameter α is only observed for large Stokes numbers, St > 10 (see
Table III). In this case, the largest value of α occurs for the dynamic viscosity μ = μ∗

√
T (z)/T0,

where μ* = const. On the other hand, the difference in relative maximum of the particle number
density and the profile width for different formulations of dynamic viscosity is very minor (see
Table III). Also scale-separation increases the effect of particle accumulation for St > 1 [see Fig. 6].
However, using different parameters and different formulations of the dynamic viscosity, we always
observe the effect of particle accumulation in the vicinity of the mean temperature minimum. This
is an indication of the robustness of this phenomenon.

D. Inertial particles with gravity

For heavy inertial particles with large Stokes numbers, gravity plays a crucial role, and must be
included in the simulations. In Fig. 7, the mean particle number density is shown as a function of
vertical position z for simulations with St = 1, kf = 5k1, and different gravitational accelerations.

In the following, gravity is measured in the units of g0 = DT/(τ kL), so that g/g0 = St−1 L/Lg for
a particle of Stokes number unity. Here, Lg = DT/Wg is the characteristic scale of the mean particle
number density variations due to the gravity for an isothermal case, DT = urms/3kf is the turbulent
diffusion coefficient, and L is the height of the box.

As the particle sedimentation velocity is increased, the particle number density profile is more
and more tilted, as expected. For large particle sedimentation velocity (g/g0 = 200/3), almost all
particles have accumulated at the lower wall of the box (see Fig. 7).

In Fig. 8, the vertical profile of the particle number density is shown for g/g0 = 2/3 and
different Stokes numbers. By fitting these results with Eq. (14), the parameter α is found to
be about 1 for the three smallest Stokes numbers in Fig. 8, while for St = 3.5 and St = 14 a
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FIG. 7. Vertical profile of the mean number density for different gravitational accelerations, St = 1 and kf = 5k1, where the
kinematic viscosity ν is kept constant.

FIG. 8. Vertical profile of the mean number density (solid line) for g/g0 = 2/3, kf = 5k1 and different Stokes numbers which
are based on the fluid density and temperature at the boundary. Here, the kinematic viscosity ν is kept constant. The dotted
line represent the isothermal reference case.
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best fit of α is found around 0.8 and 0.5, respectively. For large Stokes numbers the maximum
particle number density is found near the bottom wall of the box due to the large sedimentation
velocity.

E. Non-inertial particles

For comparison with the numerical simulations performed for inertial particles in a Lagrangian
framework, we describe in this section numerical simulations for non-inertial particles, where the
equations for both, fluid and particles are solved by employing DNS in an Eulerian framework. In
particular, we now solve Eq. (1) for the number density of non-inertial particles np with U p = U ,
and the fluid density ρ, the fluid velocity U, and the specific entropy s, using again the PENCIL

CODE.51 For these simulations the resolution is 1283. For the fluid we apply the same conditions as
was described in Subsections III A–III D. In particular, the periodic boundary conditions are used
in these simulations in three directions for Eqs. (1) and (17)–(19).

Non-inertial particles are characterized by the following dimensionless parameters:
Pe = urms/Dkf is the Péclet number and Sc = ν/D is the Schmidt number. The results of the
simulations, shown in Fig. 9, demonstrate the accumulation of non-inertial particles in the vicinity
of the maximum of the mean fluid density (or the minimum of the mean fluid temperature). This is
in agreement with the theoretical predictions.30, 31

The results shown in Fig. 9 demonstrate that the profiles of the mean fluid density and the
mean particle number density are similar in numerical simulations with large Péclet and Reynolds
numbers. However, when the Péclet number, Pe = Re Sc is not large, the molecular diffusion D
becomes important, and the profiles of the mean fluid density and the mean particle number density
are, according to Eq. (11), no longer similar.

FIG. 9. Vertical profiles of the mean number density (upper panel) and the mean fluid density (lower panel) of non-inertial
particles for simulations with kf = 5k1 and different Reynolds and Schmidt numbers.
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IV. DISCUSSION AND CONCLUSIONS

This study is the first numerical demonstration of the existence of the phenomenon of turbulent
thermal diffusion of inertial and non-inertial particles in forced, temperature-stratified turbulence.
The inertial particles are described using a Lagrangian framework, while non-inertial particles and
the fluid flow are determined using an Eulerian framework. The phenomenon of turbulent thermal
diffusion has been studied for different Stokes and fluid Reynolds numbers, Péclet numbers as well
as different forcing scales of the turbulence. Furthermore, the effect of gravity has been included in
the simulations.

We have demonstrated in the paper that even in stationary, homogeneous, but stratified turbulence
there is accumulation of particles in the vicinity of the mean temperature minimum due to the
turbulent thermal diffusion, rather than, e.g., the gravity effect. In particular, we have performed
numerical simulations when the gravity effect was switched off (i.e., the terminal fall velocity of
particles was zero). In this case we do observe the particle accumulation in the region with the mean
temperature minimum.

Note that the minimum of the mean temperature in the numerical simulations was located at the
center of the box. Therefore, above the mean temperature minimum the turbulence is stably stratified,
while below it the turbulence is unstably stratified. In all simulations, with different parameters and
different formulations of the dynamic viscosity, we always observe the effect of particle accumulation
in the vicinity of the mean temperature minimum due to turbulent thermal diffusion for St < 1. This
implies that this effect is robust and has general validity, i.e., it should exist in different types of
stratified turbulence. The results of the numerical simulations are in agreement with theoretical
studies,30, 31, 41, 42 laboratory experiments33, 35, 36 and atmospheric observations.37 When St > 1, this
effect is decreasing with Stokes number.

The mean-field approach that describes the large-scale particle dynamics, implies that there is
a separation of scales. In our simulations kf/k1 is varied from 5 to 15 (i.e., the integral scale of the
turbulence is 5–15 times less than the size of the box). On the other hand, as follows from Figs. 4, 5,
and 7–9, the typical scale of the inhomogeneity of particle number density is only 3 times smaller
than the size of the box. This implies that the characteristic scale of the particle inhomogeneity
formed due to the turbulent thermal diffusion is larger than the integral scale of the turbulence.

The theory of the phenomenon of turbulent thermal diffusion which is only developed for small
Stokes numbers, does not allow for a detailed quantitative comparison when the Stokes numbers are
not small. The quantitative comparison is possible only when the Stokes numbers are small (e.g.,
for transport of aerosols in atmospheric turbulence, the numerical simulations with non-inertial
particles). For example, in Fig. 4 (low panel) we show the case of small Stokes number (St = 0.05)
when inertia of particles is negligible and particles can be considered as non-inertial. In this case
for large Péclet numbers DT � D and the steady-state solution of Eq. (8) is N/N0 = ρ/ρ0 (see
Eq. (11)). This is just what is observed in the lower panel of Fig. 4, where the profiles of the
normalized particle number density coincides with the profile of the fluid density. Note also that
a comparison of turbulent thermal diffusion with other mechanisms in particle transport (namely,
thermophoresis of particles, turbulent diffusion, and turbophoresis) shows that these effects in our
simulations are smaller than turbulent thermal diffusion.
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